nand.c
19.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
/*
* Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
* Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
* Samsung Electronic.
*
* Copyright (c) 2006 Openedhand Ltd.
* Written by Andrzej Zaborowski <balrog@zabor.org>
*
* This code is licensed under the GNU GPL v2.
*/
#ifndef NAND_IO
# include "hw.h"
# include "flash.h"
# include "block.h"
/* FIXME: Pass block device as an argument. */
# include "sysemu.h"
# define NAND_CMD_READ0 0x00
# define NAND_CMD_READ1 0x01
# define NAND_CMD_READ2 0x50
# define NAND_CMD_LPREAD2 0x30
# define NAND_CMD_NOSERIALREAD2 0x35
# define NAND_CMD_RANDOMREAD1 0x05
# define NAND_CMD_RANDOMREAD2 0xe0
# define NAND_CMD_READID 0x90
# define NAND_CMD_RESET 0xff
# define NAND_CMD_PAGEPROGRAM1 0x80
# define NAND_CMD_PAGEPROGRAM2 0x10
# define NAND_CMD_CACHEPROGRAM2 0x15
# define NAND_CMD_BLOCKERASE1 0x60
# define NAND_CMD_BLOCKERASE2 0xd0
# define NAND_CMD_READSTATUS 0x70
# define NAND_CMD_COPYBACKPRG1 0x85
# define NAND_IOSTATUS_ERROR (1 << 0)
# define NAND_IOSTATUS_PLANE0 (1 << 1)
# define NAND_IOSTATUS_PLANE1 (1 << 2)
# define NAND_IOSTATUS_PLANE2 (1 << 3)
# define NAND_IOSTATUS_PLANE3 (1 << 4)
# define NAND_IOSTATUS_BUSY (1 << 6)
# define NAND_IOSTATUS_UNPROTCT (1 << 7)
# define MAX_PAGE 0x800
# define MAX_OOB 0x40
struct nand_flash_s {
uint8_t manf_id, chip_id;
int size, pages;
int page_shift, oob_shift, erase_shift, addr_shift;
uint8_t *storage;
BlockDriverState *bdrv;
int mem_oob;
int cle, ale, ce, wp, gnd;
uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
uint8_t *ioaddr;
int iolen;
uint32_t cmd, addr;
int addrlen;
int status;
int offset;
void (*blk_write)(struct nand_flash_s *s);
void (*blk_erase)(struct nand_flash_s *s);
void (*blk_load)(struct nand_flash_s *s, uint32_t addr, int offset);
};
# define NAND_NO_AUTOINCR 0x00000001
# define NAND_BUSWIDTH_16 0x00000002
# define NAND_NO_PADDING 0x00000004
# define NAND_CACHEPRG 0x00000008
# define NAND_COPYBACK 0x00000010
# define NAND_IS_AND 0x00000020
# define NAND_4PAGE_ARRAY 0x00000040
# define NAND_NO_READRDY 0x00000100
# define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
# define NAND_IO
# define PAGE(addr) ((addr) >> ADDR_SHIFT)
# define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
# define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
# define OOB_SHIFT (PAGE_SHIFT - 5)
# define OOB_SIZE (1 << OOB_SHIFT)
# define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
# define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
# define PAGE_SIZE 256
# define PAGE_SHIFT 8
# define PAGE_SECTORS 1
# define ADDR_SHIFT 8
# include "nand.c"
# define PAGE_SIZE 512
# define PAGE_SHIFT 9
# define PAGE_SECTORS 1
# define ADDR_SHIFT 8
# include "nand.c"
# define PAGE_SIZE 2048
# define PAGE_SHIFT 11
# define PAGE_SECTORS 4
# define ADDR_SHIFT 16
# include "nand.c"
/* Information based on Linux drivers/mtd/nand/nand_ids.c */
struct nand_info_s {
int size;
int width;
int page_shift;
int erase_shift;
uint32_t options;
} nand_flash_ids[0x100] = {
[0 ... 0xff] = { 0 },
[0x6e] = { 1, 8, 8, 4, 0 },
[0x64] = { 2, 8, 8, 4, 0 },
[0x6b] = { 4, 8, 9, 4, 0 },
[0xe8] = { 1, 8, 8, 4, 0 },
[0xec] = { 1, 8, 8, 4, 0 },
[0xea] = { 2, 8, 8, 4, 0 },
