usb-musb.c 41.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
/*
 * "Inventra" High-speed Dual-Role Controller (MUSB-HDRC), Mentor Graphics,
 * USB2.0 OTG compliant core used in various chips.
 *
 * Copyright (C) 2008 Nokia Corporation
 * Written by Andrzej Zaborowski <andrew@openedhand.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 or
 * (at your option) version 3 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Only host-mode and non-DMA accesses are currently supported.
 */
#include "qemu-common.h"
#include "qemu-timer.h"
#include "usb.h"
#include "irq.h"

/* Common USB registers */
#define MUSB_HDRC_FADDR		0x00	/* 8-bit */
#define MUSB_HDRC_POWER		0x01	/* 8-bit */

#define MUSB_HDRC_INTRTX	0x02	/* 16-bit */
#define MUSB_HDRC_INTRRX	0x04
#define MUSB_HDRC_INTRTXE	0x06  
#define MUSB_HDRC_INTRRXE	0x08  
#define MUSB_HDRC_INTRUSB	0x0a	/* 8 bit */
#define MUSB_HDRC_INTRUSBE	0x0b	/* 8 bit */
#define MUSB_HDRC_FRAME		0x0c	/* 16-bit */
#define MUSB_HDRC_INDEX		0x0e	/* 8 bit */
#define MUSB_HDRC_TESTMODE	0x0f	/* 8 bit */

/* Per-EP registers in indexed mode */
#define MUSB_HDRC_EP_IDX	0x10	/* 8-bit */

/* EP FIFOs */
#define MUSB_HDRC_FIFO		0x20

/* Additional Control Registers */
#define	MUSB_HDRC_DEVCTL	0x60	/* 8 bit */

/* These are indexed */
#define MUSB_HDRC_TXFIFOSZ	0x62	/* 8 bit (see masks) */
#define MUSB_HDRC_RXFIFOSZ	0x63	/* 8 bit (see masks) */
#define MUSB_HDRC_TXFIFOADDR	0x64	/* 16 bit offset shifted right 3 */
#define MUSB_HDRC_RXFIFOADDR	0x66	/* 16 bit offset shifted right 3 */

/* Some more registers */
#define MUSB_HDRC_VCTRL		0x68	/* 8 bit */
#define MUSB_HDRC_HWVERS	0x6c	/* 8 bit */

/* Added in HDRC 1.9(?) & MHDRC 1.4 */
/* ULPI pass-through */
#define MUSB_HDRC_ULPI_VBUSCTL	0x70
#define MUSB_HDRC_ULPI_REGDATA	0x74
#define MUSB_HDRC_ULPI_REGADDR	0x75
#define MUSB_HDRC_ULPI_REGCTL	0x76

/* Extended config & PHY control */
#define MUSB_HDRC_ENDCOUNT	0x78	/* 8 bit */
#define MUSB_HDRC_DMARAMCFG	0x79	/* 8 bit */
#define MUSB_HDRC_PHYWAIT	0x7a	/* 8 bit */
#define MUSB_HDRC_PHYVPLEN	0x7b	/* 8 bit */
#define MUSB_HDRC_HS_EOF1	0x7c	/* 8 bit, units of 546.1 us */
#define MUSB_HDRC_FS_EOF1	0x7d	/* 8 bit, units of 533.3 ns */
#define MUSB_HDRC_LS_EOF1	0x7e	/* 8 bit, units of 1.067 us */

/* Per-EP BUSCTL registers */
#define MUSB_HDRC_BUSCTL	0x80

/* Per-EP registers in flat mode */
#define MUSB_HDRC_EP		0x100

/* offsets to registers in flat model */
#define MUSB_HDRC_TXMAXP	0x00	/* 16 bit apparently */
#define MUSB_HDRC_TXCSR		0x02	/* 16 bit apparently */
#define MUSB_HDRC_CSR0		MUSB_HDRC_TXCSR		/* re-used for EP0 */
#define MUSB_HDRC_RXMAXP	0x04	/* 16 bit apparently */
#define MUSB_HDRC_RXCSR		0x06	/* 16 bit apparently */
#define MUSB_HDRC_RXCOUNT	0x08	/* 16 bit apparently */
#define MUSB_HDRC_COUNT0	MUSB_HDRC_RXCOUNT	/* re-used for EP0 */
#define MUSB_HDRC_TXTYPE	0x0a	/* 8 bit apparently */
#define MUSB_HDRC_TYPE0		MUSB_HDRC_TXTYPE	/* re-used for EP0 */
#define MUSB_HDRC_TXINTERVAL	0x0b	/* 8 bit apparently */
#define MUSB_HDRC_NAKLIMIT0	MUSB_HDRC_TXINTERVAL	/* re-used for EP0 */
#define MUSB_HDRC_RXTYPE	0x0c	/* 8 bit apparently */
#define MUSB_HDRC_RXINTERVAL	0x0d	/* 8 bit apparently */
#define MUSB_HDRC_FIFOSIZE	0x0f	/* 8 bit apparently */
#define MUSB_HDRC_CONFIGDATA	MGC_O_HDRC_FIFOSIZE	/* re-used for EP0 */

