pxa2xx.c 65 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
/*
 * Intel XScale PXA255/270 processor support.
 *
 * Copyright (c) 2006 Openedhand Ltd.
 * Written by Andrzej Zaborowski <balrog@zabor.org>
 *
 * This code is licenced under the GPL.
 */

#include "hw.h"
#include "pxa.h"
#include "sysemu.h"
#include "pc.h"
#include "i2c.h"
#include "qemu-timer.h"
#include "qemu-char.h"

static struct {
    target_phys_addr_t io_base;
    int irqn;
} pxa255_serial[] = {
    { 0x40100000, PXA2XX_PIC_FFUART },
    { 0x40200000, PXA2XX_PIC_BTUART },
    { 0x40700000, PXA2XX_PIC_STUART },
    { 0x41600000, PXA25X_PIC_HWUART },
    { 0, 0 }
}, pxa270_serial[] = {
    { 0x40100000, PXA2XX_PIC_FFUART },
    { 0x40200000, PXA2XX_PIC_BTUART },
    { 0x40700000, PXA2XX_PIC_STUART },
    { 0, 0 }
};

typedef struct PXASSPDef {
    target_phys_addr_t io_base;
    int irqn;
} PXASSPDef;

#if 0
static PXASSPDef pxa250_ssp[] = {
    { 0x41000000, PXA2XX_PIC_SSP },
    { 0, 0 }
};
#endif

static PXASSPDef pxa255_ssp[] = {
    { 0x41000000, PXA2XX_PIC_SSP },
    { 0x41400000, PXA25X_PIC_NSSP },
    { 0, 0 }
};

#if 0
static PXASSPDef pxa26x_ssp[] = {
    { 0x41000000, PXA2XX_PIC_SSP },
    { 0x41400000, PXA25X_PIC_NSSP },
    { 0x41500000, PXA26X_PIC_ASSP },
    { 0, 0 }
};
#endif

static PXASSPDef pxa27x_ssp[] = {
    { 0x41000000, PXA2XX_PIC_SSP },
    { 0x41700000, PXA27X_PIC_SSP2 },
    { 0x41900000, PXA2XX_PIC_SSP3 },
    { 0, 0 }
};

#define PMCR	0x00	/* Power Manager Control register */
#define PSSR	0x04	/* Power Manager Sleep Status register */
#define PSPR	0x08	/* Power Manager Scratch-Pad register */
#define PWER	0x0c	/* Power Manager Wake-Up Enable register */
#define PRER	0x10	/* Power Manager Rising-Edge Detect Enable register */
#define PFER	0x14	/* Power Manager Falling-Edge Detect Enable register */
#define PEDR	0x18	/* Power Manager Edge-Detect Status register */
#define PCFR	0x1c	/* Power Manager General Configuration register */
#define PGSR0	0x20	/* Power Manager GPIO Sleep-State register 0 */
#define PGSR1	0x24	/* Power Manager GPIO Sleep-State register 1 */
#define PGSR2	0x28	/* Power Manager GPIO Sleep-State register 2 */
#define PGSR3	0x2c	/* Power Manager GPIO Sleep-State register 3 */
#define RCSR	0x30	/* Reset Controller Status register */
#define PSLR	0x34	/* Power Manager Sleep Configuration register */
#define PTSR	0x38	/* Power Manager Standby Configuration register */
#define PVCR	0x40	/* Power Manager Voltage Change Control register */
#define PUCR	0x4c	/* Power Manager USIM Card Control/Status register */
#define PKWR	0x50	/* Power Manager Keyboard Wake-Up Enable register */
#define PKSR	0x54	/* Power Manager Keyboard Level-Detect Status */
#define PCMD0	0x80	/* Power Manager I2C Command register File 0 */
#define PCMD31	0xfc	/* Power Manager I2C Command register File 31 */

static uint32_t pxa2xx_pm_read(void *opaque, target_phys_addr_t addr)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
    addr -= s->pm_base;

    switch (addr) {
    case PMCR ... PCMD31:
        if (addr & 3)
            goto fail;

        return s->pm_regs[addr >> 2];
    default:
    fail:
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
        break;
    }
    return 0;
}

static void pxa2xx_pm_write(void *opaque, target_phys_addr_t addr,
                uint32_t value)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
    addr -= s->pm_base;

    switch (addr) {
    case PMCR:
        s->pm_regs[addr >> 2] &= 0x15 & ~(value & 0x2a);
        s->pm_regs[addr >> 2] |= value & 0x15;
        break;

    case PSSR:	/* Read-clean registers */
    case RCSR:
    case PKSR:
        s->pm_regs[addr >> 2] &= ~value;
        break;

    default:	/* Read-write registers */
        if (addr >= PMCR && addr <= PCMD31 && !(addr & 3)) {
            s->pm_regs[addr >> 2] = value;
            break;
        }

        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
        break;
    }
}

static CPUReadMemoryFunc *pxa2xx_pm_readfn[] = {
    pxa2xx_pm_read,
    pxa2xx_pm_read,
    pxa2xx_pm_read,
};

static CPUWriteMemoryFunc *pxa2xx_pm_writefn[] = {
    pxa2xx_pm_write,
    pxa2xx_pm_write,
    pxa2xx_pm_write,
};

static void pxa2xx_pm_save(QEMUFile *f, void *opaque)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
    int i;

    for (i = 0; i < 0x40; i ++)
        qemu_put_be32s(f, &s->pm_regs[i]);
}

static int pxa2xx_pm_load(QEMUFile *f, void *opaque, int version_id)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
    int i;

    for (i = 0; i < 0x40; i ++)
        qemu_get_be32s(f, &s->pm_regs[i]);

    return 0;
}

#define CCCR	0x00	/* Core Clock Configuration register */
#define CKEN	0x04	/* Clock Enable register */
#define OSCC	0x08	/* Oscillator Configuration register */
#define CCSR	0x0c	/* Core Clock Status register */

static uint32_t pxa2xx_cm_read(void *opaque, target_phys_addr_t addr)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
    addr -= s->cm_base;

    switch (addr) {
    case CCCR:
    case CKEN:
    case OSCC:
        return s->cm_regs[addr >> 2];

    case CCSR:
        return s->cm_regs[CCCR >> 2] | (3 << 28);

    default:
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
        break;
    }
    return 0;
}

static void pxa2xx_cm_write(void *opaque, target_phys_addr_t addr,
                uint32_t value)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
    addr -= s->cm_base;

    switch (addr) {
    case CCCR:
    case CKEN:
        s->cm_regs[addr >> 2] = value;
        break;

    case OSCC:
        s->cm_regs[addr >> 2] &= ~0x6c;
        s->cm_regs[addr >> 2] |= value & 0x6e;
        if ((value >> 1) & 1)			/* OON */
            s->cm_regs[addr >> 2] |= 1 << 0;	/* Oscillator is now stable */
        break;

    default:
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
        break;
    }
}

static CPUReadMemoryFunc *pxa2xx_cm_readfn[] = {
    pxa2xx_cm_read,
    pxa2xx_cm_read,
    pxa2xx_cm_read,
};

static CPUWriteMemoryFunc *pxa2xx_cm_writefn[] = {
    pxa2xx_cm_write,
    pxa2xx_cm_write,
    pxa2xx_cm_write,
};

static void pxa2xx_cm_save(QEMUFile *f, void *opaque)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
    int i;

    for (i = 0; i < 4; i ++)
        qemu_put_be32s(f, &s->cm_regs[i]);
    qemu_put_be32s(f, &s->clkcfg);
    qemu_put_be32s(f, &s->pmnc);
}

static int pxa2xx_cm_load(QEMUFile *f, void *opaque, int version_id)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
    int i;

    for (i = 0; i < 4; i ++)
        qemu_get_be32s(f, &s->cm_regs[i]);
    qemu_get_be32s(f, &s->clkcfg);
    qemu_get_be32s(f, &s->pmnc);

    return 0;
}

static uint32_t pxa2xx_clkpwr_read(void *opaque, int op2, int reg, int crm)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;

    switch (reg) {
    case 6:	/* Clock Configuration register */
        return s->clkcfg;

    case 7:	/* Power Mode register */
        return 0;

    default:
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
        break;
    }
    return 0;
}

static void pxa2xx_clkpwr_write(void *opaque, int op2, int reg, int crm,
                uint32_t value)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
    static const char *pwrmode[8] = {
        "Normal", "Idle", "Deep-idle", "Standby",
        "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
    };

    switch (reg) {
    case 6:	/* Clock Configuration register */
        s->clkcfg = value & 0xf;
        if (value & 2)
            printf("%s: CPU frequency change attempt\n", __FUNCTION__);
        break;

    case 7:	/* Power Mode register */
        if (value & 8)
            printf("%s: CPU voltage change attempt\n", __FUNCTION__);
        switch (value & 7) {
        case 0:
            /* Do nothing */
            break;

        case 1:
            /* Idle */
            if (!(s->cm_regs[CCCR >> 2] & (1 << 31))) {	/* CPDIS */
                cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
                break;
            }
            /* Fall through.  */

        case 2:
            /* Deep-Idle */
            cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
            s->pm_regs[RCSR >> 2] |= 0x8;	/* Set GPR */
            goto message;

        case 3:
            s->env->uncached_cpsr =
                    ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
            s->env->cp15.c1_sys = 0;
            s->env->cp15.c1_coproc = 0;
            s->env->cp15.c2_base0 = 0;
            s->env->cp15.c3 = 0;
            s->pm_regs[PSSR >> 2] |= 0x8;	/* Set STS */
            s->pm_regs[RCSR >> 2] |= 0x8;	/* Set GPR */