[0xd5] = { 4, 8, 9, 4, 0 },
[0xe3] = { 4, 8, 9, 4, 0 },
[0xe5] = { 4, 8, 9, 4, 0 },
[0xd6] = { 8, 8, 9, 4, 0 },
[0x39] = { 8, 8, 9, 4, 0 },
[0xe6] = { 8, 8, 9, 4, 0 },
[0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
[0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
[0x33] = { 16, 8, 9, 5, 0 },
[0x73] = { 16, 8, 9, 5, 0 },
[0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
[0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
[0x35] = { 32, 8, 9, 5, 0 },
[0x75] = { 32, 8, 9, 5, 0 },
[0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
[0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
[0x36] = { 64, 8, 9, 5, 0 },
[0x76] = { 64, 8, 9, 5, 0 },
[0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
[0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
[0x78] = { 128, 8, 9, 5, 0 },
[0x39] = { 128, 8, 9, 5, 0 },
[0x79] = { 128, 8, 9, 5, 0 },
[0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
[0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
[0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
[0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
[0x71] = { 256, 8, 9, 5, 0 },
/*
* These are the new chips with large page size. The pagesize and the
* erasesize is determined from the extended id bytes
*/
# define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
# define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
/* 512 Megabit */
[0xa2] = { 64, 8, 0, 0, LP_OPTIONS },
[0xf2] = { 64, 8, 0, 0, LP_OPTIONS },
[0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 },
[0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 },
/* 1 Gigabit */
[0xa1] = { 128, 8, 0, 0, LP_OPTIONS },
[0xf1] = { 128, 8, 0, 0, LP_OPTIONS },
[0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 },
[0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 },
/* 2 Gigabit */
[0xaa] = { 256, 8, 0, 0, LP_OPTIONS },
[0xda] = { 256, 8, 0, 0, LP_OPTIONS },
[0xba] = { 256, 16, 0, 0, LP_OPTIONS16 },
[0xca] = { 256, 16, 0, 0, LP_OPTIONS16 },
/* 4 Gigabit */
[0xac] = { 512, 8, 0, 0, LP_OPTIONS },
[0xdc] = { 512, 8, 0, 0, LP_OPTIONS },
[0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 },
[0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 },
/* 8 Gigabit */
[0xa3] = { 1024, 8, 0, 0, LP_OPTIONS },
[0xd3] = { 1024, 8, 0, 0, LP_OPTIONS },
[0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
[0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
/* 16 Gigabit */
[0xa5] = { 2048, 8, 0, 0, LP_OPTIONS },
[0xd5] = { 2048, 8, 0, 0, LP_OPTIONS },
[0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
[0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
};
static void nand_reset(struct nand_flash_s *s)
{
s->cmd = NAND_CMD_READ0;
s->addr = 0;
s->addrlen = 0;
s->iolen = 0;
s->offset = 0;
s->status &= NAND_IOSTATUS_UNPROTCT;
}
static void nand_command(struct nand_flash_s *s)
{
switch (s->cmd) {
case NAND_CMD_READ0:
s->iolen = 0;
break;
case NAND_CMD_READID:
s->io[0] = s->manf_id;
s->io[1] = s->chip_id;
s->io[2] = 'Q'; /* Don't-care byte (often 0xa5) */
if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)
s->io[3] = 0x15; /* Page Size, Block Size, Spare Size.. */
else
s->io[3] = 0xc0; /* Multi-plane */
s->ioaddr = s->io;
s->iolen = 4;
break;
case NAND_CMD_RANDOMREAD2:
