ne2000.c
24.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
/*
* QEMU NE2000 emulation
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "pci.h"
#include "pc.h"
#include "net.h"
/* debug NE2000 card */
//#define DEBUG_NE2000
#define MAX_ETH_FRAME_SIZE 1514
#define E8390_CMD 0x00 /* The command register (for all pages) */
/* Page 0 register offsets. */
#define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
#define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
#define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
#define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
#define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
#define EN0_TSR 0x04 /* Transmit status reg RD */
#define EN0_TPSR 0x04 /* Transmit starting page WR */
#define EN0_NCR 0x05 /* Number of collision reg RD */
#define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
#define EN0_FIFO 0x06 /* FIFO RD */
#define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
#define EN0_ISR 0x07 /* Interrupt status reg RD WR */
#define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
#define EN0_RSARLO 0x08 /* Remote start address reg 0 */
#define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
#define EN0_RSARHI 0x09 /* Remote start address reg 1 */
#define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
#define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
#define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
#define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
#define EN0_RSR 0x0c /* rx status reg RD */
#define EN0_RXCR 0x0c /* RX configuration reg WR */
#define EN0_TXCR 0x0d /* TX configuration reg WR */
#define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
#define EN0_DCFG 0x0e /* Data configuration reg WR */
#define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
#define EN0_IMR 0x0f /* Interrupt mask reg WR */
#define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
#define EN1_PHYS 0x11
#define EN1_CURPAG 0x17
#define EN1_MULT 0x18
#define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
#define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
#define EN3_CONFIG0 0x33
#define EN3_CONFIG1 0x34
#define EN3_CONFIG2 0x35
#define EN3_CONFIG3 0x36
/* Register accessed at EN_CMD, the 8390 base addr. */
#define E8390_STOP 0x01 /* Stop and reset the chip */
#define E8390_START 0x02 /* Start the chip, clear reset */
#define E8390_TRANS 0x04 /* Transmit a frame */
#define E8390_RREAD 0x08 /* Remote read */
#define E8390_RWRITE 0x10 /* Remote write */
#define E8390_NODMA 0x20 /* Remote DMA */
#define E8390_PAGE0 0x00 /* Select page chip registers */
#define E8390_PAGE1 0x40 /* using the two high-order bits */
#define E8390_PAGE2 0x80 /* Page 3 is invalid. */
/* Bits in EN0_ISR - Interrupt status register */
#define ENISR_RX 0x01 /* Receiver, no error */
#define ENISR_TX 0x02 /* Transmitter, no error */
#define ENISR_RX_ERR 0x04 /* Receiver, with error */
#define ENISR_TX_ERR 0x08 /* Transmitter, with error */
#define ENISR_OVER 0x10 /* Receiver overwrote the ring */
#define ENISR_COUNTERS 0x20 /* Counters need emptying */
#define ENISR_RDC 0x40 /* remote dma complete */
#define ENISR_RESET 0x80 /* Reset completed */
#define ENISR_ALL 0x3f /* Interrupts we will enable */
/* Bits in received packet status byte and EN0_RSR*/
#define ENRSR_RXOK 0x01 /* Received a good packet */
#define ENRSR_CRC 0x02 /* CRC error */
#define ENRSR_FAE 0x04 /* frame alignment error */
#define ENRSR_FO 0x08 /* FIFO overrun */
#define ENRSR_MPA 0x10 /* missed pkt */
#define ENRSR_PHY 0x20 /* physical/multicast address */
#define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
#define ENRSR_DEF 0x80 /* deferring */