            /*
             * The scratch-pad register is almost universally used
             * for storing the return address on suspend.  For the
             * lack of a resuming bootloader, perform a jump
             * directly to that address.
             */
            memset(s->env->regs, 0, 4 * 15);
            s->env->regs[15] = s->pm_regs[PSPR >> 2];

#if 0
            buffer = 0xe59ff000;	/* ldr     pc, [pc, #0] */
            cpu_physical_memory_write(0, &buffer, 4);
            buffer = s->pm_regs[PSPR >> 2];
            cpu_physical_memory_write(8, &buffer, 4);
#endif

            /* Suspend */
            cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT);

            goto message;

        default:
        message:
            printf("%s: machine entered %s mode\n", __FUNCTION__,
                            pwrmode[value & 7]);
        }
        break;

    default:
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
        break;
    }
}

/* Performace Monitoring Registers */
#define CPPMNC		0	/* Performance Monitor Control register */
#define CPCCNT		1	/* Clock Counter register */
#define CPINTEN		4	/* Interrupt Enable register */
#define CPFLAG		5	/* Overflow Flag register */
#define CPEVTSEL	8	/* Event Selection register */

#define CPPMN0		0	/* Performance Count register 0 */
#define CPPMN1		1	/* Performance Count register 1 */
#define CPPMN2		2	/* Performance Count register 2 */
#define CPPMN3		3	/* Performance Count register 3 */

static uint32_t pxa2xx_perf_read(void *opaque, int op2, int reg, int crm)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;

    switch (reg) {
    case CPPMNC:
        return s->pmnc;
    case CPCCNT:
        if (s->pmnc & 1)
            return qemu_get_clock(vm_clock);
        else
            return 0;
    case CPINTEN:
    case CPFLAG:
    case CPEVTSEL:
        return 0;

    default:
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
        break;
    }
    return 0;
}

static void pxa2xx_perf_write(void *opaque, int op2, int reg, int crm,
                uint32_t value)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;

    switch (reg) {
    case CPPMNC:
        s->pmnc = value;
        break;

    case CPCCNT:
    case CPINTEN:
    case CPFLAG:
    case CPEVTSEL:
        break;

    default:
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
        break;
    }
}

static uint32_t pxa2xx_cp14_read(void *opaque, int op2, int reg, int crm)
{
    switch (crm) {
    case 0:
        return pxa2xx_clkpwr_read(opaque, op2, reg, crm);
    case 1:
        return pxa2xx_perf_read(opaque, op2, reg, crm);
    case 2:
        switch (reg) {
        case CPPMN0:
        case CPPMN1:
        case CPPMN2:
        case CPPMN3:
            return 0;
        }
        /* Fall through */
    default:
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
        break;
    }
    return 0;
}

static void pxa2xx_cp14_write(void *opaque, int op2, int reg, int crm,
                uint32_t value)
{
    switch (crm) {
    case 0:
        pxa2xx_clkpwr_write(opaque, op2, reg, crm, value);
        break;
    case 1:
        pxa2xx_perf_write(opaque, op2, reg, crm, value);
        break;
    case 2:
        switch (reg) {
        case CPPMN0:
        case CPPMN1:
        case CPPMN2:
        case CPPMN3:
            return;
        }
        /* Fall through */
    default:
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
        break;
    }
}

#define MDCNFG		0x00	/* SDRAM Configuration register */
#define MDREFR		0x04	/* SDRAM Refresh Control register */
#define MSC0		0x08	/* Static Memory Control register 0 */
#define MSC1		0x0c	/* Static Memory Control register 1 */
#define MSC2		0x10	/* Static Memory Control register 2 */
#define MECR		0x14	/* Expansion Memory Bus Config register */
#define SXCNFG		0x1c	/* Synchronous Static Memory Config register */
#define MCMEM0		0x28	/* PC Card Memory Socket 0 Timing register */
#define MCMEM1		0x2c	/* PC Card Memory Socket 1 Timing register */
#define MCATT0		0x30	/* PC Card Attribute Socket 0 register */
#define MCATT1		0x34	/* PC Card Attribute Socket 1 register */
#define MCIO0		0x38	/* PC Card I/O Socket 0 Timing register */
#define MCIO1		0x3c	/* PC Card I/O Socket 1 Timing register */
#define MDMRS		0x40	/* SDRAM Mode Register Set Config register */
#define BOOT_DEF	0x44	/* Boot-time Default Configuration register */
#define ARB_CNTL	0x48	/* Arbiter Control register */
#define BSCNTR0		0x4c	/* Memory Buffer Strength Control register 0 */
#define BSCNTR1		0x50	/* Memory Buffer Strength Control register 1 */
#define LCDBSCNTR	0x54	/* LCD Buffer Strength Control register */
#define MDMRSLP		0x58	/* Low Power SDRAM Mode Set Config register */
#define BSCNTR2		0x5c	/* Memory Buffer Strength Control register 2 */
#define BSCNTR3		0x60	/* Memory Buffer Strength Control register 3 */
#define SA1110		0x64	/* SA-1110 Memory Compatibility register */

static uint32_t pxa2xx_mm_read(void *opaque, target_phys_addr_t addr)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
    addr -= s->mm_base;

    switch (addr) {
    case MDCNFG ... SA1110:
        if ((addr & 3) == 0)
            return s->mm_regs[addr >> 2];

    default:
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
        break;
    }
    return 0;
}

static void pxa2xx_mm_write(void *opaque, target_phys_addr_t addr,
                uint32_t value)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
    addr -= s->mm_base;

    switch (addr) {
    case MDCNFG ... SA1110:
        if ((addr & 3) == 0) {
            s->mm_regs[addr >> 2] = value;
            break;
        }

    default:
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
        break;
    }
}

static CPUReadMemoryFunc *pxa2xx_mm_readfn[] = {
    pxa2xx_mm_read,
    pxa2xx_mm_read,
    pxa2xx_mm_read,
};

static CPUWriteMemoryFunc *pxa2xx_mm_writefn[] = {
    pxa2xx_mm_write,
    pxa2xx_mm_write,
    pxa2xx_mm_write,
};

static void pxa2xx_mm_save(QEMUFile *f, void *opaque)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
    int i;

    for (i = 0; i < 0x1a; i ++)
        qemu_put_be32s(f, &s->mm_regs[i]);
}

static int pxa2xx_mm_load(QEMUFile *f, void *opaque, int version_id)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
    int i;

    for (i = 0; i < 0x1a; i ++)
        qemu_get_be32s(f, &s->mm_regs[i]);

    return 0;
}

/* Synchronous Serial Ports */
struct pxa2xx_ssp_s {
    target_phys_addr_t base;
    qemu_irq irq;
    int enable;

    uint32_t sscr[2];
    uint32_t sspsp;
    uint32_t ssto;
    uint32_t ssitr;
    uint32_t sssr;
    uint8_t sstsa;
    uint8_t ssrsa;
    uint8_t ssacd;

    uint32_t rx_fifo[16];
    int rx_level;
    int rx_start;

    uint32_t (*readfn)(void *opaque);
    void (*writefn)(void *opaque, uint32_t value);
    void *opaque;
};

#define SSCR0	0x00	/* SSP Control register 0 */
#define SSCR1	0x04	/* SSP Control register 1 */
#define SSSR	0x08	/* SSP Status register */
#define SSITR	0x0c	/* SSP Interrupt Test register */
#define SSDR	0x10	/* SSP Data register */
#define SSTO	0x28	/* SSP Time-Out register */
#define SSPSP	0x2c	/* SSP Programmable Serial Protocol register */
#define SSTSA	0x30	/* SSP TX Time Slot Active register */
#define SSRSA	0x34	/* SSP RX Time Slot Active register */
#define SSTSS	0x38	/* SSP Time Slot Status register */
#define SSACD	0x3c	/* SSP Audio Clock Divider register */

