ppc4xx_devs.c 24.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
/*
 * QEMU PowerPC 4xx embedded processors shared devices emulation
 *
 * Copyright (c) 2007 Jocelyn Mayer
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include "hw.h"
#include "ppc.h"
#include "ppc4xx.h"
#include "sysemu.h"
#include "qemu-log.h"

//#define DEBUG_MMIO
//#define DEBUG_UNASSIGNED
#define DEBUG_UIC


#ifdef DEBUG_UIC
#  define LOG_UIC(...) do {              \
     if (loglevel & CPU_LOG_INT)         \
       fprintf(logfile, ## __VA_ARGS__); \
   } while (0)
#else
#  define LOG_UIC(...) do { } while (0)
#endif

/*****************************************************************************/
/* Generic PowerPC 4xx processor instanciation */
CPUState *ppc4xx_init (const char *cpu_model,
                       clk_setup_t *cpu_clk, clk_setup_t *tb_clk,
                       uint32_t sysclk)
{
    CPUState *env;

    /* init CPUs */
    env = cpu_init(cpu_model);
    if (!env) {
        fprintf(stderr, "Unable to find PowerPC %s CPU definition\n",
                cpu_model);
        exit(1);
    }
    cpu_clk->cb = NULL; /* We don't care about CPU clock frequency changes */
    cpu_clk->opaque = env;
    /* Set time-base frequency to sysclk */
    tb_clk->cb = ppc_emb_timers_init(env, sysclk);
    tb_clk->opaque = env;
    ppc_dcr_init(env, NULL, NULL);
    /* Register qemu callbacks */
    qemu_register_reset(&cpu_ppc_reset, env);

    return env;
}

/*****************************************************************************/
/* Fake device used to map multiple devices in a single memory page */
#define MMIO_AREA_BITS 8
#define MMIO_AREA_LEN (1 << MMIO_AREA_BITS)
#define MMIO_AREA_NB (1 << (TARGET_PAGE_BITS - MMIO_AREA_BITS))
#define MMIO_IDX(addr) (((addr) >> MMIO_AREA_BITS) & (MMIO_AREA_NB - 1))
struct ppc4xx_mmio_t {
    target_phys_addr_t base;
    CPUReadMemoryFunc **mem_read[MMIO_AREA_NB];
    CPUWriteMemoryFunc **mem_write[MMIO_AREA_NB];
    void *opaque[MMIO_AREA_NB];
};

static uint32_t unassigned_mmio_readb (void *opaque, target_phys_addr_t addr)
{
#ifdef DEBUG_UNASSIGNED
    ppc4xx_mmio_t *mmio;

    mmio = opaque;
    printf("Unassigned mmio read 0x" PADDRX " base " PADDRX "\n",
           addr, mmio->base);
#endif

    return 0;
}

static void unassigned_mmio_writeb (void *opaque,
                                    target_phys_addr_t addr, uint32_t val)
{
#ifdef DEBUG_UNASSIGNED
    ppc4xx_mmio_t *mmio;

    mmio = opaque;
    printf("Unassigned mmio write 0x" PADDRX " = 0x%x base " PADDRX "\n",
           addr, val, mmio->base);
#endif
}

static CPUReadMemoryFunc *unassigned_mmio_read[3] = {
    unassigned_mmio_readb,
    unassigned_mmio_readb,
    unassigned_mmio_readb,
};

static CPUWriteMemoryFunc *unassigned_mmio_write[3] = {
    unassigned_mmio_writeb,
    unassigned_mmio_writeb,
    unassigned_mmio_writeb,
};

static uint32_t mmio_readlen (ppc4xx_mmio_t *mmio,
                              target_phys_addr_t addr, int len)
{
    CPUReadMemoryFunc **mem_read;
    uint32_t ret;
    int idx;

    idx = MMIO_IDX(addr);
#if defined(DEBUG_MMIO)
    printf("%s: mmio %p len %d addr " PADDRX " idx %d\n", __func__,
           mmio, len, addr, idx);
#endif
    mem_read = mmio->mem_read[idx];
    ret = (*mem_read[len])(mmio->opaque[idx], addr);

    return ret;
}

static void mmio_writelen (ppc4xx_mmio_t *mmio,
                           target_phys_addr_t addr, uint32_t value, int len)
{
    CPUWriteMemoryFunc **mem_write;
    int idx;