/* Transmitted packet status, EN0_TSR. */
#define ENTSR_PTX 0x01 /* Packet transmitted without error */
#define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
#define ENTSR_COL 0x04 /* The transmit collided at least once. */
#define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
#define ENTSR_CRS 0x10 /* The carrier sense was lost. */
#define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
#define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
#define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
#define NE2000_PMEM_SIZE (32*1024)
#define NE2000_PMEM_START (16*1024)
#define NE2000_PMEM_END (NE2000_PMEM_SIZE+NE2000_PMEM_START)
#define NE2000_MEM_SIZE NE2000_PMEM_END
typedef struct NE2000State {
uint8_t cmd;
uint32_t start;
uint32_t stop;
uint8_t boundary;
uint8_t tsr;
uint8_t tpsr;
uint16_t tcnt;
uint16_t rcnt;
uint32_t rsar;
uint8_t rsr;
uint8_t rxcr;
uint8_t isr;
uint8_t dcfg;
uint8_t imr;
uint8_t phys[6]; /* mac address */
uint8_t curpag;
uint8_t mult[8]; /* multicast mask array */
qemu_irq irq;
int isa_io_base;
PCIDevice *pci_dev;
VLANClientState *vc;
uint8_t macaddr[6];
uint8_t mem[NE2000_MEM_SIZE];
} NE2000State;
static void ne2000_reset(NE2000State *s)
{
int i;
s->isr = ENISR_RESET;
memcpy(s->mem, s->macaddr, 6);
s->mem[14] = 0x57;
s->mem[15] = 0x57;
/* duplicate prom data */
for(i = 15;i >= 0; i--) {
s->mem[2 * i] = s->mem[i];
s->mem[2 * i + 1] = s->mem[i];
}
}
static void ne2000_update_irq(NE2000State *s)
{
int isr;
isr = (s->isr & s->imr) & 0x7f;
#if defined(DEBUG_NE2000)
printf("NE2000: Set IRQ to %d (%02x %02x)\n",
isr ? 1 : 0, s->isr, s->imr);
#endif
qemu_set_irq(s->irq, (isr != 0));
}
#define POLYNOMIAL 0x04c11db6
/* From FreeBSD */
/* XXX: optimize */
static int compute_mcast_idx(const uint8_t *ep)
{
uint32_t crc;
int carry, i, j;
uint8_t b;
crc = 0xffffffff;
for (i = 0; i < 6; i++) {
b = *ep++;
for (j = 0; j < 8; j++) {
carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
crc <<= 1;
b >>= 1;
if (carry)
crc = ((crc ^ POLYNOMIAL) | carry);
}
}
return (crc >> 26);
}
static int ne2000_buffer_full(NE2000State *s)
{
int avail, index, boundary;
index = s->curpag << 8;
boundary = s->boundary << 8;
if (index < boundary)
avail = boundary - index;
else
avail = (s->stop - s->start) - (index - boundary);
if (avail < (MAX_ETH_FRAME_SIZE + 4))
return 1;
return 0;
}
static int ne2000_can_receive(void *opaque)
{
NE2000State *s = opaque;
if (s->cmd & E8390_STOP)
return 1;
return !ne2000_buffer_full(s);
}
#define MIN_BUF_SIZE 60
static void ne2000_receive(void *opaque, const uint8_t *buf, int size)
{
NE2000State *s = opaque;
uint8_t *p;
unsigned int total_len, next, avail, len, index, mcast_idx;
uint8_t buf1[60];
static const uint8_t broadcast_macaddr[6] =
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
#if defined(DEBUG_NE2000)
printf("NE2000: received len=%d\n", size);
#endif
if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
return;
/* XXX: check this */
if (s->rxcr & 0x10) {
/* promiscuous: receive all */
} else {
if (!memcmp(buf, broadcast_macaddr, 6)) {
/* broadcast address */
if (!(s->rxcr & 0x04))
return;
} else if (buf[0] & 0x01) {
/* multicast */
if (!(s->rxcr & 0x08))
return;
mcast_idx = compute_mcast_idx(buf);
if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
return;
} else if (s->mem[0] == buf[0] &&
s->mem[2] == buf[1] &&
s->mem[4] == buf[2] &&
s->mem[6] == buf[3] &&
s->mem[8] == buf[4] &&
s->mem[10] == buf[5]) {
/* match */
} else {
return;
}
}
/* if too small buffer, then expand it */
if (size < MIN_BUF_SIZE) {
memcpy(buf1, buf, size);
memset(buf1 + size, 0, MIN_BUF_SIZE - size);
buf = buf1;
size = MIN_BUF_SIZE;
}
index = s->curpag << 8;
/* 4 bytes for header */