/* Bitfields for above registers */
#define SSCR0_SPI(x)	(((x) & 0x30) == 0x00)
#define SSCR0_SSP(x)	(((x) & 0x30) == 0x10)
#define SSCR0_UWIRE(x)	(((x) & 0x30) == 0x20)
#define SSCR0_PSP(x)	(((x) & 0x30) == 0x30)
#define SSCR0_SSE	(1 << 7)
#define SSCR0_RIM	(1 << 22)
#define SSCR0_TIM	(1 << 23)
#define SSCR0_MOD	(1 << 31)
#define SSCR0_DSS(x)	(((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
#define SSCR1_RIE	(1 << 0)
#define SSCR1_TIE	(1 << 1)
#define SSCR1_LBM	(1 << 2)
#define SSCR1_MWDS	(1 << 5)
#define SSCR1_TFT(x)	((((x) >> 6) & 0xf) + 1)
#define SSCR1_RFT(x)	((((x) >> 10) & 0xf) + 1)
#define SSCR1_EFWR	(1 << 14)
#define SSCR1_PINTE	(1 << 18)
#define SSCR1_TINTE	(1 << 19)
#define SSCR1_RSRE	(1 << 20)
#define SSCR1_TSRE	(1 << 21)
#define SSCR1_EBCEI	(1 << 29)
#define SSITR_INT	(7 << 5)
#define SSSR_TNF	(1 << 2)
#define SSSR_RNE	(1 << 3)
#define SSSR_TFS	(1 << 5)
#define SSSR_RFS	(1 << 6)
#define SSSR_ROR	(1 << 7)
#define SSSR_PINT	(1 << 18)
#define SSSR_TINT	(1 << 19)
#define SSSR_EOC	(1 << 20)
#define SSSR_TUR	(1 << 21)
#define SSSR_BCE	(1 << 23)
#define SSSR_RW		0x00bc0080

static void pxa2xx_ssp_int_update(struct pxa2xx_ssp_s *s)
{
    int level = 0;

    level |= s->ssitr & SSITR_INT;
    level |= (s->sssr & SSSR_BCE)  &&  (s->sscr[1] & SSCR1_EBCEI);
    level |= (s->sssr & SSSR_TUR)  && !(s->sscr[0] & SSCR0_TIM);
    level |= (s->sssr & SSSR_EOC)  &&  (s->sssr & (SSSR_TINT | SSSR_PINT));
    level |= (s->sssr & SSSR_TINT) &&  (s->sscr[1] & SSCR1_TINTE);
    level |= (s->sssr & SSSR_PINT) &&  (s->sscr[1] & SSCR1_PINTE);
    level |= (s->sssr & SSSR_ROR)  && !(s->sscr[0] & SSCR0_RIM);
    level |= (s->sssr & SSSR_RFS)  &&  (s->sscr[1] & SSCR1_RIE);
    level |= (s->sssr & SSSR_TFS)  &&  (s->sscr[1] & SSCR1_TIE);
    qemu_set_irq(s->irq, !!level);
}

static void pxa2xx_ssp_fifo_update(struct pxa2xx_ssp_s *s)
{
    s->sssr &= ~(0xf << 12);	/* Clear RFL */
    s->sssr &= ~(0xf << 8);	/* Clear TFL */
    s->sssr &= ~SSSR_TNF;
    if (s->enable) {
        s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
        if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
            s->sssr |= SSSR_RFS;
        else
            s->sssr &= ~SSSR_RFS;
        if (0 <= SSCR1_TFT(s->sscr[1]))
            s->sssr |= SSSR_TFS;
        else
            s->sssr &= ~SSSR_TFS;
        if (s->rx_level)
            s->sssr |= SSSR_RNE;
        else
            s->sssr &= ~SSSR_RNE;
        s->sssr |= SSSR_TNF;
    }

    pxa2xx_ssp_int_update(s);
}

static uint32_t pxa2xx_ssp_read(void *opaque, target_phys_addr_t addr)
{
    struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
    uint32_t retval;
    addr -= s->base;

    switch (addr) {
    case SSCR0:
        return s->sscr[0];
    case SSCR1:
        return s->sscr[1];
    case SSPSP:
        return s->sspsp;
    case SSTO:
        return s->ssto;
    case SSITR:
        return s->ssitr;
    case SSSR:
        return s->sssr | s->ssitr;
    case SSDR:
        if (!s->enable)
            return 0xffffffff;
        if (s->rx_level < 1) {
            printf("%s: SSP Rx Underrun\n", __FUNCTION__);
            return 0xffffffff;
        }
        s->rx_level --;
        retval = s->rx_fifo[s->rx_start ++];
        s->rx_start &= 0xf;
        pxa2xx_ssp_fifo_update(s);
        return retval;
    case SSTSA:
        return s->sstsa;
    case SSRSA:
        return s->ssrsa;
    case SSTSS:
        return 0;
    case SSACD:
        return s->ssacd;
    default:
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
        break;
    }
    return 0;
}

static void pxa2xx_ssp_write(void *opaque, target_phys_addr_t addr,
                uint32_t value)
{
    struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
    addr -= s->base;

    switch (addr) {
    case SSCR0:
        s->sscr[0] = value & 0xc7ffffff;
        s->enable = value & SSCR0_SSE;
        if (value & SSCR0_MOD)
            printf("%s: Attempt to use network mode\n", __FUNCTION__);
        if (s->enable && SSCR0_DSS(value) < 4)
            printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
                            SSCR0_DSS(value));
        if (!(value & SSCR0_SSE)) {
            s->sssr = 0;
            s->ssitr = 0;
            s->rx_level = 0;
        }
        pxa2xx_ssp_fifo_update(s);
        break;

    case SSCR1:
        s->sscr[1] = value;
        if (value & (SSCR1_LBM | SSCR1_EFWR))
            printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
        pxa2xx_ssp_fifo_update(s);
        break;

    case SSPSP:
        s->sspsp = value;
        break;

    case SSTO:
        s->ssto = value;
        break;

    case SSITR:
        s->ssitr = value & SSITR_INT;
        pxa2xx_ssp_int_update(s);
        break;

    case SSSR:
        s->sssr &= ~(value & SSSR_RW);
        pxa2xx_ssp_int_update(s);
        break;

    case SSDR:
        if (SSCR0_UWIRE(s->sscr[0])) {
            if (s->sscr[1] & SSCR1_MWDS)
                value &= 0xffff;
            else
                value &= 0xff;
        } else
            /* Note how 32bits overflow does no harm here */
            value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;

        /* Data goes from here to the Tx FIFO and is shifted out from
         * there directly to the slave, no need to buffer it.
         */
        if (s->enable) {
            if (s->writefn)
                s->writefn(s->opaque, value);

            if (s->rx_level < 0x10) {
                if (s->readfn)
                    s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] =
                            s->readfn(s->opaque);
                else
                    s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = 0x0;
            } else
                s->sssr |= SSSR_ROR;
        }
        pxa2xx_ssp_fifo_update(s);
        break;

    case SSTSA:
        s->sstsa = value;
        break;

    case SSRSA:
        s->ssrsa = value;
        break;

    case SSACD:
        s->ssacd = value;
        break;

    default:
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
        break;
    }
}

void pxa2xx_ssp_attach(struct pxa2xx_ssp_s *port,
                uint32_t (*readfn)(void *opaque),
                void (*writefn)(void *opaque, uint32_t value), void *opaque)
{
    if (!port) {
        printf("%s: no such SSP\n", __FUNCTION__);
        exit(-1);
    }

    port->opaque = opaque;
    port->readfn = readfn;
    port->writefn = writefn;
}

static CPUReadMemoryFunc *pxa2xx_ssp_readfn[] = {
    pxa2xx_ssp_read,
    pxa2xx_ssp_read,
    pxa2xx_ssp_read,
};

static CPUWriteMemoryFunc *pxa2xx_ssp_writefn[] = {
    pxa2xx_ssp_write,
    pxa2xx_ssp_write,
    pxa2xx_ssp_write,
};

static void pxa2xx_ssp_save(QEMUFile *f, void *opaque)
{
    struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
    int i;

    qemu_put_be32(f, s->enable);

    qemu_put_be32s(f, &s->sscr[0]);
    qemu_put_be32s(f, &s->sscr[1]);
    qemu_put_be32s(f, &s->sspsp);
    qemu_put_be32s(f, &s->ssto);
    qemu_put_be32s(f, &s->ssitr);
    qemu_put_be32s(f, &s->sssr);
    qemu_put_8s(f, &s->sstsa);
    qemu_put_8s(f, &s->ssrsa);
    qemu_put_8s(f, &s->ssacd);

    qemu_put_byte(f, s->rx_level);
    for (i = 0; i < s->rx_level; i ++)
        qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 0xf]);
}

static int pxa2xx_ssp_load(QEMUFile *f, void *opaque, int version_id)
{
    struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
    int i;

    s->enable = qemu_get_be32(f);

    qemu_get_be32s(f, &s->sscr[0]);
    qemu_get_be32s(f, &s->sscr[1]);
    qemu_get_be32s(f, &s->sspsp);
    qemu_get_be32s(f, &s->ssto);
    qemu_get_be32s(f, &s->ssitr);
    qemu_get_be32s(f, &s->sssr);
    qemu_get_8s(f, &s->sstsa);
    qemu_get_8s(f, &s->ssrsa);
    qemu_get_8s(f, &s->ssacd);

    s->rx_level = qemu_get_byte(f);
    s->rx_start = 0;
    for (i = 0; i < s->rx_level; i ++)
        s->rx_fifo[i] = qemu_get_byte(f);

    return 0;
}

/* Real-Time Clock */
#define RCNR		0x00	/* RTC Counter register */
#define RTAR		0x04	/* RTC Alarm register */
#define RTSR		0x08	/* RTC Status register */
#define RTTR		0x0c	/* RTC Timer Trim register */
#define RDCR		0x10	/* RTC Day Counter register */
#define RYCR		0x14	/* RTC Year Counter register */
#define RDAR1		0x18	/* RTC Wristwatch Day Alarm register 1 */
#define RYAR1		0x1c	/* RTC Wristwatch Year Alarm register 1 */
#define RDAR2		0x20	/* RTC Wristwatch Day Alarm register 2 */
#define RYAR2		0x24	/* RTC Wristwatch Year Alarm register 2 */
#define SWCR		0x28	/* RTC Stopwatch Counter register */
#define SWAR1		0x2c	/* RTC Stopwatch Alarm register 1 */
#define SWAR2		0x30	/* RTC Stopwatch Alarm register 2 */
#define RTCPICR		0x34	/* RTC Periodic Interrupt Counter register */
#define PIAR		0x38	/* RTC Periodic Interrupt Alarm register */