    idx = MMIO_IDX(addr);
#if defined(DEBUG_MMIO)
    printf("%s: mmio %p len %d addr " PADDRX " idx %d value %08" PRIx32 "\n",
           __func__, mmio, len, addr, idx, value);
#endif
    mem_write = mmio->mem_write[idx];
    (*mem_write[len])(mmio->opaque[idx], addr, value);
}

static uint32_t mmio_readb (void *opaque, target_phys_addr_t addr)
{
#if defined(DEBUG_MMIO)
    printf("%s: addr " PADDRX "\n", __func__, addr);
#endif

    return mmio_readlen(opaque, addr, 0);
}

static void mmio_writeb (void *opaque,
                         target_phys_addr_t addr, uint32_t value)
{
#if defined(DEBUG_MMIO)
    printf("%s: addr " PADDRX " val %08" PRIx32 "\n", __func__, addr, value);
#endif
    mmio_writelen(opaque, addr, value, 0);
}

static uint32_t mmio_readw (void *opaque, target_phys_addr_t addr)
{
#if defined(DEBUG_MMIO)
    printf("%s: addr " PADDRX "\n", __func__, addr);
#endif

    return mmio_readlen(opaque, addr, 1);
}

static void mmio_writew (void *opaque,
                         target_phys_addr_t addr, uint32_t value)
{
#if defined(DEBUG_MMIO)
    printf("%s: addr " PADDRX " val %08" PRIx32 "\n", __func__, addr, value);
#endif
    mmio_writelen(opaque, addr, value, 1);
}

static uint32_t mmio_readl (void *opaque, target_phys_addr_t addr)
{
#if defined(DEBUG_MMIO)
    printf("%s: addr " PADDRX "\n", __func__, addr);
#endif

    return mmio_readlen(opaque, addr, 2);
}

static void mmio_writel (void *opaque,
                         target_phys_addr_t addr, uint32_t value)
{
#if defined(DEBUG_MMIO)
    printf("%s: addr " PADDRX " val %08" PRIx32 "\n", __func__, addr, value);
#endif
    mmio_writelen(opaque, addr, value, 2);
}

static CPUReadMemoryFunc *mmio_read[] = {
    &mmio_readb,
    &mmio_readw,
    &mmio_readl,
};

static CPUWriteMemoryFunc *mmio_write[] = {
    &mmio_writeb,
    &mmio_writew,
    &mmio_writel,
};

int ppc4xx_mmio_register (CPUState *env, ppc4xx_mmio_t *mmio,
                          target_phys_addr_t offset, uint32_t len,
                          CPUReadMemoryFunc **mem_read,
                          CPUWriteMemoryFunc **mem_write, void *opaque)
{
    target_phys_addr_t end;
    int idx, eidx;

    if ((offset + len) > TARGET_PAGE_SIZE)
        return -1;
    idx = MMIO_IDX(offset);
    end = offset + len - 1;
    eidx = MMIO_IDX(end);
#if defined(DEBUG_MMIO)
    printf("%s: offset " PADDRX " len %08" PRIx32 " " PADDRX " %d %d\n",
           __func__, offset, len, end, idx, eidx);
#endif
    for (; idx <= eidx; idx++) {
        mmio->mem_read[idx] = mem_read;
        mmio->mem_write[idx] = mem_write;
        mmio->opaque[idx] = opaque;
    }

    return 0;
}

ppc4xx_mmio_t *ppc4xx_mmio_init (CPUState *env, target_phys_addr_t base)
{
    ppc4xx_mmio_t *mmio;
    int mmio_memory;

    mmio = qemu_mallocz(sizeof(ppc4xx_mmio_t));
    if (mmio != NULL) {
        mmio->base = base;
        mmio_memory = cpu_register_io_memory(0, mmio_read, mmio_write, mmio);
#if defined(DEBUG_MMIO)
        printf("%s: base " PADDRX " len %08x %d\n", __func__,
               base, TARGET_PAGE_SIZE, mmio_memory);
#endif
        cpu_register_physical_memory(base, TARGET_PAGE_SIZE, mmio_memory);
        ppc4xx_mmio_register(env, mmio, 0, TARGET_PAGE_SIZE,
                             unassigned_mmio_read, unassigned_mmio_write,
                             mmio);
    }

    return mmio;
}

/*****************************************************************************/
/* "Universal" Interrupt controller */
enum {
    DCR_UICSR  = 0x000,
    DCR_UICSRS = 0x001,
    DCR_UICER  = 0x002,
    DCR_UICCR  = 0x003,
    DCR_UICPR  = 0x004,
    DCR_UICTR  = 0x005,
    DCR_UICMSR = 0x006,
    DCR_UICVR  = 0x007,
    DCR_UICVCR = 0x008,
    DCR_UICMAX = 0x009,
};

