op_helper.c 23.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
#include "exec.h"

//#define DEBUG_PCALL
//#define DEBUG_MMU

void raise_exception(int tt)
{
    env->exception_index = tt;
    cpu_loop_exit();
}   

void check_ieee_exceptions()
{
     T0 = get_float_exception_flags(&env->fp_status);
     if (T0)
     {
	/* Copy IEEE 754 flags into FSR */
	if (T0 & float_flag_invalid)
	    env->fsr |= FSR_NVC;
	if (T0 & float_flag_overflow)
	    env->fsr |= FSR_OFC;
	if (T0 & float_flag_underflow)
	    env->fsr |= FSR_UFC;
	if (T0 & float_flag_divbyzero)
	    env->fsr |= FSR_DZC;
	if (T0 & float_flag_inexact)
	    env->fsr |= FSR_NXC;

	if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23))
	{
	    /* Unmasked exception, generate a trap */
	    env->fsr |= FSR_FTT_IEEE_EXCP;
	    raise_exception(TT_FP_EXCP);
	}
	else
	{
	    /* Accumulate exceptions */
	    env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
	}
     }
}

#ifdef USE_INT_TO_FLOAT_HELPERS
void do_fitos(void)
{
    set_float_exception_flags(0, &env->fp_status);
    FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
    check_ieee_exceptions();
}

void do_fitod(void)
{
    DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
}
#endif

void do_fabss(void)
{
    FT0 = float32_abs(FT1);
}

#ifdef TARGET_SPARC64
void do_fabsd(void)
{
    DT0 = float64_abs(DT1);
}
#endif

void do_fsqrts(void)
{
    set_float_exception_flags(0, &env->fp_status);
    FT0 = float32_sqrt(FT1, &env->fp_status);
    check_ieee_exceptions();
}

void do_fsqrtd(void)
{
    set_float_exception_flags(0, &env->fp_status);
    DT0 = float64_sqrt(DT1, &env->fp_status);
    check_ieee_exceptions();
}

#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP)                      \
    void glue(do_, name) (void)                                         \
    {                                                                   \
        env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
        switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \
        case float_relation_unordered:                                  \
            T0 = (FSR_FCC1 | FSR_FCC0) << FS;                           \
            if ((env->fsr & FSR_NVM) || TRAP) {                         \
                env->fsr |= T0;                                         \
                env->fsr |= FSR_NVC;                                    \
                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
                raise_exception(TT_FP_EXCP);                            \
            } else {                                                    \
                env->fsr |= FSR_NVA;                                    \
            }                                                           \
            break;                                                      \
        case float_relation_less:                                       \
            T0 = FSR_FCC0 << FS;                                        \
            break;                                                      \
        case float_relation_greater:                                    \
            T0 = FSR_FCC1 << FS;                                        \
            break;                                                      \
        default:                                                        \
            T0 = 0;                                                     \
            break;                                                      \
        }                                                               \
        env->fsr |= T0;                                                 \
    }

GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);

GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);

#ifdef TARGET_SPARC64
GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);

GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);

GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);

GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);

GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);

GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
#endif

#if defined(CONFIG_USER_ONLY) 
void helper_ld_asi(int asi, int size, int sign)
{
}

void helper_st_asi(int asi, int size, int sign)
{
}
#else
#ifndef TARGET_SPARC64
void helper_ld_asi(int asi, int size, int sign)
{
    uint32_t ret = 0;

    switch (asi) {
    case 3: /* MMU probe */
	{
	    int mmulev;

	    mmulev = (T0 >> 8) & 15;
	    if (mmulev > 4)
		ret = 0;
	    else {
		ret = mmu_probe(env, T0, mmulev);
		//bswap32s(&ret);
	    }
#ifdef DEBUG_MMU
	    printf("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret);
#endif
	}
	break;
    case 4: /* read MMU regs */
	{
	    int reg = (T0 >> 8) & 0xf;
	    
	    ret = env->mmuregs[reg];
	    if (reg == 3) /* Fault status cleared on read */
		env->mmuregs[reg] = 0;
#ifdef DEBUG_MMU
	    printf("mmu_read: reg[%d] = 0x%08x\n", reg, ret);
#endif
	}
	break;
    case 0x20 ... 0x2f: /* MMU passthrough */
        switch(size) {
        case 1:
            ret = ldub_phys(T0);
            break;
        case 2:
            ret = lduw_phys(T0 & ~1);
            break;
        default:
        case 4:
            ret = ldl_phys(T0 & ~3);
            break;
        case 8:
	    ret = ldl_phys(T0 & ~3);
	    T0 = ldl_phys((T0 + 4) & ~3);
	    break;
        }
	break;
    default:
	ret = 0;
	break;
    }
    T1 = ret;
}

