op_helper.c 21.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
/*
 *  Alpha emulation cpu micro-operations helpers for qemu.
 *
 *  Copyright (c) 2007 Jocelyn Mayer
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include "exec.h"
#include "host-utils.h"
#include "softfloat.h"

#include "op_helper.h"

#define MEMSUFFIX _raw
#include "op_helper_mem.h"

#if !defined(CONFIG_USER_ONLY)
#define MEMSUFFIX _kernel
#include "op_helper_mem.h"

#define MEMSUFFIX _executive
#include "op_helper_mem.h"

#define MEMSUFFIX _supervisor
#include "op_helper_mem.h"

#define MEMSUFFIX _user
#include "op_helper_mem.h"

/* This is used for pal modes */
#define MEMSUFFIX _data
#include "op_helper_mem.h"
#endif

void helper_tb_flush (void)
{
    tlb_flush(env, 1);
}

void cpu_dump_EA (target_ulong EA);
void helper_print_mem_EA (target_ulong EA)
{
    cpu_dump_EA(EA);
}

/*****************************************************************************/
/* Exceptions processing helpers */
void helper_excp (uint32_t excp, uint32_t error)
{
    env->exception_index = excp;
    env->error_code = error;
    cpu_loop_exit();
}

void helper_amask (void)
{
    switch (env->implver) {
    case IMPLVER_2106x:
        /* EV4, EV45, LCA, LCA45 & EV5 */
        break;
    case IMPLVER_21164:
    case IMPLVER_21264:
    case IMPLVER_21364:
        T0 &= ~env->amask;
        break;
    }
}

void helper_load_pcc (void)
{
    /* XXX: TODO */
    T0 = 0;
}

void helper_load_implver (void)
{
    T0 = env->implver;
}

void helper_load_fpcr (void)
{
    T0 = 0;
#ifdef CONFIG_SOFTFLOAT
    T0 |= env->fp_status.float_exception_flags << 52;
    if (env->fp_status.float_exception_flags)
        T0 |= 1ULL << 63;
    env->ipr[IPR_EXC_SUM] &= ~0x3E:
    env->ipr[IPR_EXC_SUM] |= env->fp_status.float_exception_flags << 1;
#endif
    switch (env->fp_status.float_rounding_mode) {
    case float_round_nearest_even:
        T0 |= 2ULL << 58;
        break;
    case float_round_down:
        T0 |= 1ULL << 58;
        break;
    case float_round_up:
        T0 |= 3ULL << 58;
        break;
    case float_round_to_zero:
        break;
    }
}

void helper_store_fpcr (void)
{
#ifdef CONFIG_SOFTFLOAT
    set_float_exception_flags((T0 >> 52) & 0x3F, &FP_STATUS);
#endif
    switch ((T0 >> 58) & 3) {
    case 0:
        set_float_rounding_mode(float_round_to_zero, &FP_STATUS);
        break;
    case 1:
        set_float_rounding_mode(float_round_down, &FP_STATUS);
        break;
    case 2:
        set_float_rounding_mode(float_round_nearest_even, &FP_STATUS);
        break;
    case 3:
        set_float_rounding_mode(float_round_up, &FP_STATUS);
        break;
    }
}

void helper_load_irf (void)
{
    /* XXX: TODO */
    T0 = 0;
}

void helper_set_irf (void)
{
    /* XXX: TODO */
}

void helper_clear_irf (void)
{
    /* XXX: TODO */
}

void helper_addqv (void)
{
    T2 = T0;
    T0 += T1;
    if (unlikely((T2 ^ T1 ^ (-1ULL)) & (T2 ^ T0) & (1ULL << 63))) {
        helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
    }
}

void helper_addlv (void)
{
    T2 = T0;
    T0 = (uint32_t)(T0 + T1);
    if (unlikely((T2 ^ T1 ^ (-1UL)) & (T2 ^ T0) & (1UL << 31))) {
        helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
    }
}

void helper_subqv (void)
{
    T2 = T0;
    T0 -= T1;
    if (unlikely(((~T2) ^ T0 ^ (-1ULL)) & ((~T2) ^ T1) & (1ULL << 63))) {
        helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
    }
}