#define UIC_MAX_IRQ 32
typedef struct ppcuic_t ppcuic_t;
struct ppcuic_t {
    uint32_t dcr_base;
    int use_vectors;
    uint32_t level;  /* Remembers the state of level-triggered interrupts. */
    uint32_t uicsr;  /* Status register */
    uint32_t uicer;  /* Enable register */
    uint32_t uiccr;  /* Critical register */
    uint32_t uicpr;  /* Polarity register */
    uint32_t uictr;  /* Triggering register */
    uint32_t uicvcr; /* Vector configuration register */
    uint32_t uicvr;
    qemu_irq *irqs;
};

static void ppcuic_trigger_irq (ppcuic_t *uic)
{
    uint32_t ir, cr;
    int start, end, inc, i;

    /* Trigger interrupt if any is pending */
    ir = uic->uicsr & uic->uicer & (~uic->uiccr);
    cr = uic->uicsr & uic->uicer & uic->uiccr;
    LOG_UIC("%s: uicsr %08" PRIx32 " uicer %08" PRIx32
                " uiccr %08" PRIx32 "\n"
                "   %08" PRIx32 " ir %08" PRIx32 " cr %08" PRIx32 "\n",
                __func__, uic->uicsr, uic->uicer, uic->uiccr,
                uic->uicsr & uic->uicer, ir, cr);
    if (ir != 0x0000000) {
        LOG_UIC("Raise UIC interrupt\n");
        qemu_irq_raise(uic->irqs[PPCUIC_OUTPUT_INT]);
    } else {
        LOG_UIC("Lower UIC interrupt\n");
        qemu_irq_lower(uic->irqs[PPCUIC_OUTPUT_INT]);
    }
    /* Trigger critical interrupt if any is pending and update vector */
    if (cr != 0x0000000) {
        qemu_irq_raise(uic->irqs[PPCUIC_OUTPUT_CINT]);
        if (uic->use_vectors) {
            /* Compute critical IRQ vector */
            if (uic->uicvcr & 1) {
                start = 31;
                end = 0;
                inc = -1;
            } else {
                start = 0;
                end = 31;
                inc = 1;
            }
            uic->uicvr = uic->uicvcr & 0xFFFFFFFC;
            for (i = start; i <= end; i += inc) {
                if (cr & (1 << i)) {
                    uic->uicvr += (i - start) * 512 * inc;
                    break;
                }
            }
        }
        LOG_UIC("Raise UIC critical interrupt - "
                    "vector %08" PRIx32 "\n", uic->uicvr);
    } else {
        LOG_UIC("Lower UIC critical interrupt\n");
        qemu_irq_lower(uic->irqs[PPCUIC_OUTPUT_CINT]);
        uic->uicvr = 0x00000000;
    }
}

static void ppcuic_set_irq (void *opaque, int irq_num, int level)
{
    ppcuic_t *uic;
    uint32_t mask, sr;

    uic = opaque;
    mask = 1 << (31-irq_num);
    LOG_UIC("%s: irq %d level %d uicsr %08" PRIx32
                " mask %08" PRIx32 " => %08" PRIx32 " %08" PRIx32 "\n",
                __func__, irq_num, level,
                uic->uicsr, mask, uic->uicsr & mask, level << irq_num);
    if (irq_num < 0 || irq_num > 31)
        return;
    sr = uic->uicsr;