static inline void pxa2xx_rtc_int_update(struct pxa2xx_state_s *s)
{
    qemu_set_irq(s->pic[PXA2XX_PIC_RTCALARM], !!(s->rtsr & 0x2553));
}

static void pxa2xx_rtc_hzupdate(struct pxa2xx_state_s *s)
{
    int64_t rt = qemu_get_clock(rt_clock);
    s->last_rcnr += ((rt - s->last_hz) << 15) /
            (1000 * ((s->rttr & 0xffff) + 1));
    s->last_rdcr += ((rt - s->last_hz) << 15) /
            (1000 * ((s->rttr & 0xffff) + 1));
    s->last_hz = rt;
}

static void pxa2xx_rtc_swupdate(struct pxa2xx_state_s *s)
{
    int64_t rt = qemu_get_clock(rt_clock);
    if (s->rtsr & (1 << 12))
        s->last_swcr += (rt - s->last_sw) / 10;
    s->last_sw = rt;
}

static void pxa2xx_rtc_piupdate(struct pxa2xx_state_s *s)
{
    int64_t rt = qemu_get_clock(rt_clock);
    if (s->rtsr & (1 << 15))
        s->last_swcr += rt - s->last_pi;
    s->last_pi = rt;
}

static inline void pxa2xx_rtc_alarm_update(struct pxa2xx_state_s *s,
                uint32_t rtsr)
{
    if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
        qemu_mod_timer(s->rtc_hz, s->last_hz +
                (((s->rtar - s->last_rcnr) * 1000 *
                  ((s->rttr & 0xffff) + 1)) >> 15));
    else
        qemu_del_timer(s->rtc_hz);

    if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
        qemu_mod_timer(s->rtc_rdal1, s->last_hz +
                (((s->rdar1 - s->last_rdcr) * 1000 *
                  ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
    else
        qemu_del_timer(s->rtc_rdal1);

    if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
        qemu_mod_timer(s->rtc_rdal2, s->last_hz +
                (((s->rdar2 - s->last_rdcr) * 1000 *
                  ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
    else
        qemu_del_timer(s->rtc_rdal2);

    if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
        qemu_mod_timer(s->rtc_swal1, s->last_sw +
                        (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
    else
        qemu_del_timer(s->rtc_swal1);

    if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
        qemu_mod_timer(s->rtc_swal2, s->last_sw +
                        (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
    else
        qemu_del_timer(s->rtc_swal2);

    if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
        qemu_mod_timer(s->rtc_pi, s->last_pi +
                        (s->piar & 0xffff) - s->last_rtcpicr);
    else
        qemu_del_timer(s->rtc_pi);
}

static inline void pxa2xx_rtc_hz_tick(void *opaque)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
    s->rtsr |= (1 << 0);
    pxa2xx_rtc_alarm_update(s, s->rtsr);
    pxa2xx_rtc_int_update(s);
}

static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
    s->rtsr |= (1 << 4);
    pxa2xx_rtc_alarm_update(s, s->rtsr);
    pxa2xx_rtc_int_update(s);
}

static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
    s->rtsr |= (1 << 6);
    pxa2xx_rtc_alarm_update(s, s->rtsr);
    pxa2xx_rtc_int_update(s);
}

static inline void pxa2xx_rtc_swal1_tick(void *opaque)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
    s->rtsr |= (1 << 8);
    pxa2xx_rtc_alarm_update(s, s->rtsr);
    pxa2xx_rtc_int_update(s);
}

static inline void pxa2xx_rtc_swal2_tick(void *opaque)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
    s->rtsr |= (1 << 10);
    pxa2xx_rtc_alarm_update(s, s->rtsr);
    pxa2xx_rtc_int_update(s);
}

static inline void pxa2xx_rtc_pi_tick(void *opaque)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
    s->rtsr |= (1 << 13);
    pxa2xx_rtc_piupdate(s);
    s->last_rtcpicr = 0;
    pxa2xx_rtc_alarm_update(s, s->rtsr);
    pxa2xx_rtc_int_update(s);
}

static uint32_t pxa2xx_rtc_read(void *opaque, target_phys_addr_t addr)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
    addr -= s->rtc_base;

    switch (addr) {
    case RTTR:
        return s->rttr;
    case RTSR:
        return s->rtsr;
    case RTAR:
        return s->rtar;
    case RDAR1:
        return s->rdar1;
    case RDAR2:
        return s->rdar2;
    case RYAR1:
        return s->ryar1;
    case RYAR2:
        return s->ryar2;
    case SWAR1:
        return s->swar1;
    case SWAR2:
        return s->swar2;
    case PIAR:
        return s->piar;
    case RCNR:
        return s->last_rcnr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) /
                (1000 * ((s->rttr & 0xffff) + 1));
    case RDCR:
        return s->last_rdcr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) /
                (1000 * ((s->rttr & 0xffff) + 1));
    case RYCR:
        return s->last_rycr;
    case SWCR:
        if (s->rtsr & (1 << 12))
            return s->last_swcr + (qemu_get_clock(rt_clock) - s->last_sw) / 10;
        else
            return s->last_swcr;
    default:
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
        break;
    }
    return 0;
}

static void pxa2xx_rtc_write(void *opaque, target_phys_addr_t addr,
                uint32_t value)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
    addr -= s->rtc_base;

    switch (addr) {
    case RTTR:
        if (!(s->rttr & (1 << 31))) {
            pxa2xx_rtc_hzupdate(s);
            s->rttr = value;
            pxa2xx_rtc_alarm_update(s, s->rtsr);
        }
        break;

    case RTSR:
        if ((s->rtsr ^ value) & (1 << 15))
            pxa2xx_rtc_piupdate(s);

        if ((s->rtsr ^ value) & (1 << 12))
            pxa2xx_rtc_swupdate(s);

        if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
            pxa2xx_rtc_alarm_update(s, value);

        s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
        pxa2xx_rtc_int_update(s);
        break;

    case RTAR:
        s->rtar = value;
        pxa2xx_rtc_alarm_update(s, s->rtsr);
        break;

    case RDAR1:
        s->rdar1 = value;
        pxa2xx_rtc_alarm_update(s, s->rtsr);
        break;

    case RDAR2:
        s->rdar2 = value;
        pxa2xx_rtc_alarm_update(s, s->rtsr);
        break;

    case RYAR1:
        s->ryar1 = value;
        pxa2xx_rtc_alarm_update(s, s->rtsr);
        break;

    case RYAR2:
        s->ryar2 = value;
        pxa2xx_rtc_alarm_update(s, s->rtsr);
        break;

    case SWAR1:
        pxa2xx_rtc_swupdate(s);
        s->swar1 = value;
        s->last_swcr = 0;
        pxa2xx_rtc_alarm_update(s, s->rtsr);
        break;

    case SWAR2:
        s->swar2 = value;
        pxa2xx_rtc_alarm_update(s, s->rtsr);
        break;

    case PIAR:
        s->piar = value;
        pxa2xx_rtc_alarm_update(s, s->rtsr);
        break;

    case RCNR:
        pxa2xx_rtc_hzupdate(s);
        s->last_rcnr = value;
        pxa2xx_rtc_alarm_update(s, s->rtsr);
        break;

    case RDCR:
        pxa2xx_rtc_hzupdate(s);
        s->last_rdcr = value;
        pxa2xx_rtc_alarm_update(s, s->rtsr);
        break;

    case RYCR:
        s->last_rycr = value;
        break;

    case SWCR:
        pxa2xx_rtc_swupdate(s);
        s->last_swcr = value;
        pxa2xx_rtc_alarm_update(s, s->rtsr);
        break;

    case RTCPICR:
        pxa2xx_rtc_piupdate(s);
        s->last_rtcpicr = value & 0xffff;
        pxa2xx_rtc_alarm_update(s, s->rtsr);
        break;

    default:
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
    }
}

static CPUReadMemoryFunc *pxa2xx_rtc_readfn[] = {
    pxa2xx_rtc_read,
    pxa2xx_rtc_read,
    pxa2xx_rtc_read,
};

static CPUWriteMemoryFunc *pxa2xx_rtc_writefn[] = {
    pxa2xx_rtc_write,
    pxa2xx_rtc_write,
    pxa2xx_rtc_write,
};

static void pxa2xx_rtc_init(struct pxa2xx_state_s *s)
{
    struct tm tm;
    int wom;

    s->rttr = 0x7fff;
    s->rtsr = 0;

    qemu_get_timedate(&tm, 0);
    wom = ((tm.tm_mday - 1) / 7) + 1;

    s->last_rcnr = (uint32_t) mktime(&tm);
    s->last_rdcr = (wom << 20) | ((tm.tm_wday + 1) << 17) |
            (tm.tm_hour << 12) | (tm.tm_min << 6) | tm.tm_sec;
    s->last_rycr = ((tm.tm_year + 1900) << 9) |
            ((tm.tm_mon + 1) << 5) | tm.tm_mday;
    s->last_swcr = (tm.tm_hour << 19) |
            (tm.tm_min << 13) | (tm.tm_sec << 7);
    s->last_rtcpicr = 0;
    s->last_hz = s->last_sw = s->last_pi = qemu_get_clock(rt_clock);