void helper_sublv (void)
{
    T2 = T0;
    T0 = (uint32_t)(T0 - T1);
    if (unlikely(((~T2) ^ T0 ^ (-1UL)) & ((~T2) ^ T1) & (1UL << 31))) {
        helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
    }
}

void helper_mullv (void)
{
    int64_t res = (int64_t)T0 * (int64_t)T1;

    if (unlikely((int32_t)res != res)) {
        helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
    }
    T0 = (int64_t)((int32_t)res);
}

void helper_mulqv ()
{
    uint64_t tl, th;

    muls64(&tl, &th, T0, T1);
    /* If th != 0 && th != -1, then we had an overflow */
    if (unlikely((th + 1) > 1)) {
        helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
    }
    T0 = tl;
}

void helper_ctpop (void)
{
    T0 = ctpop64(T0);
}

void helper_ctlz (void)
{
    T0 = clz64(T0);
}

void helper_cttz (void)
{
    T0 = ctz64(T0);
}

static always_inline uint64_t byte_zap (uint64_t op, uint8_t mskb)
{
    uint64_t mask;

    mask = 0;
    mask |= ((mskb >> 0) & 1) * 0x00000000000000FFULL;
    mask |= ((mskb >> 1) & 1) * 0x000000000000FF00ULL;
    mask |= ((mskb >> 2) & 1) * 0x0000000000FF0000ULL;
    mask |= ((mskb >> 3) & 1) * 0x00000000FF000000ULL;
    mask |= ((mskb >> 4) & 1) * 0x000000FF00000000ULL;
    mask |= ((mskb >> 5) & 1) * 0x0000FF0000000000ULL;
    mask |= ((mskb >> 6) & 1) * 0x00FF000000000000ULL;
    mask |= ((mskb >> 7) & 1) * 0xFF00000000000000ULL;

    return op & ~mask;
}

void helper_mskbl (void)
{
    T0 = byte_zap(T0, 0x01 << (T1 & 7));
}

void helper_extbl (void)
{
    T0 >>= (T1 & 7) * 8;
    T0 = byte_zap(T0, 0xFE);
}

void helper_insbl (void)
{
    T0 <<= (T1 & 7) * 8;
    T0 = byte_zap(T0, ~(0x01 << (T1 & 7)));
}

void helper_mskwl (void)
{
    T0 = byte_zap(T0, 0x03 << (T1 & 7));
}

void helper_extwl (void)
{
    T0 >>= (T1 & 7) * 8;
    T0 = byte_zap(T0, 0xFC);
}

void helper_inswl (void)
{
    T0 <<= (T1 & 7) * 8;
    T0 = byte_zap(T0, ~(0x03 << (T1 & 7)));
}

void helper_mskll (void)
{
    T0 = byte_zap(T0, 0x0F << (T1 & 7));
}

void helper_extll (void)
{
    T0 >>= (T1 & 7) * 8;
    T0 = byte_zap(T0, 0xF0);
}

void helper_insll (void)
{
    T0 <<= (T1 & 7) * 8;
    T0 = byte_zap(T0, ~(0x0F << (T1 & 7)));
}

void helper_zap (void)
{
    T0 = byte_zap(T0, T1);
}

void helper_zapnot (void)
{
    T0 = byte_zap(T0, ~T1);
}

void helper_mskql (void)
{
    T0 = byte_zap(T0, 0xFF << (T1 & 7));
}

void helper_extql (void)
{
    T0 >>= (T1 & 7) * 8;
    T0 = byte_zap(T0, 0x00);
}

void helper_insql (void)
{
    T0 <<= (T1 & 7) * 8;
    T0 = byte_zap(T0, ~(0xFF << (T1 & 7)));
}

void helper_mskwh (void)
{
    T0 = byte_zap(T0, (0x03 << (T1 & 7)) >> 8);
}

void helper_inswh (void)
{
    T0 >>= 64 - ((T1 & 7) * 8);
    T0 = byte_zap(T0, ~((0x03 << (T1 & 7)) >> 8));
}