    /* Update status register */
    if (uic->uictr & mask) {
        /* Edge sensitive interrupt */
        if (level == 1)
            uic->uicsr |= mask;
    } else {
        /* Level sensitive interrupt */
        if (level == 1) {
            uic->uicsr |= mask;
            uic->level |= mask;
        } else {
            uic->uicsr &= ~mask;
            uic->level &= ~mask;
        }
    }
    LOG_UIC("%s: irq %d level %d sr %" PRIx32 " => "
                "%08" PRIx32 "\n", __func__, irq_num, level, uic->uicsr, sr);
    if (sr != uic->uicsr)
        ppcuic_trigger_irq(uic);
}

static target_ulong dcr_read_uic (void *opaque, int dcrn)
{
    ppcuic_t *uic;
    target_ulong ret;

    uic = opaque;
    dcrn -= uic->dcr_base;
    switch (dcrn) {
    case DCR_UICSR:
    case DCR_UICSRS:
        ret = uic->uicsr;
        break;
    case DCR_UICER:
        ret = uic->uicer;
        break;
    case DCR_UICCR:
        ret = uic->uiccr;
        break;
    case DCR_UICPR:
        ret = uic->uicpr;
        break;
    case DCR_UICTR:
        ret = uic->uictr;
        break;
    case DCR_UICMSR:
        ret = uic->uicsr & uic->uicer;
        break;
    case DCR_UICVR:
        if (!uic->use_vectors)
            goto no_read;
        ret = uic->uicvr;
        break;
    case DCR_UICVCR:
        if (!uic->use_vectors)
            goto no_read;
        ret = uic->uicvcr;
        break;
    default:
    no_read:
        ret = 0x00000000;
        break;
    }

    return ret;
}

static void dcr_write_uic (void *opaque, int dcrn, target_ulong val)
{
    ppcuic_t *uic;

    uic = opaque;
    dcrn -= uic->dcr_base;
    LOG_UIC("%s: dcr %d val " ADDRX "\n", __func__, dcrn, val);
    switch (dcrn) {
    case DCR_UICSR:
        uic->uicsr &= ~val;
        uic->uicsr |= uic->level;
        ppcuic_trigger_irq(uic);
        break;
    case DCR_UICSRS:
        uic->uicsr |= val;
        ppcuic_trigger_irq(uic);
        break;
    case DCR_UICER:
        uic->uicer = val;
        ppcuic_trigger_irq(uic);
        break;
    case DCR_UICCR:
        uic->uiccr = val;
        ppcuic_trigger_irq(uic);
        break;
    case DCR_UICPR:
        uic->uicpr = val;
        break;
    case DCR_UICTR:
        uic->uictr = val;
        ppcuic_trigger_irq(uic);
        break;
    case DCR_UICMSR:
        break;
    case DCR_UICVR:
        break;
    case DCR_UICVCR:
        uic->uicvcr = val & 0xFFFFFFFD;
        ppcuic_trigger_irq(uic);
        break;
    }
}

static void ppcuic_reset (void *opaque)
{
    ppcuic_t *uic;

    uic = opaque;
    uic->uiccr = 0x00000000;
    uic->uicer = 0x00000000;
    uic->uicpr = 0x00000000;
    uic->uicsr = 0x00000000;
    uic->uictr = 0x00000000;
    if (uic->use_vectors) {
        uic->uicvcr = 0x00000000;
        uic->uicvr = 0x0000000;
    }
}

qemu_irq *ppcuic_init (CPUState *env, qemu_irq *irqs,
                       uint32_t dcr_base, int has_ssr, int has_vr)
{
    ppcuic_t *uic;
    int i;

    uic = qemu_mallocz(sizeof(ppcuic_t));
    if (uic != NULL) {
        uic->dcr_base = dcr_base;
        uic->irqs = irqs;
        if (has_vr)
            uic->use_vectors = 1;
        for (i = 0; i < DCR_UICMAX; i++) {
            ppc_dcr_register(env, dcr_base + i, uic,
                             &dcr_read_uic, &dcr_write_uic);
        }
        qemu_register_reset(ppcuic_reset, uic);
        ppcuic_reset(uic);
    }

    return qemu_allocate_irqs(&ppcuic_set_irq, uic, UIC_MAX_IRQ);
}

/*****************************************************************************/
/* SDRAM controller */
typedef struct ppc4xx_sdram_t ppc4xx_sdram_t;
struct ppc4xx_sdram_t {
    uint32_t addr;
    int nbanks;
    target_phys_addr_t ram_bases[4];
    target_phys_addr_t ram_sizes[4];
    uint32_t besr0;
    uint32_t besr1;
    uint32_t bear;
    uint32_t cfg;
    uint32_t status;
    uint32_t rtr;
    uint32_t pmit;
    uint32_t bcr[4];
    uint32_t tr;
    uint32_t ecccfg;
    uint32_t eccesr;
    qemu_irq irq;
};

enum {
    SDRAM0_CFGADDR = 0x010,
    SDRAM0_CFGDATA = 0x011,
};