void helper_st_asi(int asi, int size, int sign)
{
    switch(asi) {
    case 3: /* MMU flush */
	{
	    int mmulev;

	    mmulev = (T0 >> 8) & 15;
#ifdef DEBUG_MMU
	    printf("mmu flush level %d\n", mmulev);
#endif
	    switch (mmulev) {
	    case 0: // flush page
		tlb_flush_page(env, T0 & 0xfffff000);
		break;
	    case 1: // flush segment (256k)
	    case 2: // flush region (16M)
	    case 3: // flush context (4G)
	    case 4: // flush entire
		tlb_flush(env, 1);
		break;
	    default:
		break;
	    }
#ifdef DEBUG_MMU
	    dump_mmu(env);
#endif
	    return;
	}
    case 4: /* write MMU regs */
	{
	    int reg = (T0 >> 8) & 0xf;
	    uint32_t oldreg;
	    
	    oldreg = env->mmuregs[reg];
            switch(reg) {
            case 0:
		env->mmuregs[reg] &= ~(MMU_E | MMU_NF);
		env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF);
		// Mappings generated during no-fault mode or MMU
		// disabled mode are invalid in normal mode
                if (oldreg != env->mmuregs[reg])
                    tlb_flush(env, 1);
                break;
            case 2:
		env->mmuregs[reg] = T1;
                if (oldreg != env->mmuregs[reg]) {
                    /* we flush when the MMU context changes because
                       QEMU has no MMU context support */
                    tlb_flush(env, 1);
                }
                break;
            case 3:
            case 4:
                break;
            default:
		env->mmuregs[reg] = T1;
                break;
            }
#ifdef DEBUG_MMU
            if (oldreg != env->mmuregs[reg]) {
                printf("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
            }
	    dump_mmu(env);
#endif
	    return;
	}
    case 0x17: /* Block copy, sta access */
	{
	    // value (T1) = src
	    // address (T0) = dst
	    // copy 32 bytes
	    uint32_t src = T1, dst = T0;
	    uint8_t temp[32];
	    
	    tswap32s(&src);

	    cpu_physical_memory_read(src, (void *) &temp, 32);
	    cpu_physical_memory_write(dst, (void *) &temp, 32);
	}
	return;
    case 0x1f: /* Block fill, stda access */
	{
	    // value (T1, T2)
	    // address (T0) = dst
	    // fill 32 bytes
	    int i;
	    uint32_t dst = T0;
	    uint64_t val;
	    
	    val = (((uint64_t)T1) << 32) | T2;
	    tswap64s(&val);

	    for (i = 0; i < 32; i += 8, dst += 8) {
		cpu_physical_memory_write(dst, (void *) &val, 8);
	    }
	}
	return;
    case 0x20 ... 0x2f: /* MMU passthrough */
	{
            switch(size) {
            case 1:
                stb_phys(T0, T1);
                break;
            case 2:
                stw_phys(T0 & ~1, T1);
                break;
            case 4:
            default:
                stl_phys(T0 & ~3, T1);
                break;
            case 8:
                stl_phys(T0 & ~3, T1);
                stl_phys((T0 + 4) & ~3, T2);
                break;
            }
	}
	return;
    default:
	return;
    }
}

#else

void helper_ld_asi(int asi, int size, int sign)
{
    uint64_t ret = 0;

    if (asi < 0x80 && (env->pstate & PS_PRIV) == 0)
	raise_exception(TT_PRIV_ACT);

    switch (asi) {
    case 0x14: // Bypass
    case 0x15: // Bypass, non-cacheable
	{
            switch(size) {
            case 1:
                ret = ldub_phys(T0);
                break;
            case 2:
                ret = lduw_phys(T0 & ~1);
                break;
            case 4:
                ret = ldl_phys(T0 & ~3);
                break;
            default:
            case 8:
                ret = ldq_phys(T0 & ~7);
                break;
            }
	    break;
	}
    case 0x04: // Nucleus
    case 0x0c: // Nucleus Little Endian (LE)
    case 0x10: // As if user primary
    case 0x11: // As if user secondary
    case 0x18: // As if user primary LE
    case 0x19: // As if user secondary LE
    case 0x1c: // Bypass LE
    case 0x1d: // Bypass, non-cacheable LE
    case 0x24: // Nucleus quad LDD 128 bit atomic
    case 0x2c: // Nucleus quad LDD 128 bit atomic
    case 0x4a: // UPA config
    case 0x82: // Primary no-fault
    case 0x83: // Secondary no-fault
    case 0x88: // Primary LE
    case 0x89: // Secondary LE
    case 0x8a: // Primary no-fault LE
    case 0x8b: // Secondary no-fault LE
	// XXX
	break;
    case 0x45: // LSU
	ret = env->lsu;
	break;
    case 0x50: // I-MMU regs
	{
	    int reg = (T0 >> 3) & 0xf;