void helper_extwh (void)
{
    T0 <<= 64 - ((T1 & 7) * 8);
    T0 = byte_zap(T0, ~0x07);
}

void helper_msklh (void)
{
    T0 = byte_zap(T0, (0x0F << (T1 & 7)) >> 8);
}

void helper_inslh (void)
{
    T0 >>= 64 - ((T1 & 7) * 8);
    T0 = byte_zap(T0, ~((0x0F << (T1 & 7)) >> 8));
}

void helper_extlh (void)
{
    T0 <<= 64 - ((T1 & 7) * 8);
    T0 = byte_zap(T0, ~0x0F);
}

void helper_mskqh (void)
{
    T0 = byte_zap(T0, (0xFF << (T1 & 7)) >> 8);
}

void helper_insqh (void)
{
    T0 >>= 64 - ((T1 & 7) * 8);
    T0 = byte_zap(T0, ~((0xFF << (T1 & 7)) >> 8));
}

void helper_extqh (void)
{
    T0 <<= 64 - ((T1 & 7) * 8);
    T0 = byte_zap(T0, 0x00);
}

void helper_cmpbge (void)
{
    uint8_t opa, opb, res;
    int i;

    res = 0;
    for (i = 0; i < 7; i++) {
        opa = T0 >> (i * 8);
        opb = T1 >> (i * 8);
        if (opa >= opb)
            res |= 1 << i;
    }
    T0 = res;
}

void helper_cmov_fir (int freg)
{
    if (FT0 != 0)
        env->fir[freg] = FT1;
}

void helper_sqrts (void)
{
    FT0 = float32_sqrt(FT0, &FP_STATUS);
}

void helper_cpys (void)
{
    union {
        double d;
        uint64_t i;
    } p, q, r;

    p.d = FT0;
    q.d = FT1;
    r.i = p.i & 0x8000000000000000ULL;
    r.i |= q.i & ~0x8000000000000000ULL;
    FT0 = r.d;
}

void helper_cpysn (void)
{
    union {
        double d;
        uint64_t i;
    } p, q, r;

    p.d = FT0;
    q.d = FT1;
    r.i = (~p.i) & 0x8000000000000000ULL;
    r.i |= q.i & ~0x8000000000000000ULL;
    FT0 = r.d;
}

void helper_cpyse (void)
{
    union {
        double d;
        uint64_t i;
    } p, q, r;

    p.d = FT0;
    q.d = FT1;
    r.i = p.i & 0xFFF0000000000000ULL;
    r.i |= q.i & ~0xFFF0000000000000ULL;
    FT0 = r.d;
}

void helper_itofs (void)
{
    union {
        double d;
        uint64_t i;
    } p;

    p.d = FT0;
    FT0 = int64_to_float32(p.i, &FP_STATUS);
}

void helper_ftois (void)
{
    union {
        double d;
        uint64_t i;
    } p;

    p.i = float32_to_int64(FT0, &FP_STATUS);
    FT0 = p.d;
}

void helper_sqrtt (void)
{
    FT0 = float64_sqrt(FT0, &FP_STATUS);
}

void helper_cmptun (void)
{
    union {
        double d;
        uint64_t i;
    } p;

    p.i = 0;
    if (float64_is_nan(FT0) || float64_is_nan(FT1))
        p.i = 0x4000000000000000ULL;
    FT0 = p.d;
}

void helper_cmpteq (void)
{
    union {
        double d;
        uint64_t i;
    } p;

    p.i = 0;
    if (float64_eq(FT0, FT1, &FP_STATUS))
        p.i = 0x4000000000000000ULL;
    FT0 = p.d;
}

void helper_cmptle (void)
{
    union {
        double d;
        uint64_t i;
    } p;

    p.i = 0;
    if (float64_le(FT0, FT1, &FP_STATUS))
        p.i = 0x4000000000000000ULL;
    FT0 = p.d;
}

void helper_cmptlt (void)
{
    union {
        double d;
        uint64_t i;
    } p;