/* XXX: TOFIX: some patches have made this code become inconsistent:
 *      there are type inconsistencies, mixing target_phys_addr_t, target_ulong
 *      and uint32_t
 */
static uint32_t sdram_bcr (target_phys_addr_t ram_base,
                           target_phys_addr_t ram_size)
{
    uint32_t bcr;

    switch (ram_size) {
    case (4 * 1024 * 1024):
        bcr = 0x00000000;
        break;
    case (8 * 1024 * 1024):
        bcr = 0x00020000;
        break;
    case (16 * 1024 * 1024):
        bcr = 0x00040000;
        break;
    case (32 * 1024 * 1024):
        bcr = 0x00060000;
        break;
    case (64 * 1024 * 1024):
        bcr = 0x00080000;
        break;
    case (128 * 1024 * 1024):
        bcr = 0x000A0000;
        break;
    case (256 * 1024 * 1024):
        bcr = 0x000C0000;
        break;
    default:
        printf("%s: invalid RAM size " PADDRX "\n", __func__, ram_size);
        return 0x00000000;
    }
    bcr |= ram_base & 0xFF800000;
    bcr |= 1;

    return bcr;
}

static always_inline target_phys_addr_t sdram_base (uint32_t bcr)
{
    return bcr & 0xFF800000;
}

static target_ulong sdram_size (uint32_t bcr)
{
    target_ulong size;
    int sh;

    sh = (bcr >> 17) & 0x7;
    if (sh == 7)
        size = -1;
    else
        size = (4 * 1024 * 1024) << sh;

    return size;
}

static void sdram_set_bcr (uint32_t *bcrp, uint32_t bcr, int enabled)
{
    if (*bcrp & 0x00000001) {
        /* Unmap RAM */
#ifdef DEBUG_SDRAM
        printf("%s: unmap RAM area " PADDRX " " ADDRX "\n",
               __func__, sdram_base(*bcrp), sdram_size(*bcrp));
#endif
        cpu_register_physical_memory(sdram_base(*bcrp), sdram_size(*bcrp),
                                     IO_MEM_UNASSIGNED);
    }
    *bcrp = bcr & 0xFFDEE001;
    if (enabled && (bcr & 0x00000001)) {
#ifdef DEBUG_SDRAM
        printf("%s: Map RAM area " PADDRX " " ADDRX "\n",
               __func__, sdram_base(bcr), sdram_size(bcr));
#endif
        cpu_register_physical_memory(sdram_base(bcr), sdram_size(bcr),
                                     sdram_base(bcr) | IO_MEM_RAM);
    }
}

static void sdram_map_bcr (ppc4xx_sdram_t *sdram)
{
    int i;

    for (i = 0; i < sdram->nbanks; i++) {
        if (sdram->ram_sizes[i] != 0) {
            sdram_set_bcr(&sdram->bcr[i],
                          sdram_bcr(sdram->ram_bases[i], sdram->ram_sizes[i]),
                          1);
        } else {
            sdram_set_bcr(&sdram->bcr[i], 0x00000000, 0);
        }
    }
}

static void sdram_unmap_bcr (ppc4xx_sdram_t *sdram)
{
    int i;

    for (i = 0; i < sdram->nbanks; i++) {
#ifdef DEBUG_SDRAM
        printf("%s: Unmap RAM area " PADDRX " " ADDRX "\n",
               __func__, sdram_base(sdram->bcr[i]), sdram_size(sdram->bcr[i]));
#endif
        cpu_register_physical_memory(sdram_base(sdram->bcr[i]),
                                     sdram_size(sdram->bcr[i]),
                                     IO_MEM_UNASSIGNED);
    }
}

static target_ulong dcr_read_sdram (void *opaque, int dcrn)
{
    ppc4xx_sdram_t *sdram;
    target_ulong ret;