total_len = size + 4;
/* address for next packet (4 bytes for CRC) */
next = index + ((total_len + 4 + 255) & ~0xff);
if (next >= s->stop)
next -= (s->stop - s->start);
/* prepare packet header */
p = s->mem + index;
s->rsr = ENRSR_RXOK; /* receive status */
/* XXX: check this */
if (buf[0] & 0x01)
s->rsr |= ENRSR_PHY;
p[0] = s->rsr;
p[1] = next >> 8;
p[2] = total_len;
p[3] = total_len >> 8;
index += 4;
/* write packet data */
while (size > 0) {
if (index <= s->stop)
avail = s->stop - index;
else
avail = 0;
len = size;
if (len > avail)
len = avail;
memcpy(s->mem + index, buf, len);
buf += len;
index += len;
if (index == s->stop)
index = s->start;
size -= len;
}
s->curpag = next >> 8;
/* now we can signal we have received something */
s->isr |= ENISR_RX;
ne2000_update_irq(s);
}
static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
{
NE2000State *s = opaque;
int offset, page, index;
addr &= 0xf;
#ifdef DEBUG_NE2000
printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
#endif
if (addr == E8390_CMD) {
/* control register */
s->cmd = val;
if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
s->isr &= ~ENISR_RESET;
/* test specific case: zero length transfer */
if ((val & (E8390_RREAD | E8390_RWRITE)) &&
s->rcnt == 0) {
s->isr |= ENISR_RDC;
ne2000_update_irq(s);
}
if (val & E8390_TRANS) {
index = (s->tpsr << 8);
/* XXX: next 2 lines are a hack to make netware 3.11 work */
if (index >= NE2000_PMEM_END)
index -= NE2000_PMEM_SIZE;
/* fail safe: check range on the transmitted length */
if (index + s->tcnt <= NE2000_PMEM_END) {
qemu_send_packet(s->vc, s->mem + index, s->tcnt);
}
/* signal end of transfer */
s->tsr = ENTSR_PTX;
s->isr |= ENISR_TX;
s->cmd &= ~E8390_TRANS;
ne2000_update_irq(s);
}
}
} else {
page = s->cmd >> 6;
offset = addr | (page << 4);
switch(offset) {
case EN0_STARTPG:
s->start = val << 8;
break;
case EN0_STOPPG:
s->stop = val << 8;
break;
case EN0_BOUNDARY:
s->boundary = val;
break;
case EN0_IMR:
s->imr = val;
ne2000_update_irq(s);
break;
case EN0_TPSR:
s->tpsr = val;
break;
case EN0_TCNTLO:
s->tcnt = (s->tcnt & 0xff00) | val;
break;
case EN0_TCNTHI:
s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
break;
case EN0_RSARLO:
s->rsar = (s->rsar & 0xff00) | val;
break;
case EN0_RSARHI:
s->rsar = (s->rsar & 0x00ff) | (val << 8);
break;
case EN0_RCNTLO:
s->rcnt = (s->rcnt & 0xff00) | val;
break;
case EN0_RCNTHI:
s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
break;
case EN0_RXCR:
s->rxcr = val;
break;
case EN0_DCFG:
s->dcfg = val;
break;
case EN0_ISR:
s->isr &= ~(val & 0x7f);
ne2000_update_irq(s);
break;
case EN1_PHYS ... EN1_PHYS + 5:
s->phys[offset - EN1_PHYS] = val;
break;
case EN1_CURPAG:
s->curpag = val;
break;
case EN1_MULT ... EN1_MULT + 7:
s->mult[offset - EN1_MULT] = val;
break;
}
}
}
static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
{
NE2000State *s = opaque;
int offset, page, ret;
addr &= 0xf;
if (addr == E8390_CMD) {
ret = s->cmd;
} else {
page = s->cmd >> 6;
offset = addr | (page << 4);
switch(offset) {
case EN0_TSR:
ret = s->tsr;
break;
case EN0_BOUNDARY:
ret = s->boundary;
break;
case EN0_ISR:
ret = s->isr;
break;
case EN0_RSARLO:
ret = s->rsar & 0x00ff;
break;
case EN0_RSARHI:
ret = s->rsar >> 8;
break;
case EN1_PHYS ... EN1_PHYS + 5:
ret = s->phys[offset - EN1_PHYS];
break;
case EN1_CURPAG:
ret = s->curpag;
break;
case EN1_MULT ... EN1_MULT + 7:
ret = s->mult[offset - EN1_MULT];
break;
case EN0_RSR:
ret = s->rsr;
break;
case EN2_STARTPG:
ret = s->start >> 8;
break;
case EN2_STOPPG:
ret = s->stop >> 8;
break;
case EN0_RTL8029ID0:
ret = 0x50;
break;
case EN0_RTL8029ID1:
ret = 0x43;
break;
case EN3_CONFIG0:
ret = 0; /* 10baseT media */
break;
case EN3_CONFIG2:
ret = 0x40; /* 10baseT active */