    p.i = 0;
    if (float64_lt(FT0, FT1, &FP_STATUS))
        p.i = 0x4000000000000000ULL;
    FT0 = p.d;
}

void helper_itoft (void)
{
    union {
        double d;
        uint64_t i;
    } p;

    p.d = FT0;
    FT0 = int64_to_float64(p.i, &FP_STATUS);
}

void helper_ftoit (void)
{
    union {
        double d;
        uint64_t i;
    } p;

    p.i = float64_to_int64(FT0, &FP_STATUS);
    FT0 = p.d;
}

static always_inline int vaxf_is_valid (float ff)
{
    union {
        float f;
        uint32_t i;
    } p;
    uint32_t exp, mant;

    p.f = ff;
    exp = (p.i >> 23) & 0xFF;
    mant = p.i & 0x007FFFFF;
    if (exp == 0 && ((p.i & 0x80000000) || mant != 0)) {
        /* Reserved operands / Dirty zero */
        return 0;
    }

    return 1;
}

static always_inline float vaxf_to_ieee32 (float ff)
{
    union {
        float f;
        uint32_t i;
    } p;
    uint32_t exp;

    p.f = ff;
    exp = (p.i >> 23) & 0xFF;
    if (exp < 3) {
        /* Underflow */
        p.f = 0.0;
    } else {
        p.f *= 0.25;
    }

    return p.f;
}

static always_inline float ieee32_to_vaxf (float fi)
{
    union {
        float f;
        uint32_t i;
    } p;
    uint32_t exp, mant;

    p.f = fi;
    exp = (p.i >> 23) & 0xFF;
    mant = p.i & 0x007FFFFF;
    if (exp == 255) {
        /* NaN or infinity */
        p.i = 1;
    } else if (exp == 0) {
        if (mant == 0) {
            /* Zero */
            p.i = 0;
        } else {
            /* Denormalized */
            p.f *= 2.0;
        }
    } else {
        if (exp >= 253) {
            /* Overflow */
            p.i = 1;
        } else {
            p.f *= 4.0;
        }
    }

    return p.f;
}

void helper_addf (void)
{
    float ft0, ft1, ft2;

    if (!vaxf_is_valid(FT0) || !vaxf_is_valid(FT1)) {
        /* XXX: TODO */
    }
    ft0 = vaxf_to_ieee32(FT0);
    ft1 = vaxf_to_ieee32(FT1);
    ft2 = float32_add(ft0, ft1, &FP_STATUS);
    FT0 = ieee32_to_vaxf(ft2);
}

void helper_subf (void)
{
    float ft0, ft1, ft2;

    if (!vaxf_is_valid(FT0) || !vaxf_is_valid(FT1)) {
        /* XXX: TODO */
    }
    ft0 = vaxf_to_ieee32(FT0);
    ft1 = vaxf_to_ieee32(FT1);
    ft2 = float32_sub(ft0, ft1, &FP_STATUS);
    FT0 = ieee32_to_vaxf(ft2);
}

void helper_mulf (void)
{
    float ft0, ft1, ft2;

    if (!vaxf_is_valid(FT0) || !vaxf_is_valid(FT1)) {
        /* XXX: TODO */
    }
    ft0 = vaxf_to_ieee32(FT0);
    ft1 = vaxf_to_ieee32(FT1);
    ft2 = float32_mul(ft0, ft1, &FP_STATUS);
    FT0 = ieee32_to_vaxf(ft2);
}

void helper_divf (void)
{
    float ft0, ft1, ft2;

    if (!vaxf_is_valid(FT0) || !vaxf_is_valid(FT1)) {
        /* XXX: TODO */
    }
    ft0 = vaxf_to_ieee32(FT0);
    ft1 = vaxf_to_ieee32(FT1);
    ft2 = float32_div(ft0, ft1, &FP_STATUS);
    FT0 = ieee32_to_vaxf(ft2);
}

void helper_sqrtf (void)
{
    float ft0, ft1;

    if (!vaxf_is_valid(FT0) || !vaxf_is_valid(FT1)) {
        /* XXX: TODO */
    }
    ft0 = vaxf_to_ieee32(FT0);
    ft1 = float32_sqrt(ft0, &FP_STATUS);
    FT0 = ieee32_to_vaxf(ft1);
}