/* "Bus control" registers */
#define MUSB_HDRC_TXFUNCADDR	0x00
#define MUSB_HDRC_TXHUBADDR	0x02
#define MUSB_HDRC_TXHUBPORT	0x03

#define MUSB_HDRC_RXFUNCADDR	0x04
#define MUSB_HDRC_RXHUBADDR	0x06
#define MUSB_HDRC_RXHUBPORT	0x07

/*
 * MUSBHDRC Register bit masks
 */

/* POWER */
#define MGC_M_POWER_ISOUPDATE		0x80 
#define	MGC_M_POWER_SOFTCONN		0x40
#define	MGC_M_POWER_HSENAB		0x20
#define	MGC_M_POWER_HSMODE		0x10
#define MGC_M_POWER_RESET		0x08
#define MGC_M_POWER_RESUME		0x04
#define MGC_M_POWER_SUSPENDM		0x02
#define MGC_M_POWER_ENSUSPEND		0x01

/* INTRUSB */
#define MGC_M_INTR_SUSPEND		0x01
#define MGC_M_INTR_RESUME		0x02
#define MGC_M_INTR_RESET		0x04
#define MGC_M_INTR_BABBLE		0x04
#define MGC_M_INTR_SOF			0x08 
#define MGC_M_INTR_CONNECT		0x10
#define MGC_M_INTR_DISCONNECT		0x20
#define MGC_M_INTR_SESSREQ		0x40
#define MGC_M_INTR_VBUSERROR		0x80	/* FOR SESSION END */
#define MGC_M_INTR_EP0			0x01	/* FOR EP0 INTERRUPT */

/* DEVCTL */
#define MGC_M_DEVCTL_BDEVICE		0x80   
#define MGC_M_DEVCTL_FSDEV		0x40
#define MGC_M_DEVCTL_LSDEV		0x20
#define MGC_M_DEVCTL_VBUS		0x18
#define MGC_S_DEVCTL_VBUS		3
#define MGC_M_DEVCTL_HM			0x04
#define MGC_M_DEVCTL_HR			0x02
#define MGC_M_DEVCTL_SESSION		0x01

/* TESTMODE */
#define MGC_M_TEST_FORCE_HOST		0x80
#define MGC_M_TEST_FIFO_ACCESS		0x40
#define MGC_M_TEST_FORCE_FS		0x20
#define MGC_M_TEST_FORCE_HS		0x10
#define MGC_M_TEST_PACKET		0x08
#define MGC_M_TEST_K			0x04
#define MGC_M_TEST_J			0x02
#define MGC_M_TEST_SE0_NAK		0x01

/* CSR0 */
#define	MGC_M_CSR0_FLUSHFIFO		0x0100
#define MGC_M_CSR0_TXPKTRDY		0x0002
#define MGC_M_CSR0_RXPKTRDY		0x0001

/* CSR0 in Peripheral mode */
#define MGC_M_CSR0_P_SVDSETUPEND	0x0080
#define MGC_M_CSR0_P_SVDRXPKTRDY	0x0040
#define MGC_M_CSR0_P_SENDSTALL		0x0020
#define MGC_M_CSR0_P_SETUPEND		0x0010
#define MGC_M_CSR0_P_DATAEND		0x0008
#define MGC_M_CSR0_P_SENTSTALL		0x0004