case NAND_CMD_NOSERIALREAD2:
if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
break;
s->blk_load(s, s->addr, s->addr & ((1 << s->addr_shift) - 1));
break;
case NAND_CMD_RESET:
nand_reset(s);
break;
case NAND_CMD_PAGEPROGRAM1:
s->ioaddr = s->io;
s->iolen = 0;
break;
case NAND_CMD_PAGEPROGRAM2:
if (s->wp) {
s->blk_write(s);
}
break;
case NAND_CMD_BLOCKERASE1:
break;
case NAND_CMD_BLOCKERASE2:
if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)
s->addr <<= 16;
else
s->addr <<= 8;
if (s->wp) {
s->blk_erase(s);
}
break;
case NAND_CMD_READSTATUS:
s->io[0] = s->status;
s->ioaddr = s->io;
s->iolen = 1;
break;
default:
printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd);
}
}
static void nand_save(QEMUFile *f, void *opaque)
{
struct nand_flash_s *s = (struct nand_flash_s *) opaque;
qemu_put_byte(f, s->cle);
qemu_put_byte(f, s->ale);
qemu_put_byte(f, s->ce);
qemu_put_byte(f, s->wp);
qemu_put_byte(f, s->gnd);
qemu_put_buffer(f, s->io, sizeof(s->io));
qemu_put_be32(f, s->ioaddr - s->io);
qemu_put_be32(f, s->iolen);
qemu_put_be32s(f, &s->cmd);
qemu_put_be32s(f, &s->addr);
qemu_put_be32(f, s->addrlen);
qemu_put_be32(f, s->status);
qemu_put_be32(f, s->offset);
/* XXX: do we want to save s->storage too? */
}
static int nand_load(QEMUFile *f, void *opaque, int version_id)
{
struct nand_flash_s *s = (struct nand_flash_s *) opaque;
s->cle = qemu_get_byte(f);
s->ale = qemu_get_byte(f);
s->ce = qemu_get_byte(f);
s->wp = qemu_get_byte(f);
s->gnd = qemu_get_byte(f);
qemu_get_buffer(f, s->io, sizeof(s->io));
s->ioaddr = s->io + qemu_get_be32(f);
s->iolen = qemu_get_be32(f);
if (s->ioaddr >= s->io + sizeof(s->io) || s->ioaddr < s->io)
return -EINVAL;
qemu_get_be32s(f, &s->cmd);
qemu_get_be32s(f, &s->addr);
s->addrlen = qemu_get_be32(f);
s->status = qemu_get_be32(f);
s->offset = qemu_get_be32(f);
return 0;
}
/*
* Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
* outputs are R/B and eight I/O pins.
*
* CE, WP and R/B are active low.
*/
void nand_setpins(struct nand_flash_s *s,
int cle, int ale, int ce, int wp, int gnd)
{
s->cle = cle;
s->ale = ale;
s->ce = ce;
s->wp = wp;
s->gnd = gnd;
if (wp)
s->status |= NAND_IOSTATUS_UNPROTCT;
else
s->status &= ~NAND_IOSTATUS_UNPROTCT;
}
void nand_getpins(struct nand_flash_s *s, int *rb)
{
*rb = 1;
}
void nand_setio(struct nand_flash_s *s, uint8_t value)
{
if (!s->ce && s->cle) {
if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
return;
if (value == NAND_CMD_RANDOMREAD1) {
s->addr &= ~((1 << s->addr_shift) - 1);
s->addrlen = 0;
return;
}
}
if (value == NAND_CMD_READ0)
s->offset = 0;
else if (value == NAND_CMD_READ1) {
s->offset = 0x100;
value = NAND_CMD_READ0;
}
else if (value == NAND_CMD_READ2) {
s->offset = 1 << s->page_shift;
value = NAND_CMD_READ0;
}
s->cmd = value;
if (s->cmd == NAND_CMD_READSTATUS ||
s->cmd == NAND_CMD_PAGEPROGRAM2 ||
s->cmd == NAND_CMD_BLOCKERASE1 ||
s->cmd == NAND_CMD_BLOCKERASE2 ||
s->cmd == NAND_CMD_NOSERIALREAD2 ||
s->cmd == NAND_CMD_RANDOMREAD2 ||
s->cmd == NAND_CMD_RESET)
nand_command(s);
if (s->cmd != NAND_CMD_RANDOMREAD2) {
s->addrlen = 0;
s->addr = 0;
}
}
if (s->ale) {
s->addr |= value << (s->addrlen * 8);
s->addrlen ++;
if (s->addrlen == 1 && s->cmd == NAND_CMD_READID)
nand_command(s);
if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