void helper_itoff (void)
{
    /* XXX: TODO */
}

static always_inline int vaxg_is_valid (double ff)
{
    union {
        double f;
        uint64_t i;
    } p;
    uint64_t exp, mant;

    p.f = ff;
    exp = (p.i >> 52) & 0x7FF;
    mant = p.i & 0x000FFFFFFFFFFFFFULL;
    if (exp == 0 && ((p.i & 0x8000000000000000ULL) || mant != 0)) {
        /* Reserved operands / Dirty zero */
        return 0;
    }

    return 1;
}

static always_inline double vaxg_to_ieee64 (double fg)
{
    union {
        double f;
        uint64_t i;
    } p;
    uint32_t exp;

    p.f = fg;
    exp = (p.i >> 52) & 0x7FF;
    if (exp < 3) {
        /* Underflow */
        p.f = 0.0;
    } else {
        p.f *= 0.25;
    }

    return p.f;
}

static always_inline double ieee64_to_vaxg (double fi)
{
    union {
        double f;
        uint64_t i;
    } p;
    uint64_t mant;
    uint32_t exp;

    p.f = fi;
    exp = (p.i >> 52) & 0x7FF;
    mant = p.i & 0x000FFFFFFFFFFFFFULL;
    if (exp == 255) {
        /* NaN or infinity */
        p.i = 1; /* VAX dirty zero */
    } else if (exp == 0) {
        if (mant == 0) {
            /* Zero */
            p.i = 0;
        } else {
            /* Denormalized */
            p.f *= 2.0;
        }
    } else {
        if (exp >= 2045) {
            /* Overflow */
            p.i = 1; /* VAX dirty zero */
        } else {
            p.f *= 4.0;
        }
    }

    return p.f;
}

void helper_addg (void)
{
    double ft0, ft1, ft2;

    if (!vaxg_is_valid(FT0) || !vaxg_is_valid(FT1)) {
        /* XXX: TODO */
    }
    ft0 = vaxg_to_ieee64(FT0);
    ft1 = vaxg_to_ieee64(FT1);
    ft2 = float64_add(ft0, ft1, &FP_STATUS);
    FT0 = ieee64_to_vaxg(ft2);
}

void helper_subg (void)
{
    double ft0, ft1, ft2;

    if (!vaxg_is_valid(FT0) || !vaxg_is_valid(FT1)) {
        /* XXX: TODO */
    }
    ft0 = vaxg_to_ieee64(FT0);
    ft1 = vaxg_to_ieee64(FT1);
    ft2 = float64_sub(ft0, ft1, &FP_STATUS);
    FT0 = ieee64_to_vaxg(ft2);
}

void helper_mulg (void)
{
    double ft0, ft1, ft2;

    if (!vaxg_is_valid(FT0) || !vaxg_is_valid(FT1)) {
        /* XXX: TODO */
    }
    ft0 = vaxg_to_ieee64(FT0);
    ft1 = vaxg_to_ieee64(FT1);
    ft2 = float64_mul(ft0, ft1, &FP_STATUS);
    FT0 = ieee64_to_vaxg(ft2);
}

void helper_divg (void)
{
    double ft0, ft1, ft2;

    if (!vaxg_is_valid(FT0) || !vaxg_is_valid(FT1)) {
        /* XXX: TODO */
    }
    ft0 = vaxg_to_ieee64(FT0);
    ft1 = vaxg_to_ieee64(FT1);
    ft2 = float64_div(ft0, ft1, &FP_STATUS);
    FT0 = ieee64_to_vaxg(ft2);
}

void helper_sqrtg (void)
{
    double ft0, ft1;

    if (!vaxg_is_valid(FT0) || !vaxg_is_valid(FT1)) {
        /* XXX: TODO */
    }
    ft0 = vaxg_to_ieee64(FT0);
    ft1 = float64_sqrt(ft0, &FP_STATUS);
    FT0 = ieee64_to_vaxg(ft1);
}