/* CSR0 in Host mode */
#define MGC_M_CSR0_H_NO_PING		0x0800
#define MGC_M_CSR0_H_WR_DATATOGGLE	0x0400	/* set to allow setting: */
#define MGC_M_CSR0_H_DATATOGGLE		0x0200	/* data toggle control */
#define	MGC_M_CSR0_H_NAKTIMEOUT		0x0080
#define MGC_M_CSR0_H_STATUSPKT		0x0040
#define MGC_M_CSR0_H_REQPKT		0x0020
#define MGC_M_CSR0_H_ERROR		0x0010
#define MGC_M_CSR0_H_SETUPPKT		0x0008
#define MGC_M_CSR0_H_RXSTALL		0x0004

/* CONFIGDATA */
#define MGC_M_CONFIGDATA_MPRXE		0x80	/* auto bulk pkt combining */
#define MGC_M_CONFIGDATA_MPTXE		0x40	/* auto bulk pkt splitting */
#define MGC_M_CONFIGDATA_BIGENDIAN	0x20
#define MGC_M_CONFIGDATA_HBRXE		0x10	/* HB-ISO for RX */
#define MGC_M_CONFIGDATA_HBTXE		0x08	/* HB-ISO for TX */
#define MGC_M_CONFIGDATA_DYNFIFO	0x04	/* dynamic FIFO sizing */
#define MGC_M_CONFIGDATA_SOFTCONE	0x02	/* SoftConnect */
#define MGC_M_CONFIGDATA_UTMIDW		0x01	/* Width, 0 => 8b, 1 => 16b */

/* TXCSR in Peripheral and Host mode */
#define MGC_M_TXCSR_AUTOSET		0x8000
#define MGC_M_TXCSR_ISO			0x4000
#define MGC_M_TXCSR_MODE		0x2000
#define MGC_M_TXCSR_DMAENAB		0x1000
#define MGC_M_TXCSR_FRCDATATOG		0x0800
#define MGC_M_TXCSR_DMAMODE		0x0400
#define MGC_M_TXCSR_CLRDATATOG		0x0040
#define MGC_M_TXCSR_FLUSHFIFO		0x0008
#define MGC_M_TXCSR_FIFONOTEMPTY	0x0002
#define MGC_M_TXCSR_TXPKTRDY		0x0001

/* TXCSR in Peripheral mode */
#define MGC_M_TXCSR_P_INCOMPTX		0x0080
#define MGC_M_TXCSR_P_SENTSTALL		0x0020
#define MGC_M_TXCSR_P_SENDSTALL		0x0010
#define MGC_M_TXCSR_P_UNDERRUN		0x0004

/* TXCSR in Host mode */
#define MGC_M_TXCSR_H_WR_DATATOGGLE	0x0200
#define MGC_M_TXCSR_H_DATATOGGLE	0x0100
#define MGC_M_TXCSR_H_NAKTIMEOUT	0x0080
#define MGC_M_TXCSR_H_RXSTALL		0x0020
#define MGC_M_TXCSR_H_ERROR		0x0004

/* RXCSR in Peripheral and Host mode */
#define MGC_M_RXCSR_AUTOCLEAR		0x8000
#define MGC_M_RXCSR_DMAENAB		0x2000
#define MGC_M_RXCSR_DISNYET		0x1000
#define MGC_M_RXCSR_DMAMODE		0x0800
#define MGC_M_RXCSR_INCOMPRX		0x0100
#define MGC_M_RXCSR_CLRDATATOG		0x0080
#define MGC_M_RXCSR_FLUSHFIFO		0x0010
#define MGC_M_RXCSR_DATAERROR		0x0008
#define MGC_M_RXCSR_FIFOFULL		0x0002
#define MGC_M_RXCSR_RXPKTRDY		0x0001

/* RXCSR in Peripheral mode */
#define MGC_M_RXCSR_P_ISO		0x4000
#define MGC_M_RXCSR_P_SENTSTALL		0x0040
#define MGC_M_RXCSR_P_SENDSTALL		0x0020
#define MGC_M_RXCSR_P_OVERRUN		0x0004

/* RXCSR in Host mode */
#define MGC_M_RXCSR_H_AUTOREQ		0x4000
#define MGC_M_RXCSR_H_WR_DATATOGGLE	0x0400
#define MGC_M_RXCSR_H_DATATOGGLE	0x0200
#define MGC_M_RXCSR_H_RXSTALL		0x0040
#define MGC_M_RXCSR_H_REQPKT		0x0020
#define MGC_M_RXCSR_H_ERROR		0x0004