    s->rtc_hz    = qemu_new_timer(rt_clock, pxa2xx_rtc_hz_tick,    s);
    s->rtc_rdal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal1_tick, s);
    s->rtc_rdal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal2_tick, s);
    s->rtc_swal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal1_tick, s);
    s->rtc_swal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal2_tick, s);
    s->rtc_pi    = qemu_new_timer(rt_clock, pxa2xx_rtc_pi_tick,    s);
}

static void pxa2xx_rtc_save(QEMUFile *f, void *opaque)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;

    pxa2xx_rtc_hzupdate(s);
    pxa2xx_rtc_piupdate(s);
    pxa2xx_rtc_swupdate(s);

    qemu_put_be32s(f, &s->rttr);
    qemu_put_be32s(f, &s->rtsr);
    qemu_put_be32s(f, &s->rtar);
    qemu_put_be32s(f, &s->rdar1);
    qemu_put_be32s(f, &s->rdar2);
    qemu_put_be32s(f, &s->ryar1);
    qemu_put_be32s(f, &s->ryar2);
    qemu_put_be32s(f, &s->swar1);
    qemu_put_be32s(f, &s->swar2);
    qemu_put_be32s(f, &s->piar);
    qemu_put_be32s(f, &s->last_rcnr);
    qemu_put_be32s(f, &s->last_rdcr);
    qemu_put_be32s(f, &s->last_rycr);
    qemu_put_be32s(f, &s->last_swcr);
    qemu_put_be32s(f, &s->last_rtcpicr);
    qemu_put_sbe64s(f, &s->last_hz);
    qemu_put_sbe64s(f, &s->last_sw);
    qemu_put_sbe64s(f, &s->last_pi);
}

static int pxa2xx_rtc_load(QEMUFile *f, void *opaque, int version_id)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;

    qemu_get_be32s(f, &s->rttr);
    qemu_get_be32s(f, &s->rtsr);
    qemu_get_be32s(f, &s->rtar);
    qemu_get_be32s(f, &s->rdar1);
    qemu_get_be32s(f, &s->rdar2);
    qemu_get_be32s(f, &s->ryar1);
    qemu_get_be32s(f, &s->ryar2);
    qemu_get_be32s(f, &s->swar1);
    qemu_get_be32s(f, &s->swar2);
    qemu_get_be32s(f, &s->piar);
    qemu_get_be32s(f, &s->last_rcnr);
    qemu_get_be32s(f, &s->last_rdcr);
    qemu_get_be32s(f, &s->last_rycr);
    qemu_get_be32s(f, &s->last_swcr);
    qemu_get_be32s(f, &s->last_rtcpicr);
    qemu_get_sbe64s(f, &s->last_hz);
    qemu_get_sbe64s(f, &s->last_sw);
    qemu_get_sbe64s(f, &s->last_pi);

    pxa2xx_rtc_alarm_update(s, s->rtsr);

    return 0;
}

/* I2C Interface */
struct pxa2xx_i2c_s {
    i2c_slave slave;
    i2c_bus *bus;
    target_phys_addr_t base;
    qemu_irq irq;

    uint16_t control;
    uint16_t status;
    uint8_t ibmr;
    uint8_t data;
};

#define IBMR	0x80	/* I2C Bus Monitor register */
#define IDBR	0x88	/* I2C Data Buffer register */
#define ICR	0x90	/* I2C Control register */
#define ISR	0x98	/* I2C Status register */
#define ISAR	0xa0	/* I2C Slave Address register */

static void pxa2xx_i2c_update(struct pxa2xx_i2c_s *s)
{
    uint16_t level = 0;
    level |= s->status & s->control & (1 << 10);		/* BED */
    level |= (s->status & (1 << 7)) && (s->control & (1 << 9));	/* IRF */
    level |= (s->status & (1 << 6)) && (s->control & (1 << 8));	/* ITE */
    level |= s->status & (1 << 9);				/* SAD */
    qemu_set_irq(s->irq, !!level);
}

/* These are only stubs now.  */
static void pxa2xx_i2c_event(i2c_slave *i2c, enum i2c_event event)
{
    struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) i2c;

    switch (event) {
    case I2C_START_SEND:
        s->status |= (1 << 9);				/* set SAD */
        s->status &= ~(1 << 0);				/* clear RWM */
        break;
    case I2C_START_RECV:
        s->status |= (1 << 9);				/* set SAD */
        s->status |= 1 << 0;				/* set RWM */
        break;
    case I2C_FINISH:
        s->status |= (1 << 4);				/* set SSD */
        break;
    case I2C_NACK:
        s->status |= 1 << 1;				/* set ACKNAK */
        break;
    }
    pxa2xx_i2c_update(s);
}

static int pxa2xx_i2c_rx(i2c_slave *i2c)
{
    struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) i2c;
    if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
        return 0;

    if (s->status & (1 << 0)) {			/* RWM */
        s->status |= 1 << 6;			/* set ITE */
    }
    pxa2xx_i2c_update(s);

    return s->data;
}

static int pxa2xx_i2c_tx(i2c_slave *i2c, uint8_t data)
{
    struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) i2c;
    if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
        return 1;

    if (!(s->status & (1 << 0))) {		/* RWM */
        s->status |= 1 << 7;			/* set IRF */
        s->data = data;
    }
    pxa2xx_i2c_update(s);

    return 1;
}

static uint32_t pxa2xx_i2c_read(void *opaque, target_phys_addr_t addr)
{
    struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
    addr -= s->base;

    switch (addr) {
    case ICR:
        return s->control;
    case ISR:
        return s->status | (i2c_bus_busy(s->bus) << 2);
    case ISAR:
        return s->slave.address;
    case IDBR:
        return s->data;
    case IBMR:
        if (s->status & (1 << 2))
            s->ibmr ^= 3;	/* Fake SCL and SDA pin changes */
        else
            s->ibmr = 0;
        return s->ibmr;
    default:
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
        break;
    }
    return 0;
}

static void pxa2xx_i2c_write(void *opaque, target_phys_addr_t addr,
                uint32_t value)
{
    struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
    int ack;
    addr -= s->base;

    switch (addr) {
    case ICR:
        s->control = value & 0xfff7;
        if ((value & (1 << 3)) && (value & (1 << 6))) {	/* TB and IUE */
            /* TODO: slave mode */
            if (value & (1 << 0)) {			/* START condition */
                if (s->data & 1)
                    s->status |= 1 << 0;		/* set RWM */
                else
                    s->status &= ~(1 << 0);		/* clear RWM */
                ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1);
            } else {
                if (s->status & (1 << 0)) {		/* RWM */
                    s->data = i2c_recv(s->bus);
                    if (value & (1 << 2))		/* ACKNAK */
                        i2c_nack(s->bus);
                    ack = 1;
                } else
                    ack = !i2c_send(s->bus, s->data);
            }

            if (value & (1 << 1))			/* STOP condition */
                i2c_end_transfer(s->bus);

            if (ack) {
                if (value & (1 << 0))			/* START condition */
                    s->status |= 1 << 6;		/* set ITE */
                else
                    if (s->status & (1 << 0))		/* RWM */
                        s->status |= 1 << 7;		/* set IRF */
                    else
                        s->status |= 1 << 6;		/* set ITE */
                s->status &= ~(1 << 1);			/* clear ACKNAK */
            } else {
                s->status |= 1 << 6;			/* set ITE */
                s->status |= 1 << 10;			/* set BED */
                s->status |= 1 << 1;			/* set ACKNAK */
            }
        }
        if (!(value & (1 << 3)) && (value & (1 << 6)))	/* !TB and IUE */
            if (value & (1 << 4))			/* MA */
                i2c_end_transfer(s->bus);
        pxa2xx_i2c_update(s);
        break;

    case ISR:
        s->status &= ~(value & 0x07f0);
        pxa2xx_i2c_update(s);
        break;

    case ISAR:
        i2c_set_slave_address(&s->slave, value & 0x7f);
        break;

    case IDBR:
        s->data = value & 0xff;
        break;

    default:
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
    }
}

static CPUReadMemoryFunc *pxa2xx_i2c_readfn[] = {
    pxa2xx_i2c_read,
    pxa2xx_i2c_read,
    pxa2xx_i2c_read,
};

static CPUWriteMemoryFunc *pxa2xx_i2c_writefn[] = {
    pxa2xx_i2c_write,
    pxa2xx_i2c_write,
    pxa2xx_i2c_write,
};

static void pxa2xx_i2c_save(QEMUFile *f, void *opaque)
{
    struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;

    qemu_put_be16s(f, &s->control);
    qemu_put_be16s(f, &s->status);
    qemu_put_8s(f, &s->ibmr);
    qemu_put_8s(f, &s->data);

    i2c_slave_save(f, &s->slave);
}

static int pxa2xx_i2c_load(QEMUFile *f, void *opaque, int version_id)
{
    struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;

    if (version_id != 1)
        return -EINVAL;

    qemu_get_be16s(f, &s->control);
    qemu_get_be16s(f, &s->status);
    qemu_get_8s(f, &s->ibmr);
    qemu_get_8s(f, &s->data);