	    ret = env->immuregs[reg];
	    break;
	}
    case 0x51: // I-MMU 8k TSB pointer
    case 0x52: // I-MMU 64k TSB pointer
    case 0x55: // I-MMU data access
	// XXX
	break;
    case 0x56: // I-MMU tag read
	{
	    unsigned int i;
	    
	    for (i = 0; i < 64; i++) {
		// Valid, ctx match, vaddr match
		if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
		    env->itlb_tag[i] == T0) {
		    ret = env->itlb_tag[i];
		    break;
		}
	    }
	    break;
	}
    case 0x58: // D-MMU regs
	{
	    int reg = (T0 >> 3) & 0xf;

	    ret = env->dmmuregs[reg];
	    break;
	}
    case 0x5e: // D-MMU tag read
	{
	    unsigned int i;
	    
	    for (i = 0; i < 64; i++) {
		// Valid, ctx match, vaddr match
		if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
		    env->dtlb_tag[i] == T0) {
		    ret = env->dtlb_tag[i];
		    break;
		}
	    }
	    break;
	}
    case 0x59: // D-MMU 8k TSB pointer
    case 0x5a: // D-MMU 64k TSB pointer
    case 0x5b: // D-MMU data pointer
    case 0x5d: // D-MMU data access
    case 0x48: // Interrupt dispatch, RO
    case 0x49: // Interrupt data receive
    case 0x7f: // Incoming interrupt vector, RO
	// XXX
	break;
    case 0x54: // I-MMU data in, WO
    case 0x57: // I-MMU demap, WO
    case 0x5c: // D-MMU data in, WO
    case 0x5f: // D-MMU demap, WO
    case 0x77: // Interrupt vector, WO
    default:
	ret = 0;
	break;
    }
    T1 = ret;
}

void helper_st_asi(int asi, int size, int sign)
{
    if (asi < 0x80 && (env->pstate & PS_PRIV) == 0)
	raise_exception(TT_PRIV_ACT);

    switch(asi) {
    case 0x14: // Bypass
    case 0x15: // Bypass, non-cacheable
	{
            switch(size) {
            case 1:
                stb_phys(T0, T1);
                break;
            case 2:
                stw_phys(T0 & ~1, T1);
                break;
            case 4:
                stl_phys(T0 & ~3, T1);
                break;
            case 8:
            default:
                stq_phys(T0 & ~7, T1);
                break;
            }
	}
	return;
    case 0x04: // Nucleus
    case 0x0c: // Nucleus Little Endian (LE)
    case 0x10: // As if user primary
    case 0x11: // As if user secondary
    case 0x18: // As if user primary LE
    case 0x19: // As if user secondary LE
    case 0x1c: // Bypass LE
    case 0x1d: // Bypass, non-cacheable LE
    case 0x24: // Nucleus quad LDD 128 bit atomic
    case 0x2c: // Nucleus quad LDD 128 bit atomic
    case 0x4a: // UPA config
    case 0x88: // Primary LE
    case 0x89: // Secondary LE
	// XXX
	return;
    case 0x45: // LSU
	{
	    uint64_t oldreg;

	    oldreg = env->lsu;
	    env->lsu = T1 & (DMMU_E | IMMU_E);
	    // Mappings generated during D/I MMU disabled mode are
	    // invalid in normal mode
	    if (oldreg != env->lsu) {
#ifdef DEBUG_MMU
                printf("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu);
		dump_mmu(env);
#endif
		tlb_flush(env, 1);
	    }
	    return;
	}
    case 0x50: // I-MMU regs
	{
	    int reg = (T0 >> 3) & 0xf;
	    uint64_t oldreg;
	    
	    oldreg = env->immuregs[reg];
            switch(reg) {
            case 0: // RO
            case 4:
                return;
            case 1: // Not in I-MMU
            case 2:
            case 7:
            case 8:
                return;
            case 3: // SFSR
		if ((T1 & 1) == 0)
		    T1 = 0; // Clear SFSR
                break;
            case 5: // TSB access
            case 6: // Tag access
            default:
                break;
            }
	    env->immuregs[reg] = T1;
#ifdef DEBUG_MMU
            if (oldreg != env->immuregs[reg]) {
                printf("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
            }
	    dump_mmu(env);
#endif
	    return;
	}
    case 0x54: // I-MMU data in
	{
	    unsigned int i;