/* HUBADDR */
#define MGC_M_HUBADDR_MULTI_TT		0x80

/* ULPI: Added in HDRC 1.9(?) & MHDRC 1.4 */
#define MGC_M_ULPI_VBCTL_USEEXTVBUSIND	0x02
#define MGC_M_ULPI_VBCTL_USEEXTVBUS	0x01
#define MGC_M_ULPI_REGCTL_INT_ENABLE	0x08
#define MGC_M_ULPI_REGCTL_READNOTWRITE	0x04
#define MGC_M_ULPI_REGCTL_COMPLETE	0x02
#define MGC_M_ULPI_REGCTL_REG		0x01

static void musb_attach(USBPort *port, USBDevice *dev);

struct musb_s {
    qemu_irq *irqs;
    USBPort port;

    int idx;
    uint8_t devctl;
    uint8_t power;
    uint8_t faddr;

    uint8_t intr;
    uint8_t mask;
    uint16_t tx_intr;
    uint16_t tx_mask;
    uint16_t rx_intr;
    uint16_t rx_mask;

    int setup_len;
    int session;

    uint32_t buf[0x2000];

    struct musb_ep_s {
        uint16_t faddr[2];
        uint8_t haddr[2];
        uint8_t hport[2];
        uint16_t csr[2];
        uint16_t maxp[2];
        uint16_t rxcount;
        uint8_t type[2];
        uint8_t interval[2];
        uint8_t config;
        uint8_t fifosize;
        int timeout[2];	/* Always in microframes */

        uint32_t *buf[2];
        int fifolen[2];
        int fifostart[2];
        int fifoaddr[2];
        USBPacket packey[2];
        int status[2];
        int ext_size[2];

        /* For callbacks' use */
        int epnum;
        int interrupt[2];
        struct musb_s *musb;
        USBCallback *delayed_cb[2];
        QEMUTimer *intv_timer[2];
        /* Duplicating the world since 2008!...  probably we should have 32
         * logical, single endpoints instead.  */
    } ep[16];
} *musb_init(qemu_irq *irqs)
{
    struct musb_s *s = qemu_mallocz(sizeof(*s));
    int i;

    s->irqs = irqs;

    s->faddr = 0x00;
    s->power = MGC_M_POWER_HSENAB;
    s->tx_intr = 0x0000;
    s->rx_intr = 0x0000;
    s->tx_mask = 0xffff;
    s->rx_mask = 0xffff;
    s->intr = 0x00;
    s->mask = 0x06;
    s->idx = 0;

    /* TODO: _DW */
    s->ep[0].config = MGC_M_CONFIGDATA_SOFTCONE | MGC_M_CONFIGDATA_DYNFIFO;
    for (i = 0; i < 16; i ++) {
        s->ep[i].fifosize = 64;
        s->ep[i].maxp[0] = 0x40;
        s->ep[i].maxp[1] = 0x40;
        s->ep[i].musb = s;
        s->ep[i].epnum = i;
    }

    qemu_register_usb_port(&s->port, s, 0, musb_attach);

    return s;
}

static void musb_vbus_set(struct musb_s *s, int level)
{
    if (level)
        s->devctl |= 3 << MGC_S_DEVCTL_VBUS;
    else
        s->devctl &= ~MGC_M_DEVCTL_VBUS;

    qemu_set_irq(s->irqs[musb_set_vbus], level);
}

static void musb_intr_set(struct musb_s *s, int line, int level)
{
    if (!level) {
        s->intr &= ~(1 << line);
        qemu_irq_lower(s->irqs[line]);
    } else if (s->mask & (1 << line)) {
        s->intr |= 1 << line;
        qemu_irq_raise(s->irqs[line]);
    }
}

static void musb_tx_intr_set(struct musb_s *s, int line, int level)
{
    if (!level) {
        s->tx_intr &= ~(1 << line);
        if (!s->tx_intr)
            qemu_irq_lower(s->irqs[musb_irq_tx]);
    } else if (s->tx_mask & (1 << line)) {
        s->tx_intr |= 1 << line;
        qemu_irq_raise(s->irqs[musb_irq_tx]);
    }
}

static void musb_rx_intr_set(struct musb_s *s, int line, int level)
{
    if (line) {
        if (!level) {
            s->rx_intr &= ~(1 << line);
            if (!s->rx_intr)
                qemu_irq_lower(s->irqs[musb_irq_rx]);
        } else if (s->rx_mask & (1 << line)) {
            s->rx_intr |= 1 << line;
            qemu_irq_raise(s->irqs[musb_irq_rx]);
        }
    } else
        musb_tx_intr_set(s, line, level);
}