    i2c_slave_load(f, &s->slave);
    return 0;
}

struct pxa2xx_i2c_s *pxa2xx_i2c_init(target_phys_addr_t base,
                qemu_irq irq, uint32_t page_size)
{
    int iomemtype;
    /* FIXME: Should the slave device really be on a separate bus?  */
    struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *)
            i2c_slave_init(i2c_init_bus(), 0, sizeof(struct pxa2xx_i2c_s));

    s->base = base;
    s->irq = irq;
    s->slave.event = pxa2xx_i2c_event;
    s->slave.recv = pxa2xx_i2c_rx;
    s->slave.send = pxa2xx_i2c_tx;
    s->bus = i2c_init_bus();

    iomemtype = cpu_register_io_memory(0, pxa2xx_i2c_readfn,
                    pxa2xx_i2c_writefn, s);
    cpu_register_physical_memory(s->base & ~page_size, page_size, iomemtype);

    register_savevm("pxa2xx_i2c", base, 1,
                    pxa2xx_i2c_save, pxa2xx_i2c_load, s);

    return s;
}

i2c_bus *pxa2xx_i2c_bus(struct pxa2xx_i2c_s *s)
{
    return s->bus;
}

/* PXA Inter-IC Sound Controller */
static void pxa2xx_i2s_reset(struct pxa2xx_i2s_s *i2s)
{
    i2s->rx_len = 0;
    i2s->tx_len = 0;
    i2s->fifo_len = 0;
    i2s->clk = 0x1a;
    i2s->control[0] = 0x00;
    i2s->control[1] = 0x00;
    i2s->status = 0x00;
    i2s->mask = 0x00;
}

#define SACR_TFTH(val)	((val >> 8) & 0xf)
#define SACR_RFTH(val)	((val >> 12) & 0xf)
#define SACR_DREC(val)	(val & (1 << 3))
#define SACR_DPRL(val)	(val & (1 << 4))

static inline void pxa2xx_i2s_update(struct pxa2xx_i2s_s *i2s)
{
    int rfs, tfs;
    rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
            !SACR_DREC(i2s->control[1]);
    tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
            i2s->enable && !SACR_DPRL(i2s->control[1]);

    pxa2xx_dma_request(i2s->dma, PXA2XX_RX_RQ_I2S, rfs);
    pxa2xx_dma_request(i2s->dma, PXA2XX_TX_RQ_I2S, tfs);

    i2s->status &= 0xe0;
    if (i2s->fifo_len < 16 || !i2s->enable)
        i2s->status |= 1 << 0;			/* TNF */
    if (i2s->rx_len)
        i2s->status |= 1 << 1;			/* RNE */
    if (i2s->enable)
        i2s->status |= 1 << 2;			/* BSY */
    if (tfs)
        i2s->status |= 1 << 3;			/* TFS */
    if (rfs)
        i2s->status |= 1 << 4;			/* RFS */
    if (!(i2s->tx_len && i2s->enable))
        i2s->status |= i2s->fifo_len << 8;	/* TFL */
    i2s->status |= MAX(i2s->rx_len, 0xf) << 12;	/* RFL */

    qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
}

#define SACR0	0x00	/* Serial Audio Global Control register */
#define SACR1	0x04	/* Serial Audio I2S/MSB-Justified Control register */
#define SASR0	0x0c	/* Serial Audio Interface and FIFO Status register */
#define SAIMR	0x14	/* Serial Audio Interrupt Mask register */
#define SAICR	0x18	/* Serial Audio Interrupt Clear register */
#define SADIV	0x60	/* Serial Audio Clock Divider register */
#define SADR	0x80	/* Serial Audio Data register */

static uint32_t pxa2xx_i2s_read(void *opaque, target_phys_addr_t addr)
{
    struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
    addr -= s->base;

    switch (addr) {
    case SACR0:
        return s->control[0];
    case SACR1:
        return s->control[1];
    case SASR0:
        return s->status;
    case SAIMR:
        return s->mask;
    case SAICR:
        return 0;
    case SADIV:
        return s->clk;
    case SADR:
        if (s->rx_len > 0) {
            s->rx_len --;
            pxa2xx_i2s_update(s);
            return s->codec_in(s->opaque);
        }
        return 0;
    default:
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
        break;
    }
    return 0;
}

static void pxa2xx_i2s_write(void *opaque, target_phys_addr_t addr,
                uint32_t value)
{
    struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
    uint32_t *sample;
    addr -= s->base;

    switch (addr) {
    case SACR0:
        if (value & (1 << 3))				/* RST */
            pxa2xx_i2s_reset(s);
        s->control[0] = value & 0xff3d;
        if (!s->enable && (value & 1) && s->tx_len) {	/* ENB */
            for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
                s->codec_out(s->opaque, *sample);
            s->status &= ~(1 << 7);			/* I2SOFF */
        }
        if (value & (1 << 4))				/* EFWR */
            printf("%s: Attempt to use special function\n", __FUNCTION__);
        s->enable = ((value ^ 4) & 5) == 5;		/* ENB && !RST*/
        pxa2xx_i2s_update(s);
        break;
    case SACR1:
        s->control[1] = value & 0x0039;
        if (value & (1 << 5))				/* ENLBF */
            printf("%s: Attempt to use loopback function\n", __FUNCTION__);
        if (value & (1 << 4))				/* DPRL */
            s->fifo_len = 0;
        pxa2xx_i2s_update(s);
        break;
    case SAIMR:
        s->mask = value & 0x0078;
        pxa2xx_i2s_update(s);
        break;
    case SAICR:
        s->status &= ~(value & (3 << 5));
        pxa2xx_i2s_update(s);
        break;
    case SADIV:
        s->clk = value & 0x007f;
        break;
    case SADR:
        if (s->tx_len && s->enable) {
            s->tx_len --;
            pxa2xx_i2s_update(s);
            s->codec_out(s->opaque, value);
        } else if (s->fifo_len < 16) {
            s->fifo[s->fifo_len ++] = value;
            pxa2xx_i2s_update(s);
        }
        break;
    default:
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
    }
}

static CPUReadMemoryFunc *pxa2xx_i2s_readfn[] = {
    pxa2xx_i2s_read,
    pxa2xx_i2s_read,
    pxa2xx_i2s_read,
};

static CPUWriteMemoryFunc *pxa2xx_i2s_writefn[] = {
    pxa2xx_i2s_write,
    pxa2xx_i2s_write,
    pxa2xx_i2s_write,
};

static void pxa2xx_i2s_save(QEMUFile *f, void *opaque)
{
    struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;

    qemu_put_be32s(f, &s->control[0]);
    qemu_put_be32s(f, &s->control[1]);
    qemu_put_be32s(f, &s->status);
    qemu_put_be32s(f, &s->mask);
    qemu_put_be32s(f, &s->clk);

    qemu_put_be32(f, s->enable);
    qemu_put_be32(f, s->rx_len);
    qemu_put_be32(f, s->tx_len);
    qemu_put_be32(f, s->fifo_len);
}

static int pxa2xx_i2s_load(QEMUFile *f, void *opaque, int version_id)
{
    struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;

    qemu_get_be32s(f, &s->control[0]);
    qemu_get_be32s(f, &s->control[1]);
    qemu_get_be32s(f, &s->status);
    qemu_get_be32s(f, &s->mask);
    qemu_get_be32s(f, &s->clk);

    s->enable = qemu_get_be32(f);
    s->rx_len = qemu_get_be32(f);
    s->tx_len = qemu_get_be32(f);
    s->fifo_len = qemu_get_be32(f);

    return 0;
}

static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
{
    struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
    uint32_t *sample;

    /* Signal FIFO errors */
    if (s->enable && s->tx_len)
        s->status |= 1 << 5;		/* TUR */
    if (s->enable && s->rx_len)
        s->status |= 1 << 6;		/* ROR */

    /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
     * handle the cases where it makes a difference.  */
    s->tx_len = tx - s->fifo_len;
    s->rx_len = rx;
    /* Note that is s->codec_out wasn't set, we wouldn't get called.  */
    if (s->enable)
        for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
            s->codec_out(s->opaque, *sample);
    pxa2xx_i2s_update(s);
}

static struct pxa2xx_i2s_s *pxa2xx_i2s_init(target_phys_addr_t base,
                qemu_irq irq, struct pxa2xx_dma_state_s *dma)
{
    int iomemtype;
    struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *)
            qemu_mallocz(sizeof(struct pxa2xx_i2s_s));

    s->base = base;
    s->irq = irq;
    s->dma = dma;
    s->data_req = pxa2xx_i2s_data_req;

    pxa2xx_i2s_reset(s);

    iomemtype = cpu_register_io_memory(0, pxa2xx_i2s_readfn,
                    pxa2xx_i2s_writefn, s);
    cpu_register_physical_memory(s->base & 0xfff00000, 0x100000, iomemtype);

    register_savevm("pxa2xx_i2s", base, 0,
                    pxa2xx_i2s_save, pxa2xx_i2s_load, s);

    return s;
}

/* PXA Fast Infra-red Communications Port */
struct pxa2xx_fir_s {
    target_phys_addr_t base;
    qemu_irq irq;
    struct pxa2xx_dma_state_s *dma;
    int enable;
    CharDriverState *chr;

    uint8_t control[3];
    uint8_t status[2];