    sdram = opaque;
    switch (dcrn) {
    case SDRAM0_CFGADDR:
        ret = sdram->addr;
        break;
    case SDRAM0_CFGDATA:
        switch (sdram->addr) {
        case 0x00: /* SDRAM_BESR0 */
            ret = sdram->besr0;
            break;
        case 0x08: /* SDRAM_BESR1 */
            ret = sdram->besr1;
            break;
        case 0x10: /* SDRAM_BEAR */
            ret = sdram->bear;
            break;
        case 0x20: /* SDRAM_CFG */
            ret = sdram->cfg;
            break;
        case 0x24: /* SDRAM_STATUS */
            ret = sdram->status;
            break;
        case 0x30: /* SDRAM_RTR */
            ret = sdram->rtr;
            break;
        case 0x34: /* SDRAM_PMIT */
            ret = sdram->pmit;
            break;
        case 0x40: /* SDRAM_B0CR */
            ret = sdram->bcr[0];
            break;
        case 0x44: /* SDRAM_B1CR */
            ret = sdram->bcr[1];
            break;
        case 0x48: /* SDRAM_B2CR */
            ret = sdram->bcr[2];
            break;
        case 0x4C: /* SDRAM_B3CR */
            ret = sdram->bcr[3];
            break;
        case 0x80: /* SDRAM_TR */
            ret = -1; /* ? */
            break;
        case 0x94: /* SDRAM_ECCCFG */
            ret = sdram->ecccfg;
            break;
        case 0x98: /* SDRAM_ECCESR */
            ret = sdram->eccesr;
            break;
        default: /* Error */
            ret = -1;
            break;
        }
        break;
    default:
        /* Avoid gcc warning */
        ret = 0x00000000;
        break;
    }

    return ret;
}

static void dcr_write_sdram (void *opaque, int dcrn, target_ulong val)
{
    ppc4xx_sdram_t *sdram;

    sdram = opaque;
    switch (dcrn) {
    case SDRAM0_CFGADDR:
        sdram->addr = val;
        break;
    case SDRAM0_CFGDATA:
        switch (sdram->addr) {
        case 0x00: /* SDRAM_BESR0 */
            sdram->besr0 &= ~val;
            break;
        case 0x08: /* SDRAM_BESR1 */
            sdram->besr1 &= ~val;
            break;
        case 0x10: /* SDRAM_BEAR */
            sdram->bear = val;
            break;
        case 0x20: /* SDRAM_CFG */
            val &= 0xFFE00000;
            if (!(sdram->cfg & 0x80000000) && (val & 0x80000000)) {
#ifdef DEBUG_SDRAM
                printf("%s: enable SDRAM controller\n", __func__);
#endif
                /* validate all RAM mappings */
                sdram_map_bcr(sdram);
                sdram->status &= ~0x80000000;
            } else if ((sdram->cfg & 0x80000000) && !(val & 0x80000000)) {
#ifdef DEBUG_SDRAM
                printf("%s: disable SDRAM controller\n", __func__);
#endif
                /* invalidate all RAM mappings */
                sdram_unmap_bcr(sdram);
                sdram->status |= 0x80000000;
            }
            if (!(sdram->cfg & 0x40000000) && (val & 0x40000000))
                sdram->status |= 0x40000000;
            else if ((sdram->cfg & 0x40000000) && !(val & 0x40000000))
                sdram->status &= ~0x40000000;
            sdram->cfg = val;
            break;
        case 0x24: /* SDRAM_STATUS */
            /* Read-only register */
            break;
        case 0x30: /* SDRAM_RTR */
            sdram->rtr = val & 0x3FF80000;
            break;
        case 0x34: /* SDRAM_PMIT */
            sdram->pmit = (val & 0xF8000000) | 0x07C00000;
            break;
        case 0x40: /* SDRAM_B0CR */
            sdram_set_bcr(&sdram->bcr[0], val, sdram->cfg & 0x80000000);
            break;
        case 0x44: /* SDRAM_B1CR */
            sdram_set_bcr(&sdram->bcr[1], val, sdram->cfg & 0x80000000);
            break;
        case 0x48: /* SDRAM_B2CR */
            sdram_set_bcr(&sdram->bcr[2], val, sdram->cfg & 0x80000000);
            break;
        case 0x4C: /* SDRAM_B3CR */
            sdram_set_bcr(&sdram->bcr[3], val, sdram->cfg & 0x80000000);
            break;
        case 0x80: /* SDRAM_TR */
            sdram->tr = val & 0x018FC01F;
            break;
        case 0x94: /* SDRAM_ECCCFG */
            sdram->ecccfg = val & 0x00F00000;
            break;
        case 0x98: /* SDRAM_ECCESR */
            val &= 0xFFF0F000;
            if (sdram->eccesr == 0 && val != 0)
                qemu_irq_raise(sdram->irq);
            else if (sdram->eccesr != 0 && val == 0)
                qemu_irq_lower(sdram->irq);
            sdram->eccesr = val;
            break;
        default: /* Error */
            break;
        }
        break;
    }
}