void helper_cmpgeq (void)
{
    union {
        double d;
        uint64_t u;
    } p;
    double ft0, ft1;

    if (!vaxg_is_valid(FT0) || !vaxg_is_valid(FT1)) {
        /* XXX: TODO */
    }
    ft0 = vaxg_to_ieee64(FT0);
    ft1 = vaxg_to_ieee64(FT1);
    p.u = 0;
    if (float64_eq(ft0, ft1, &FP_STATUS))
        p.u = 0x4000000000000000ULL;
    FT0 = p.d;
}

void helper_cmpglt (void)
{
    union {
        double d;
        uint64_t u;
    } p;
    double ft0, ft1;

    if (!vaxg_is_valid(FT0) || !vaxg_is_valid(FT1)) {
        /* XXX: TODO */
    }
    ft0 = vaxg_to_ieee64(FT0);
    ft1 = vaxg_to_ieee64(FT1);
    p.u = 0;
    if (float64_lt(ft0, ft1, &FP_STATUS))
        p.u = 0x4000000000000000ULL;
    FT0 = p.d;
}

void helper_cmpgle (void)
{
    union {
        double d;
        uint64_t u;
    } p;
    double ft0, ft1;

    if (!vaxg_is_valid(FT0) || !vaxg_is_valid(FT1)) {
        /* XXX: TODO */
    }
    ft0 = vaxg_to_ieee64(FT0);
    ft1 = vaxg_to_ieee64(FT1);
    p.u = 0;
    if (float64_le(ft0, ft1, &FP_STATUS))
        p.u = 0x4000000000000000ULL;
    FT0 = p.d;
}

void helper_cvtqs (void)
{
    union {
        double d;
        uint64_t u;
    } p;

    p.d = FT0;
    FT0 = (float)p.u;
}

void helper_cvttq (void)
{
    union {
        double d;
        uint64_t u;
    } p;

    p.u = FT0;
    FT0 = p.d;
}

void helper_cvtqt (void)
{
    union {
        double d;
        uint64_t u;
    } p;

    p.d = FT0;
    FT0 = p.u;
}

void helper_cvtqf (void)
{
    union {
        double d;
        uint64_t u;
    } p;

    p.d = FT0;
    FT0 = ieee32_to_vaxf(p.u);
}

void helper_cvtgf (void)
{
    double ft0;

    ft0 = vaxg_to_ieee64(FT0);
    FT0 = ieee32_to_vaxf(ft0);
}

void helper_cvtgd (void)
{
    /* XXX: TODO */
}

void helper_cvtgq (void)
{
    union {
        double d;
        uint64_t u;
    } p;

    p.u = vaxg_to_ieee64(FT0);
    FT0 = p.d;
}

void helper_cvtqg (void)
{
    union {
        double d;
        uint64_t u;
    } p;

    p.d = FT0;
    FT0 = ieee64_to_vaxg(p.u);
}

void helper_cvtdg (void)
{
    /* XXX: TODO */
}

void helper_cvtlq (void)
{
    union {
        double d;
        uint64_t u;
    } p, q;

    p.d = FT0;
    q.u = (p.u >> 29) & 0x3FFFFFFF;
    q.u |= (p.u >> 32);
    q.u = (int64_t)((int32_t)q.u);
    FT0 = q.d;
}

static always_inline void __helper_cvtql (int s, int v)
{
    union {
        double d;
        uint64_t u;
    } p, q;

    p.d = FT0;
    q.u = ((uint64_t)(p.u & 0xC0000000)) << 32;
    q.u |= ((uint64_t)(p.u & 0x7FFFFFFF)) << 29;
    FT0 = q.d;
    if (v && (int64_t)((int32_t)p.u) != (int64_t)p.u) {
        helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
    }
    if (s) {
        /* TODO */
    }
}

void helper_cvtql (void)
{
    __helper_cvtql(0, 0);
}

void helper_cvtqlv (void)
{
    __helper_cvtql(0, 1);
}

void helper_cvtqlsv (void)
{
    __helper_cvtql(1, 1);
}

void helper_cmpfeq (void)
{
    if (float64_eq(FT0, FT1, &FP_STATUS))
        T0 = 1;
    else
        T0 = 0;
}