    int rx_len;
    int rx_start;
    uint8_t rx_fifo[64];
};

static void pxa2xx_fir_reset(struct pxa2xx_fir_s *s)
{
    s->control[0] = 0x00;
    s->control[1] = 0x00;
    s->control[2] = 0x00;
    s->status[0] = 0x00;
    s->status[1] = 0x00;
    s->enable = 0;
}

static inline void pxa2xx_fir_update(struct pxa2xx_fir_s *s)
{
    static const int tresh[4] = { 8, 16, 32, 0 };
    int intr = 0;
    if ((s->control[0] & (1 << 4)) &&			/* RXE */
                    s->rx_len >= tresh[s->control[2] & 3])	/* TRIG */
        s->status[0] |= 1 << 4;				/* RFS */
    else
        s->status[0] &= ~(1 << 4);			/* RFS */
    if (s->control[0] & (1 << 3))			/* TXE */
        s->status[0] |= 1 << 3;				/* TFS */
    else
        s->status[0] &= ~(1 << 3);			/* TFS */
    if (s->rx_len)
        s->status[1] |= 1 << 2;				/* RNE */
    else
        s->status[1] &= ~(1 << 2);			/* RNE */
    if (s->control[0] & (1 << 4))			/* RXE */
        s->status[1] |= 1 << 0;				/* RSY */
    else
        s->status[1] &= ~(1 << 0);			/* RSY */

    intr |= (s->control[0] & (1 << 5)) &&		/* RIE */
            (s->status[0] & (1 << 4));			/* RFS */
    intr |= (s->control[0] & (1 << 6)) &&		/* TIE */
            (s->status[0] & (1 << 3));			/* TFS */
    intr |= (s->control[2] & (1 << 4)) &&		/* TRAIL */
            (s->status[0] & (1 << 6));			/* EOC */
    intr |= (s->control[0] & (1 << 2)) &&		/* TUS */
            (s->status[0] & (1 << 1));			/* TUR */
    intr |= s->status[0] & 0x25;			/* FRE, RAB, EIF */

    pxa2xx_dma_request(s->dma, PXA2XX_RX_RQ_ICP, (s->status[0] >> 4) & 1);
    pxa2xx_dma_request(s->dma, PXA2XX_TX_RQ_ICP, (s->status[0] >> 3) & 1);

    qemu_set_irq(s->irq, intr && s->enable);
}

#define ICCR0	0x00	/* FICP Control register 0 */
#define ICCR1	0x04	/* FICP Control register 1 */
#define ICCR2	0x08	/* FICP Control register 2 */
#define ICDR	0x0c	/* FICP Data register */
#define ICSR0	0x14	/* FICP Status register 0 */
#define ICSR1	0x18	/* FICP Status register 1 */
#define ICFOR	0x1c	/* FICP FIFO Occupancy Status register */

static uint32_t pxa2xx_fir_read(void *opaque, target_phys_addr_t addr)
{
    struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
    uint8_t ret;
    addr -= s->base;

    switch (addr) {
    case ICCR0:
        return s->control[0];
    case ICCR1:
        return s->control[1];
    case ICCR2:
        return s->control[2];
    case ICDR:
        s->status[0] &= ~0x01;
        s->status[1] &= ~0x72;
        if (s->rx_len) {
            s->rx_len --;
            ret = s->rx_fifo[s->rx_start ++];
            s->rx_start &= 63;
            pxa2xx_fir_update(s);
            return ret;
        }
        printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
        break;
    case ICSR0:
        return s->status[0];
    case ICSR1:
        return s->status[1] | (1 << 3);			/* TNF */
    case ICFOR:
        return s->rx_len;
    default:
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
        break;
    }
    return 0;
}

static void pxa2xx_fir_write(void *opaque, target_phys_addr_t addr,
                uint32_t value)
{
    struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
    uint8_t ch;
    addr -= s->base;

    switch (addr) {
    case ICCR0:
        s->control[0] = value;
        if (!(value & (1 << 4)))			/* RXE */
            s->rx_len = s->rx_start = 0;
        if (!(value & (1 << 3)))			/* TXE */
            /* Nop */;
        s->enable = value & 1;				/* ITR */
        if (!s->enable)
            s->status[0] = 0;
        pxa2xx_fir_update(s);
        break;
    case ICCR1:
        s->control[1] = value;
        break;
    case ICCR2:
        s->control[2] = value & 0x3f;
        pxa2xx_fir_update(s);
        break;
    case ICDR:
        if (s->control[2] & (1 << 2))			/* TXP */
            ch = value;
        else
            ch = ~value;
        if (s->chr && s->enable && (s->control[0] & (1 << 3)))	/* TXE */
            qemu_chr_write(s->chr, &ch, 1);
        break;
    case ICSR0:
        s->status[0] &= ~(value & 0x66);
        pxa2xx_fir_update(s);
        break;
    case ICFOR:
        break;
    default:
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
    }
}

static CPUReadMemoryFunc *pxa2xx_fir_readfn[] = {
    pxa2xx_fir_read,
    pxa2xx_fir_read,
    pxa2xx_fir_read,
};

static CPUWriteMemoryFunc *pxa2xx_fir_writefn[] = {
    pxa2xx_fir_write,
    pxa2xx_fir_write,
    pxa2xx_fir_write,
};

static int pxa2xx_fir_is_empty(void *opaque)
{
    struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
    return (s->rx_len < 64);
}

static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
{
    struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
    if (!(s->control[0] & (1 << 4)))			/* RXE */
        return;

    while (size --) {
        s->status[1] |= 1 << 4;				/* EOF */
        if (s->rx_len >= 64) {
            s->status[1] |= 1 << 6;			/* ROR */
            break;
        }

        if (s->control[2] & (1 << 3))			/* RXP */
            s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
        else
            s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
    }

    pxa2xx_fir_update(s);
}

static void pxa2xx_fir_event(void *opaque, int event)
{
}

static void pxa2xx_fir_save(QEMUFile *f, void *opaque)
{
    struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
    int i;

    qemu_put_be32(f, s->enable);

    qemu_put_8s(f, &s->control[0]);
    qemu_put_8s(f, &s->control[1]);
    qemu_put_8s(f, &s->control[2]);
    qemu_put_8s(f, &s->status[0]);
    qemu_put_8s(f, &s->status[1]);

    qemu_put_byte(f, s->rx_len);
    for (i = 0; i < s->rx_len; i ++)
        qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 63]);
}

static int pxa2xx_fir_load(QEMUFile *f, void *opaque, int version_id)
{
    struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
    int i;

    s->enable = qemu_get_be32(f);

    qemu_get_8s(f, &s->control[0]);
    qemu_get_8s(f, &s->control[1]);
    qemu_get_8s(f, &s->control[2]);
    qemu_get_8s(f, &s->status[0]);
    qemu_get_8s(f, &s->status[1]);

    s->rx_len = qemu_get_byte(f);
    s->rx_start = 0;
    for (i = 0; i < s->rx_len; i ++)
        s->rx_fifo[i] = qemu_get_byte(f);

    return 0;
}

static struct pxa2xx_fir_s *pxa2xx_fir_init(target_phys_addr_t base,
                qemu_irq irq, struct pxa2xx_dma_state_s *dma,
                CharDriverState *chr)
{
    int iomemtype;
    struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *)
            qemu_mallocz(sizeof(struct pxa2xx_fir_s));

    s->base = base;
    s->irq = irq;
    s->dma = dma;
    s->chr = chr;

    pxa2xx_fir_reset(s);

    iomemtype = cpu_register_io_memory(0, pxa2xx_fir_readfn,
                    pxa2xx_fir_writefn, s);
    cpu_register_physical_memory(s->base, 0x1000, iomemtype);

    if (chr)
        qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
                        pxa2xx_fir_rx, pxa2xx_fir_event, s);

    register_savevm("pxa2xx_fir", 0, 0, pxa2xx_fir_save, pxa2xx_fir_load, s);

    return s;
}

static void pxa2xx_reset(void *opaque, int line, int level)
{
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;

    if (level && (s->pm_regs[PCFR >> 2] & 0x10)) {	/* GPR_EN */
        cpu_reset(s->env);
        /* TODO: reset peripherals */
    }
}

/* Initialise a PXA270 integrated chip (ARM based core).  */
struct pxa2xx_state_s *pxa270_init(unsigned int sdram_size,
                DisplayState *ds, const char *revision)
{
    struct pxa2xx_state_s *s;
    struct pxa2xx_ssp_s *ssp;
    int iomemtype, i;
    int index;
    s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s));

    if (revision && strncmp(revision, "pxa27", 5)) {
        fprintf(stderr, "Machine requires a PXA27x processor.\n");
        exit(1);
    }
    if (!revision)
        revision = "pxa270";
    
    s->env = cpu_init(revision);
    if (!s->env) {
        fprintf(stderr, "Unable to find CPU definition\n");
        exit(1);
    }
    s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];