static void sdram_reset (void *opaque)
{
    ppc4xx_sdram_t *sdram;

    sdram = opaque;
    sdram->addr = 0x00000000;
    sdram->bear = 0x00000000;
    sdram->besr0 = 0x00000000; /* No error */
    sdram->besr1 = 0x00000000; /* No error */
    sdram->cfg = 0x00000000;
    sdram->ecccfg = 0x00000000; /* No ECC */
    sdram->eccesr = 0x00000000; /* No error */
    sdram->pmit = 0x07C00000;
    sdram->rtr = 0x05F00000;
    sdram->tr = 0x00854009;
    /* We pre-initialize RAM banks */
    sdram->status = 0x00000000;
    sdram->cfg = 0x00800000;
    sdram_unmap_bcr(sdram);
}

void ppc4xx_sdram_init (CPUState *env, qemu_irq irq, int nbanks,
                        target_phys_addr_t *ram_bases,
                        target_phys_addr_t *ram_sizes,
                        int do_init)
{
    ppc4xx_sdram_t *sdram;

    sdram = qemu_mallocz(sizeof(ppc4xx_sdram_t));
    if (sdram != NULL) {
        sdram->irq = irq;
        sdram->nbanks = nbanks;
        memset(sdram->ram_bases, 0, 4 * sizeof(target_phys_addr_t));
        memcpy(sdram->ram_bases, ram_bases,
               nbanks * sizeof(target_phys_addr_t));
        memset(sdram->ram_sizes, 0, 4 * sizeof(target_phys_addr_t));
        memcpy(sdram->ram_sizes, ram_sizes,
               nbanks * sizeof(target_phys_addr_t));
        sdram_reset(sdram);
        qemu_register_reset(&sdram_reset, sdram);
        ppc_dcr_register(env, SDRAM0_CFGADDR,
                         sdram, &dcr_read_sdram, &dcr_write_sdram);
        ppc_dcr_register(env, SDRAM0_CFGDATA,
                         sdram, &dcr_read_sdram, &dcr_write_sdram);
        if (do_init)
            sdram_map_bcr(sdram);
    }
}

/* Fill in consecutive SDRAM banks with 'ram_size' bytes of memory.
 *
 * sdram_bank_sizes[] must be 0-terminated.
 *
 * The 4xx SDRAM controller supports a small number of banks, and each bank
 * must be one of a small set of sizes. The number of banks and the supported
 * sizes varies by SoC. */
ram_addr_t ppc4xx_sdram_adjust(ram_addr_t ram_size, int nr_banks,
                               target_phys_addr_t ram_bases[],
                               target_phys_addr_t ram_sizes[],
                               const unsigned int sdram_bank_sizes[])
{
    ram_addr_t ram_end = 0;
    int i;
    int j;

    for (i = 0; i < nr_banks; i++) {
        for (j = 0; sdram_bank_sizes[j] != 0; j++) {
            unsigned int bank_size = sdram_bank_sizes[j];

            if (bank_size <= ram_size) {
                ram_bases[i] = ram_end;
                ram_sizes[i] = bank_size;
                ram_end += bank_size;
                ram_size -= bank_size;
                break;
            }
        }

        if (!ram_size) {
            /* No need to use the remaining banks. */
            break;
        }
    }

    if (ram_size)
        printf("Truncating memory to %d MiB to fit SDRAM controller limits.\n",
               (int)(ram_end >> 20));

    return ram_end;
}