void helper_cmpfne (void)
{
    if (float64_eq(FT0, FT1, &FP_STATUS))
        T0 = 0;
    else
        T0 = 1;
}

void helper_cmpflt (void)
{
    if (float64_lt(FT0, FT1, &FP_STATUS))
        T0 = 1;
    else
        T0 = 0;
}

void helper_cmpfle (void)
{
    if (float64_lt(FT0, FT1, &FP_STATUS))
        T0 = 1;
    else
        T0 = 0;
}

void helper_cmpfgt (void)
{
    if (float64_le(FT0, FT1, &FP_STATUS))
        T0 = 0;
    else
        T0 = 1;
}

void helper_cmpfge (void)
{
    if (float64_lt(FT0, FT1, &FP_STATUS))
        T0 = 0;
    else
        T0 = 1;
}

#if !defined (CONFIG_USER_ONLY)
void helper_mfpr (int iprn)
{
    uint64_t val;

    if (cpu_alpha_mfpr(env, iprn, &val) == 0)
        T0 = val;
}

void helper_mtpr (int iprn)
{
    cpu_alpha_mtpr(env, iprn, T0, NULL);
}
#endif

/*****************************************************************************/
/* Softmmu support */
#if !defined (CONFIG_USER_ONLY)

#define GETPC() (__builtin_return_address(0))

/* XXX: the two following helpers are pure hacks.
 *      Hopefully, we emulate the PALcode, then we should never see
 *      HW_LD / HW_ST instructions.
 */
void helper_ld_phys_to_virt (void)
{
    uint64_t tlb_addr, physaddr;
    int index, mmu_idx;
    void *retaddr;

    mmu_idx = cpu_mmu_index(env);
    index = (T0 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 redo:
    tlb_addr = env->tlb_table[mmu_idx][index].addr_read;
    if ((T0 & TARGET_PAGE_MASK) ==
        (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
        physaddr = T0 + env->tlb_table[mmu_idx][index].addend;
    } else {
        /* the page is not in the TLB : fill it */
        retaddr = GETPC();
        tlb_fill(T0, 0, mmu_idx, retaddr);
        goto redo;
    }
    T0 = physaddr;
}

void helper_st_phys_to_virt (void)
{
    uint64_t tlb_addr, physaddr;
    int index, mmu_idx;
    void *retaddr;

    mmu_idx = cpu_mmu_index(env);
    index = (T0 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 redo:
    tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
    if ((T0 & TARGET_PAGE_MASK) ==
        (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
        physaddr = T0 + env->tlb_table[mmu_idx][index].addend;
    } else {
        /* the page is not in the TLB : fill it */
        retaddr = GETPC();
        tlb_fill(T0, 1, mmu_idx, retaddr);
        goto redo;
    }
    T0 = physaddr;
}

#define MMUSUFFIX _mmu

#define SHIFT 0
#include "softmmu_template.h"

#define SHIFT 1
#include "softmmu_template.h"

#define SHIFT 2
#include "softmmu_template.h"

#define SHIFT 3
#include "softmmu_template.h"

/* try to fill the TLB and return an exception if error. If retaddr is
   NULL, it means that the function was called in C code (i.e. not
   from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
{
    TranslationBlock *tb;
    CPUState *saved_env;
    target_phys_addr_t pc;
    int ret;

    /* XXX: hack to restore env in all cases, even if not called from
       generated code */
    saved_env = env;
    env = cpu_single_env;
    ret = cpu_alpha_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
    if (!likely(ret == 0)) {
        if (likely(retaddr)) {
            /* now we have a real cpu fault */
            pc = (target_phys_addr_t)retaddr;
            tb = tb_find_pc(pc);
            if (likely(tb)) {
                /* the PC is inside the translated code. It means that we have
                   a virtual CPU fault */
                cpu_restore_state(tb, env, pc, NULL);
            }
        }
        /* Exception index and error code are already set */
        cpu_loop_exit();
    }
    env = saved_env;
}

#endif