break;
case EN3_CONFIG3:
ret = 0x40; /* Full duplex */
break;
default:
ret = 0x00;
break;
}
}
#ifdef DEBUG_NE2000
printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
#endif
return ret;
}
static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
uint32_t val)
{
if (addr < 32 ||
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
s->mem[addr] = val;
}
}
static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
uint32_t val)
{
addr &= ~1; /* XXX: check exact behaviour if not even */
if (addr < 32 ||
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
*(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
}
}
static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
uint32_t val)
{
addr &= ~1; /* XXX: check exact behaviour if not even */
if (addr < 32 ||
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
}
}
static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
{
if (addr < 32 ||
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
return s->mem[addr];
} else {
return 0xff;
}
}
static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
{
addr &= ~1; /* XXX: check exact behaviour if not even */
if (addr < 32 ||
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
return le16_to_cpu(*(uint16_t *)(s->mem + addr));
} else {
return 0xffff;
}
}
static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
{
addr &= ~1; /* XXX: check exact behaviour if not even */
if (addr < 32 ||
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
return le32_to_cpupu((uint32_t *)(s->mem + addr));
} else {
return 0xffffffff;
}
}
static inline void ne2000_dma_update(NE2000State *s, int len)
{
s->rsar += len;
/* wrap */
/* XXX: check what to do if rsar > stop */
if (s->rsar == s->stop)
s->rsar = s->start;
if (s->rcnt <= len) {
s->rcnt = 0;
/* signal end of transfer */
s->isr |= ENISR_RDC;
ne2000_update_irq(s);
} else {
s->rcnt -= len;
}
}
static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
{
NE2000State *s = opaque;
#ifdef DEBUG_NE2000
printf("NE2000: asic write val=0x%04x\n", val);
#endif
if (s->rcnt == 0)
return;
if (s->dcfg & 0x01) {
/* 16 bit access */
ne2000_mem_writew(s, s->rsar, val);
ne2000_dma_update(s, 2);
} else {
/* 8 bit access */
ne2000_mem_writeb(s, s->rsar, val);
ne2000_dma_update(s, 1);
}
}
static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
{
NE2000State *s = opaque;
int ret;
if (s->dcfg & 0x01) {
/* 16 bit access */
ret = ne2000_mem_readw(s, s->rsar);
ne2000_dma_update(s, 2);
} else {
/* 8 bit access */
ret = ne2000_mem_readb(s, s->rsar);
ne2000_dma_update(s, 1);
}
#ifdef DEBUG_NE2000
printf("NE2000: asic read val=0x%04x\n", ret);
#endif
return ret;
}
static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
{
NE2000State *s = opaque;
#ifdef DEBUG_NE2000
printf("NE2000: asic writel val=0x%04x\n", val);
#endif
if (s->rcnt == 0)
return;
/* 32 bit access */
ne2000_mem_writel(s, s->rsar, val);
ne2000_dma_update(s, 4);
}
static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
{
NE2000State *s = opaque;
int ret;
/* 32 bit access */
ret = ne2000_mem_readl(s, s->rsar);
ne2000_dma_update(s, 4);
#ifdef DEBUG_NE2000
printf("NE2000: asic readl val=0x%04x\n", ret);
#endif
return ret;
}
static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
{
/* nothing to do (end of reset pulse) */
}
static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
{
NE2000State *s = opaque;
ne2000_reset(s);
return 0;
}
static void ne2000_save(QEMUFile* f,void* opaque)
{
NE2000State* s=(NE2000State*)opaque;
uint32_t tmp;
if (s->pci_dev)
pci_device_save(s->pci_dev, f);
qemu_put_8s(f, &s->rxcr);
qemu_put_8s(f, &s->cmd);
qemu_put_be32s(f, &s->start);
qemu_put_be32s(f, &s->stop);
qemu_put_8s(f, &s->boundary);