s->addrlen == 3 && (
s->cmd == NAND_CMD_READ0 ||
s->cmd == NAND_CMD_PAGEPROGRAM1))
nand_command(s);
if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
s->addrlen == 4 && (
s->cmd == NAND_CMD_READ0 ||
s->cmd == NAND_CMD_PAGEPROGRAM1))
nand_command(s);
}
if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift))
s->io[s->iolen ++] = value;
} else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
if ((s->addr & ((1 << s->addr_shift) - 1)) <
(1 << s->page_shift) + (1 << s->oob_shift)) {
s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] = value;
s->addr ++;
}
}
}
uint8_t nand_getio(struct nand_flash_s *s)
{
int offset;
/* Allow sequential reading */
if (!s->iolen && s->cmd == NAND_CMD_READ0) {
offset = (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
s->offset = 0;
s->blk_load(s, s->addr, offset);
if (s->gnd)
s->iolen = (1 << s->page_shift) - offset;
else
s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
}
if (s->ce || s->iolen <= 0)
return 0;
s->iolen --;
return *(s->ioaddr ++);
}
struct nand_flash_s *nand_init(int manf_id, int chip_id)
{
int pagesize;
struct nand_flash_s *s;
int index;
if (nand_flash_ids[chip_id].size == 0) {
cpu_abort(cpu_single_env, "%s: Unsupported NAND chip ID.\n",
__FUNCTION__);
}
s = (struct nand_flash_s *) qemu_mallocz(sizeof(struct nand_flash_s));
index = drive_get_index(IF_MTD, 0, 0);
if (index != -1)
s->bdrv = drives_table[index].bdrv;
s->manf_id = manf_id;
s->chip_id = chip_id;
s->size = nand_flash_ids[s->chip_id].size << 20;
if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
s->page_shift = 11;
s->erase_shift = 6;
} else {
s->page_shift = nand_flash_ids[s->chip_id].page_shift;
s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
}
switch (1 << s->page_shift) {
case 256:
nand_init_256(s);
break;
case 512:
nand_init_512(s);
break;
case 2048:
nand_init_2048(s);
break;
default:
cpu_abort(cpu_single_env, "%s: Unsupported NAND block size.\n",
__FUNCTION__);
}
pagesize = 1 << s->oob_shift;
s->mem_oob = 1;
if (s->bdrv && bdrv_getlength(s->bdrv) >=
(s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
pagesize = 0;
s->mem_oob = 0;
}
if (!s->bdrv)
pagesize += 1 << s->page_shift;
if (pagesize)
s->storage = (uint8_t *) memset(qemu_malloc(s->pages * pagesize),
0xff, s->pages * pagesize);
register_savevm("nand", -1, 0, nand_save, nand_load, s);
return s;
}
void nand_done(struct nand_flash_s *s)
{
if (s->bdrv) {
bdrv_close(s->bdrv);
bdrv_delete(s->bdrv);
}
if (!s->bdrv || s->mem_oob)
free(s->storage);
free(s);
}
#else
/* Program a single page */
static void glue(nand_blk_write_, PAGE_SIZE)(struct nand_flash_s *s)
{
uint32_t off, page, sector, soff;
uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
if (PAGE(s->addr) >= s->pages)
return;
if (!s->bdrv) {
memcpy(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
s->offset, s->io, s->iolen);
} else if (s->mem_oob) {
sector = SECTOR(s->addr);
off = (s->addr & PAGE_MASK) + s->offset;
soff = SECTOR_OFFSET(s->addr);
if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS) == -1) {
printf("%s: read error in sector %i\n", __FUNCTION__, sector);
return;
}
memcpy(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
if (off + s->iolen > PAGE_SIZE) {
page = PAGE(s->addr);