    /* SDRAM & Internal Memory Storage */
    cpu_register_physical_memory(PXA2XX_SDRAM_BASE,
                    sdram_size, qemu_ram_alloc(sdram_size) | IO_MEM_RAM);
    cpu_register_physical_memory(PXA2XX_INTERNAL_BASE,
                    0x40000, qemu_ram_alloc(0x40000) | IO_MEM_RAM);

    s->pic = pxa2xx_pic_init(0x40d00000, s->env);

    s->dma = pxa27x_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]);

    pxa27x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0],
                    s->pic[PXA27X_PIC_OST_4_11]);

    s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 121);

    index = drive_get_index(IF_SD, 0, 0);
    if (index == -1) {
        fprintf(stderr, "qemu: missing SecureDigital device\n");
        exit(1);
    }
    s->mmc = pxa2xx_mmci_init(0x41100000, drives_table[index].bdrv,
                              s->pic[PXA2XX_PIC_MMC], s->dma);

    for (i = 0; pxa270_serial[i].io_base; i ++)
        if (serial_hds[i])
            serial_mm_init(pxa270_serial[i].io_base, 2,
                           s->pic[pxa270_serial[i].irqn], 14857000/16,
                           serial_hds[i], 1);
        else
            break;
    if (serial_hds[i])
        s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP],
                        s->dma, serial_hds[i]);

    if (ds)
        s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD], ds);

    s->cm_base = 0x41300000;
    s->cm_regs[CCCR >> 2] = 0x02000210;	/* 416.0 MHz */
    s->clkcfg = 0x00000009;		/* Turbo mode active */
    iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn,
                    pxa2xx_cm_writefn, s);
    cpu_register_physical_memory(s->cm_base, 0x1000, iomemtype);
    register_savevm("pxa2xx_cm", 0, 0, pxa2xx_cm_save, pxa2xx_cm_load, s);

    cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);

    s->mm_base = 0x48000000;
    s->mm_regs[MDMRS >> 2] = 0x00020002;
    s->mm_regs[MDREFR >> 2] = 0x03ca4000;
    s->mm_regs[MECR >> 2] = 0x00000001;	/* Two PC Card sockets */
    iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn,
                    pxa2xx_mm_writefn, s);
    cpu_register_physical_memory(s->mm_base, 0x1000, iomemtype);
    register_savevm("pxa2xx_mm", 0, 0, pxa2xx_mm_save, pxa2xx_mm_load, s);

    s->pm_base = 0x40f00000;
    iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn,
                    pxa2xx_pm_writefn, s);
    cpu_register_physical_memory(s->pm_base, 0x100, iomemtype);
    register_savevm("pxa2xx_pm", 0, 0, pxa2xx_pm_save, pxa2xx_pm_load, s);

    for (i = 0; pxa27x_ssp[i].io_base; i ++);
    s->ssp = (struct pxa2xx_ssp_s **)
            qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i);
    ssp = (struct pxa2xx_ssp_s *)
            qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i);
    for (i = 0; pxa27x_ssp[i].io_base; i ++) {
        s->ssp[i] = &ssp[i];
        ssp[i].base = pxa27x_ssp[i].io_base;
        ssp[i].irq = s->pic[pxa27x_ssp[i].irqn];

        iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn,
                        pxa2xx_ssp_writefn, &ssp[i]);
        cpu_register_physical_memory(ssp[i].base, 0x1000, iomemtype);
        register_savevm("pxa2xx_ssp", i, 0,
                        pxa2xx_ssp_save, pxa2xx_ssp_load, s);
    }

    if (usb_enabled) {
        usb_ohci_init_pxa(0x4c000000, 3, -1, s->pic[PXA2XX_PIC_USBH1]);
    }

    s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
    s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);

    s->rtc_base = 0x40900000;
    iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn,
                    pxa2xx_rtc_writefn, s);
    cpu_register_physical_memory(s->rtc_base, 0x1000, iomemtype);
    pxa2xx_rtc_init(s);
    register_savevm("pxa2xx_rtc", 0, 0, pxa2xx_rtc_save, pxa2xx_rtc_load, s);

    s->i2c[0] = pxa2xx_i2c_init(0x40301600, s->pic[PXA2XX_PIC_I2C], 0xffff);
    s->i2c[1] = pxa2xx_i2c_init(0x40f00100, s->pic[PXA2XX_PIC_PWRI2C], 0xff);

    s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma);

    s->kp = pxa27x_keypad_init(0x41500000, s->pic[PXA2XX_PIC_KEYPAD]);

    /* GPIO1 resets the processor */
    /* The handler can be overridden by board-specific code */
    pxa2xx_gpio_out_set(s->gpio, 1, s->reset);
    return s;
}

/* Initialise a PXA255 integrated chip (ARM based core).  */
struct pxa2xx_state_s *pxa255_init(unsigned int sdram_size,
                DisplayState *ds)
{
    struct pxa2xx_state_s *s;
    struct pxa2xx_ssp_s *ssp;
    int iomemtype, i;
    int index;

    s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s));

    s->env = cpu_init("pxa255");
    if (!s->env) {
        fprintf(stderr, "Unable to find CPU definition\n");
        exit(1);
    }
    s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];

    /* SDRAM & Internal Memory Storage */
    cpu_register_physical_memory(PXA2XX_SDRAM_BASE, sdram_size,
                    qemu_ram_alloc(sdram_size) | IO_MEM_RAM);
    cpu_register_physical_memory(PXA2XX_INTERNAL_BASE, PXA2XX_INTERNAL_SIZE,
                    qemu_ram_alloc(PXA2XX_INTERNAL_SIZE) | IO_MEM_RAM);

    s->pic = pxa2xx_pic_init(0x40d00000, s->env);

    s->dma = pxa255_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]);

    pxa25x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0]);

    s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 85);

    index = drive_get_index(IF_SD, 0, 0);
    if (index == -1) {
        fprintf(stderr, "qemu: missing SecureDigital device\n");
        exit(1);
    }
    s->mmc = pxa2xx_mmci_init(0x41100000, drives_table[index].bdrv,
                              s->pic[PXA2XX_PIC_MMC], s->dma);

    for (i = 0; pxa255_serial[i].io_base; i ++)
        if (serial_hds[i])
            serial_mm_init(pxa255_serial[i].io_base, 2,
                           s->pic[pxa255_serial[i].irqn], 14745600/16,
                           serial_hds[i], 1);
        else
            break;
    if (serial_hds[i])
        s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP],
                        s->dma, serial_hds[i]);

    if (ds)
        s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD], ds);

    s->cm_base = 0x41300000;
    s->cm_regs[CCCR >> 2] = 0x02000210;	/* 416.0 MHz */
    s->clkcfg = 0x00000009;		/* Turbo mode active */
    iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn,
                    pxa2xx_cm_writefn, s);
    cpu_register_physical_memory(s->cm_base, 0x1000, iomemtype);
    register_savevm("pxa2xx_cm", 0, 0, pxa2xx_cm_save, pxa2xx_cm_load, s);

    cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);

    s->mm_base = 0x48000000;
    s->mm_regs[MDMRS >> 2] = 0x00020002;
    s->mm_regs[MDREFR >> 2] = 0x03ca4000;
    s->mm_regs[MECR >> 2] = 0x00000001;	/* Two PC Card sockets */
    iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn,
                    pxa2xx_mm_writefn, s);
    cpu_register_physical_memory(s->mm_base, 0x1000, iomemtype);
    register_savevm("pxa2xx_mm", 0, 0, pxa2xx_mm_save, pxa2xx_mm_load, s);

    s->pm_base = 0x40f00000;
    iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn,
                    pxa2xx_pm_writefn, s);
    cpu_register_physical_memory(s->pm_base, 0x100, iomemtype);
    register_savevm("pxa2xx_pm", 0, 0, pxa2xx_pm_save, pxa2xx_pm_load, s);

    for (i = 0; pxa255_ssp[i].io_base; i ++);
    s->ssp = (struct pxa2xx_ssp_s **)
            qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i);
    ssp = (struct pxa2xx_ssp_s *)
            qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i);
    for (i = 0; pxa255_ssp[i].io_base; i ++) {
        s->ssp[i] = &ssp[i];
        ssp[i].base = pxa255_ssp[i].io_base;
        ssp[i].irq = s->pic[pxa255_ssp[i].irqn];

        iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn,
                        pxa2xx_ssp_writefn, &ssp[i]);
        cpu_register_physical_memory(ssp[i].base, 0x1000, iomemtype);
        register_savevm("pxa2xx_ssp", i, 0,
                        pxa2xx_ssp_save, pxa2xx_ssp_load, s);
    }

    if (usb_enabled) {
        usb_ohci_init_pxa(0x4c000000, 3, -1, s->pic[PXA2XX_PIC_USBH1]);
    }

    s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
    s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);

    s->rtc_base = 0x40900000;
    iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn,
                    pxa2xx_rtc_writefn, s);
    cpu_register_physical_memory(s->rtc_base, 0x1000, iomemtype);
    pxa2xx_rtc_init(s);
    register_savevm("pxa2xx_rtc", 0, 0, pxa2xx_rtc_save, pxa2xx_rtc_load, s);

    s->i2c[0] = pxa2xx_i2c_init(0x40301600, s->pic[PXA2XX_PIC_I2C], 0xffff);
    s->i2c[1] = pxa2xx_i2c_init(0x40f00100, s->pic[PXA2XX_PIC_PWRI2C], 0xff);

    s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma);

    /* GPIO1 resets the processor */
    /* The handler can be overridden by board-specific code */
    pxa2xx_gpio_out_set(s->gpio, 1, s->reset);
    return s;
}