	    // Try finding an invalid entry
	    for (i = 0; i < 64; i++) {
		if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
		    env->itlb_tag[i] = env->immuregs[6];
		    env->itlb_tte[i] = T1;
		    return;
		}
	    }
	    // Try finding an unlocked entry
	    for (i = 0; i < 64; i++) {
		if ((env->itlb_tte[i] & 0x40) == 0) {
		    env->itlb_tag[i] = env->immuregs[6];
		    env->itlb_tte[i] = T1;
		    return;
		}
	    }
	    // error state?
	    return;
	}
    case 0x55: // I-MMU data access
	{
	    unsigned int i = (T0 >> 3) & 0x3f;

	    env->itlb_tag[i] = env->immuregs[6];
	    env->itlb_tte[i] = T1;
	    return;
	}
    case 0x57: // I-MMU demap
	// XXX
	return;
    case 0x58: // D-MMU regs
	{
	    int reg = (T0 >> 3) & 0xf;
	    uint64_t oldreg;
	    
	    oldreg = env->dmmuregs[reg];
            switch(reg) {
            case 0: // RO
            case 4:
                return;
            case 3: // SFSR
		if ((T1 & 1) == 0) {
		    T1 = 0; // Clear SFSR, Fault address
		    env->dmmuregs[4] = 0;
		}
		env->dmmuregs[reg] = T1;
                break;
            case 1: // Primary context
            case 2: // Secondary context
            case 5: // TSB access
            case 6: // Tag access
            case 7: // Virtual Watchpoint
            case 8: // Physical Watchpoint
            default:
                break;
            }
	    env->dmmuregs[reg] = T1;
#ifdef DEBUG_MMU
            if (oldreg != env->dmmuregs[reg]) {
                printf("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
            }
	    dump_mmu(env);
#endif
	    return;
	}
    case 0x5c: // D-MMU data in
	{
	    unsigned int i;

	    // Try finding an invalid entry
	    for (i = 0; i < 64; i++) {
		if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
		    env->dtlb_tag[i] = env->dmmuregs[6];
		    env->dtlb_tte[i] = T1;
		    return;
		}
	    }
	    // Try finding an unlocked entry
	    for (i = 0; i < 64; i++) {
		if ((env->dtlb_tte[i] & 0x40) == 0) {
		    env->dtlb_tag[i] = env->dmmuregs[6];
		    env->dtlb_tte[i] = T1;
		    return;
		}
	    }
	    // error state?
	    return;
	}
    case 0x5d: // D-MMU data access
	{
	    unsigned int i = (T0 >> 3) & 0x3f;

	    env->dtlb_tag[i] = env->dmmuregs[6];
	    env->dtlb_tte[i] = T1;
	    return;
	}
    case 0x5f: // D-MMU demap
    case 0x49: // Interrupt data receive
	// XXX
	return;
    case 0x51: // I-MMU 8k TSB pointer, RO
    case 0x52: // I-MMU 64k TSB pointer, RO
    case 0x56: // I-MMU tag read, RO
    case 0x59: // D-MMU 8k TSB pointer, RO
    case 0x5a: // D-MMU 64k TSB pointer, RO
    case 0x5b: // D-MMU data pointer, RO
    case 0x5e: // D-MMU tag read, RO
    case 0x48: // Interrupt dispatch, RO
    case 0x7f: // Incoming interrupt vector, RO
    case 0x82: // Primary no-fault, RO
    case 0x83: // Secondary no-fault, RO
    case 0x8a: // Primary no-fault LE, RO
    case 0x8b: // Secondary no-fault LE, RO
    default:
	return;
    }
}
#endif
#endif /* !CONFIG_USER_ONLY */