memcpy(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
}
if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS) == -1)
printf("%s: write error in sector %i\n", __FUNCTION__, sector);
} else {
off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
sector = off >> 9;
soff = off & 0x1ff;
if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) == -1) {
printf("%s: read error in sector %i\n", __FUNCTION__, sector);
return;
}
memcpy(iobuf + soff, s->io, s->iolen);
if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) == -1)
printf("%s: write error in sector %i\n", __FUNCTION__, sector);
}
s->offset = 0;
}
/* Erase a single block */
static void glue(nand_blk_erase_, PAGE_SIZE)(struct nand_flash_s *s)
{
uint32_t i, page, addr;
uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
if (PAGE(addr) >= s->pages)
return;
if (!s->bdrv) {
memset(s->storage + PAGE_START(addr),
0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
} else if (s->mem_oob) {
memset(s->storage + (PAGE(addr) << OOB_SHIFT),
0xff, OOB_SIZE << s->erase_shift);
i = SECTOR(addr);
page = SECTOR(addr + (ADDR_SHIFT + s->erase_shift));
for (; i < page; i ++)
if (bdrv_write(s->bdrv, i, iobuf, 1) == -1)
printf("%s: write error in sector %i\n", __FUNCTION__, i);
} else {
addr = PAGE_START(addr);
page = addr >> 9;
if (bdrv_read(s->bdrv, page, iobuf, 1) == -1)
printf("%s: read error in sector %i\n", __FUNCTION__, page);
memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
if (bdrv_write(s->bdrv, page, iobuf, 1) == -1)
printf("%s: write error in sector %i\n", __FUNCTION__, page);
memset(iobuf, 0xff, 0x200);
i = (addr & ~0x1ff) + 0x200;
for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
i < addr; i += 0x200)
if (bdrv_write(s->bdrv, i >> 9, iobuf, 1) == -1)
printf("%s: write error in sector %i\n", __FUNCTION__, i >> 9);
page = i >> 9;
if (bdrv_read(s->bdrv, page, iobuf, 1) == -1)
printf("%s: read error in sector %i\n", __FUNCTION__, page);
memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
if (bdrv_write(s->bdrv, page, iobuf, 1) == -1)
printf("%s: write error in sector %i\n", __FUNCTION__, page);
}
}
static void glue(nand_blk_load_, PAGE_SIZE)(struct nand_flash_s *s,
uint32_t addr, int offset)
{
if (PAGE(addr) >= s->pages)
return;
if (s->bdrv) {
if (s->mem_oob) {
if (bdrv_read(s->bdrv, SECTOR(addr), s->io, PAGE_SECTORS) == -1)
printf("%s: read error in sector %i\n",
__FUNCTION__, SECTOR(addr));
memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
s->storage + (PAGE(s->addr) << OOB_SHIFT),
OOB_SIZE);
s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
} else {
if (bdrv_read(s->bdrv, PAGE_START(addr) >> 9,
s->io, (PAGE_SECTORS + 2)) == -1)
printf("%s: read error in sector %i\n",
__FUNCTION__, PAGE_START(addr) >> 9);
s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
}
} else {
memcpy(s->io, s->storage + PAGE_START(s->addr) +
offset, PAGE_SIZE + OOB_SIZE - offset);
s->ioaddr = s->io;
}
s->addr &= PAGE_SIZE - 1;
s->addr += PAGE_SIZE;
}
static void glue(nand_init_, PAGE_SIZE)(struct nand_flash_s *s)
{
s->oob_shift = PAGE_SHIFT - 5;
s->pages = s->size >> PAGE_SHIFT;
s->addr_shift = ADDR_SHIFT;
s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
}
# undef PAGE_SIZE
# undef PAGE_SHIFT
# undef PAGE_SECTORS
# undef ADDR_SHIFT
#endif /* NAND_IO */