qemu_put_8s(f, &s->tsr);
qemu_put_8s(f, &s->tpsr);
qemu_put_be16s(f, &s->tcnt);
qemu_put_be16s(f, &s->rcnt);
qemu_put_be32s(f, &s->rsar);
qemu_put_8s(f, &s->rsr);
qemu_put_8s(f, &s->isr);
qemu_put_8s(f, &s->dcfg);
qemu_put_8s(f, &s->imr);
qemu_put_buffer(f, s->phys, 6);
qemu_put_8s(f, &s->curpag);
qemu_put_buffer(f, s->mult, 8);
tmp = 0;
qemu_put_be32s(f, &tmp); /* ignored, was irq */
qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
}
static int ne2000_load(QEMUFile* f,void* opaque,int version_id)
{
NE2000State* s=(NE2000State*)opaque;
int ret;
uint32_t tmp;
if (version_id > 3)
return -EINVAL;
if (s->pci_dev && version_id >= 3) {
ret = pci_device_load(s->pci_dev, f);
if (ret < 0)
return ret;
}
if (version_id >= 2) {
qemu_get_8s(f, &s->rxcr);
} else {
s->rxcr = 0x0c;
}
qemu_get_8s(f, &s->cmd);
qemu_get_be32s(f, &s->start);
qemu_get_be32s(f, &s->stop);
qemu_get_8s(f, &s->boundary);
qemu_get_8s(f, &s->tsr);
qemu_get_8s(f, &s->tpsr);
qemu_get_be16s(f, &s->tcnt);
qemu_get_be16s(f, &s->rcnt);
qemu_get_be32s(f, &s->rsar);
qemu_get_8s(f, &s->rsr);
qemu_get_8s(f, &s->isr);
qemu_get_8s(f, &s->dcfg);
qemu_get_8s(f, &s->imr);
qemu_get_buffer(f, s->phys, 6);
qemu_get_8s(f, &s->curpag);
qemu_get_buffer(f, s->mult, 8);
qemu_get_be32s(f, &tmp); /* ignored */
qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
return 0;
}
static void isa_ne2000_cleanup(VLANClientState *vc)
{
NE2000State *s = vc->opaque;
unregister_savevm("ne2000", s);
isa_unassign_ioport(s->isa_io_base, 16);
isa_unassign_ioport(s->isa_io_base + 0x10, 2);
isa_unassign_ioport(s->isa_io_base + 0x1f, 1);
qemu_free(s);
}
void isa_ne2000_init(int base, qemu_irq irq, NICInfo *nd)
{
NE2000State *s;
qemu_check_nic_model(nd, "ne2k_isa");
s = qemu_mallocz(sizeof(NE2000State));
register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
s->isa_io_base = base;
s->irq = irq;
memcpy(s->macaddr, nd->macaddr, 6);
ne2000_reset(s);
s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
ne2000_can_receive, ne2000_receive, NULL,
isa_ne2000_cleanup, s);
qemu_format_nic_info_str(s->vc, s->macaddr);
register_savevm("ne2000", -1, 2, ne2000_save, ne2000_load, s);
}
/***********************************************************/
/* PCI NE2000 definitions */
typedef struct PCINE2000State {
PCIDevice dev;
NE2000State ne2000;
} PCINE2000State;
static void ne2000_map(PCIDevice *pci_dev, int region_num,
uint32_t addr, uint32_t size, int type)
{
PCINE2000State *d = (PCINE2000State *)pci_dev;
NE2000State *s = &d->ne2000;
register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
}
static void ne2000_cleanup(VLANClientState *vc)
{
NE2000State *s = vc->opaque;
unregister_savevm("ne2000", s);
}
static void pci_ne2000_init(PCIDevice *pci_dev)
{
PCINE2000State *d = (PCINE2000State *)pci_dev;
NE2000State *s;
uint8_t *pci_conf;
pci_conf = d->dev.config;
pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REALTEK);
pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REALTEK_8029);
pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
pci_conf[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_NORMAL; // header_type
pci_conf[0x3d] = 1; // interrupt pin 0
pci_register_io_region(&d->dev, 0, 0x100,
PCI_ADDRESS_SPACE_IO, ne2000_map);
s = &d->ne2000;
s->irq = d->dev.irq[0];
s->pci_dev = (PCIDevice *)d;
qdev_get_macaddr(&d->dev.qdev, s->macaddr);
ne2000_reset(s);
s->vc = qdev_get_vlan_client(&d->dev.qdev,
ne2000_can_receive, ne2000_receive, NULL,
ne2000_cleanup, s);
qemu_format_nic_info_str(s->vc, s->macaddr);
register_savevm("ne2000", -1, 3, ne2000_save, ne2000_load, s);
}
static void ne2000_register_devices(void)
{
pci_qdev_register("ne2k_pci", sizeof(PCINE2000State), pci_ne2000_init);
}
device_init(ne2000_register_devices)