#ifndef TARGET_SPARC64
void helper_rett()
{
    unsigned int cwp;

    if (env->psret == 1)
        raise_exception(TT_ILL_INSN);

    env->psret = 1;
    cwp = (env->cwp + 1) & (NWINDOWS - 1); 
    if (env->wim & (1 << cwp)) {
        raise_exception(TT_WIN_UNF);
    }
    set_cwp(cwp);
    env->psrs = env->psrps;
}
#endif

void helper_ldfsr(void)
{
    int rnd_mode;
    switch (env->fsr & FSR_RD_MASK) {
    case FSR_RD_NEAREST:
        rnd_mode = float_round_nearest_even;
	break;
    default:
    case FSR_RD_ZERO:
        rnd_mode = float_round_to_zero;
	break;
    case FSR_RD_POS:
        rnd_mode = float_round_up;
	break;
    case FSR_RD_NEG:
        rnd_mode = float_round_down;
	break;
    }
    set_float_rounding_mode(rnd_mode, &env->fp_status);
}

void helper_debug()
{
    env->exception_index = EXCP_DEBUG;
    cpu_loop_exit();
}

#ifndef TARGET_SPARC64
void do_wrpsr()
{
    if ((T0 & PSR_CWP) >= NWINDOWS)
        raise_exception(TT_ILL_INSN);
    else
        PUT_PSR(env, T0);
}

void do_rdpsr()
{
    T0 = GET_PSR(env);
}

#else

void do_popc()
{
    T0 = (T1 & 0x5555555555555555ULL) + ((T1 >> 1) & 0x5555555555555555ULL);
    T0 = (T0 & 0x3333333333333333ULL) + ((T0 >> 2) & 0x3333333333333333ULL);
    T0 = (T0 & 0x0f0f0f0f0f0f0f0fULL) + ((T0 >> 4) & 0x0f0f0f0f0f0f0f0fULL);
    T0 = (T0 & 0x00ff00ff00ff00ffULL) + ((T0 >> 8) & 0x00ff00ff00ff00ffULL);
    T0 = (T0 & 0x0000ffff0000ffffULL) + ((T0 >> 16) & 0x0000ffff0000ffffULL);
    T0 = (T0 & 0x00000000ffffffffULL) + ((T0 >> 32) & 0x00000000ffffffffULL);
}

static inline uint64_t *get_gregset(uint64_t pstate)
{
    switch (pstate) {
    default:
    case 0:
	return env->bgregs;
    case PS_AG:
	return env->agregs;
    case PS_MG:
	return env->mgregs;
    case PS_IG:
	return env->igregs;
    }
}

void do_wrpstate()
{
    uint64_t new_pstate, pstate_regs, new_pstate_regs;
    uint64_t *src, *dst;

    new_pstate = T0 & 0xf3f;
    pstate_regs = env->pstate & 0xc01;
    new_pstate_regs = new_pstate & 0xc01;
    if (new_pstate_regs != pstate_regs) {
	// Switch global register bank
	src = get_gregset(new_pstate_regs);
	dst = get_gregset(pstate_regs);
	memcpy32(dst, env->gregs);
	memcpy32(env->gregs, src);
    }
    env->pstate = new_pstate;
}

void do_done(void)
{
    env->tl--;
    env->pc = env->tnpc[env->tl];
    env->npc = env->tnpc[env->tl] + 4;
    PUT_CCR(env, env->tstate[env->tl] >> 32);
    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
    env->pstate = (env->tstate[env->tl] >> 8) & 0xfff;
    set_cwp(env->tstate[env->tl] & 0xff);
}

void do_retry(void)
{
    env->tl--;
    env->pc = env->tpc[env->tl];
    env->npc = env->tnpc[env->tl];
    PUT_CCR(env, env->tstate[env->tl] >> 32);
    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
    env->pstate = (env->tstate[env->tl] >> 8) & 0xfff;
    set_cwp(env->tstate[env->tl] & 0xff);
}
#endif

void set_cwp(int new_cwp)
{
    /* put the modified wrap registers at their proper location */
    if (env->cwp == (NWINDOWS - 1))
        memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
    env->cwp = new_cwp;
    /* put the wrap registers at their temporary location */
    if (new_cwp == (NWINDOWS - 1))
        memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
    env->regwptr = env->regbase + (new_cwp * 16);
    REGWPTR = env->regwptr;
}

void cpu_set_cwp(CPUState *env1, int new_cwp)
{
    CPUState *saved_env;
#ifdef reg_REGWPTR
    target_ulong *saved_regwptr;
#endif

    saved_env = env;
#ifdef reg_REGWPTR
    saved_regwptr = REGWPTR;
#endif
    env = env1;
    set_cwp(new_cwp);
    env = saved_env;
#ifdef reg_REGWPTR
    REGWPTR = saved_regwptr;
#endif
}

#ifdef TARGET_SPARC64
void do_interrupt(int intno)
{
#ifdef DEBUG_PCALL
    if (loglevel & CPU_LOG_INT) {
	static int count;
	fprintf(logfile, "%6d: v=%04x pc=%016" PRIx64 " npc=%016" PRIx64 " SP=%016" PRIx64 "\n",
                count, intno,
                env->pc,
                env->npc, env->regwptr[6]);
	cpu_dump_state(env, logfile, fprintf, 0);
#if 0
	{
	    int i;
	    uint8_t *ptr;

	    fprintf(logfile, "       code=");
	    ptr = (uint8_t *)env->pc;
	    for(i = 0; i < 16; i++) {
		fprintf(logfile, " %02x", ldub(ptr + i));
	    }
	    fprintf(logfile, "\n");
	}
#endif
	count++;
    }
#endif
#if !defined(CONFIG_USER_ONLY) 
    if (env->tl == MAXTL) {
        cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index);
	return;
    }
#endif
    env->tstate[env->tl] = ((uint64_t)GET_CCR(env) << 32) | ((env->asi & 0xff) << 24) |
	((env->pstate & 0xfff) << 8) | (env->cwp & 0xff);
    env->tpc[env->tl] = env->pc;
    env->tnpc[env->tl] = env->npc;
    env->tt[env->tl] = intno;
    env->pstate = PS_PEF | PS_PRIV | PS_AG;
    env->tbr &= ~0x7fffULL;
    env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
    if (env->tl < MAXTL - 1) {
	env->tl++;
    } else {
	env->pstate |= PS_RED;
	if (env->tl != MAXTL)
	    env->tl++;
    }
    env->pc = env->tbr;
    env->npc = env->pc + 4;
    env->exception_index = 0;
}
#else
void do_interrupt(int intno)
{
    int cwp;

#ifdef DEBUG_PCALL
    if (loglevel & CPU_LOG_INT) {
	static int count;
	fprintf(logfile, "%6d: v=%02x pc=%08x npc=%08x SP=%08x\n",
                count, intno,
                env->pc,
                env->npc, env->regwptr[6]);
	cpu_dump_state(env, logfile, fprintf, 0);
#if 0
	{
	    int i;
	    uint8_t *ptr;

	    fprintf(logfile, "       code=");
	    ptr = (uint8_t *)env->pc;
	    for(i = 0; i < 16; i++) {
		fprintf(logfile, " %02x", ldub(ptr + i));
	    }
	    fprintf(logfile, "\n");
	}
#endif
	count++;
    }
#endif
#if !defined(CONFIG_USER_ONLY) 
    if (env->psret == 0) {
        cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index);
	return;
    }
#endif
    env->psret = 0;
    cwp = (env->cwp - 1) & (NWINDOWS - 1); 
    set_cwp(cwp);
    env->regwptr[9] = env->pc;
    env->regwptr[10] = env->npc;
    env->psrps = env->psrs;
    env->psrs = 1;
    env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
    env->pc = env->tbr;
    env->npc = env->pc + 4;
    env->exception_index = 0;
}
#endif

#if !defined(CONFIG_USER_ONLY) 

#define MMUSUFFIX _mmu
#define GETPC() (__builtin_return_address(0))

#define SHIFT 0
#include "softmmu_template.h"

#define SHIFT 1
#include "softmmu_template.h"

#define SHIFT 2
#include "softmmu_template.h"

#define SHIFT 3
#include "softmmu_template.h"


/* try to fill the TLB and return an exception if error. If retaddr is
   NULL, it means that the function was called in C code (i.e. not
   from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
void tlb_fill(target_ulong addr, int is_write, int is_user, void *retaddr)
{
    TranslationBlock *tb;
    int ret;
    unsigned long pc;
    CPUState *saved_env;

    /* XXX: hack to restore env in all cases, even if not called from
       generated code */
    saved_env = env;
    env = cpu_single_env;

    ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, is_user, 1);
    if (ret) {
        if (retaddr) {
            /* now we have a real cpu fault */
            pc = (unsigned long)retaddr;
            tb = tb_find_pc(pc);
            if (tb) {
                /* the PC is inside the translated code. It means that we have
                   a virtual CPU fault */
                cpu_restore_state(tb, env, pc, (void *)T2);
            }
        }
        cpu_loop_exit();
    }
    env = saved_env;
}

#endif