uint32_t musb_core_intr_get(struct musb_s *s)
{
    return (s->rx_intr << 15) | s->tx_intr;
}

void musb_core_intr_clear(struct musb_s *s, uint32_t mask)
{
    if (s->rx_intr) {
        s->rx_intr &= mask >> 15;
        if (!s->rx_intr)
            qemu_irq_lower(s->irqs[musb_irq_rx]);
    }

    if (s->tx_intr) {
        s->tx_intr &= mask & 0xffff;
        if (!s->tx_intr)
            qemu_irq_lower(s->irqs[musb_irq_tx]);
    }
}

void musb_set_size(struct musb_s *s, int epnum, int size, int is_tx)
{
    s->ep[epnum].ext_size[!is_tx] = size;
    s->ep[epnum].fifostart[0] = 0;
    s->ep[epnum].fifostart[1] = 0;
    s->ep[epnum].fifolen[0] = 0;
    s->ep[epnum].fifolen[1] = 0;
}

static void musb_session_update(struct musb_s *s, int prev_dev, int prev_sess)
{
    int detect_prev = prev_dev && prev_sess;
    int detect = !!s->port.dev && s->session;

    if (detect && !detect_prev) {
        /* Let's skip the ID pin sense and VBUS sense formalities and
         * and signal a successful SRP directly.  This should work at least
         * for the Linux driver stack.  */
        musb_intr_set(s, musb_irq_connect, 1);

        if (s->port.dev->speed == USB_SPEED_LOW) {
            s->devctl &= ~MGC_M_DEVCTL_FSDEV;
            s->devctl |= MGC_M_DEVCTL_LSDEV;
        } else {
            s->devctl |= MGC_M_DEVCTL_FSDEV;
            s->devctl &= ~MGC_M_DEVCTL_LSDEV;
        }

        /* A-mode?  */
        s->devctl &= ~MGC_M_DEVCTL_BDEVICE;

        /* Host-mode bit?  */
        s->devctl |= MGC_M_DEVCTL_HM;
#if 1
        musb_vbus_set(s, 1);
#endif
    } else if (!detect && detect_prev) {
#if 1
        musb_vbus_set(s, 0);
#endif
    }
}

/* Attach or detach a device on our only port.  */
static void musb_attach(USBPort *port, USBDevice *dev)
{
    struct musb_s *s = (struct musb_s *) port->opaque;
    USBDevice *curr;

    port = &s->port;
    curr = port->dev;

    if (dev) {
        if (curr) {
            usb_attach(port, NULL);
            /* TODO: signal some interrupts */
        }

        musb_intr_set(s, musb_irq_vbus_request, 1);

        /* Send the attach message to device */
        usb_send_msg(dev, USB_MSG_ATTACH);
    } else if (curr) {
        /* Send the detach message */
        usb_send_msg(curr, USB_MSG_DETACH);

        musb_intr_set(s, musb_irq_disconnect, 1);
    }

    port->dev = dev;

    musb_session_update(s, !!curr, s->session);
}

static inline void musb_cb_tick0(void *opaque)
{
    struct musb_ep_s *ep = (struct musb_ep_s *) opaque;

    ep->delayed_cb[0](&ep->packey[0], opaque);
}

static inline void musb_cb_tick1(void *opaque)
{
    struct musb_ep_s *ep = (struct musb_ep_s *) opaque;

    ep->delayed_cb[1](&ep->packey[1], opaque);
}

#define musb_cb_tick	(dir ? musb_cb_tick1 : musb_cb_tick0)

static inline void musb_schedule_cb(USBPacket *packey, void *opaque, int dir)
{
    struct musb_ep_s *ep = (struct musb_ep_s *) opaque;
    int timeout = 0;

    if (ep->status[dir] == USB_RET_NAK)
        timeout = ep->timeout[dir];
    else if (ep->interrupt[dir])
        timeout = 8;
    else
        return musb_cb_tick(opaque);

    if (!ep->intv_timer[dir])
        ep->intv_timer[dir] = qemu_new_timer(vm_clock, musb_cb_tick, opaque);

    qemu_mod_timer(ep->intv_timer[dir], qemu_get_clock(vm_clock) +
                    muldiv64(timeout, ticks_per_sec, 8000));
}

static void musb_schedule0_cb(USBPacket *packey, void *opaque)
{
    return musb_schedule_cb(packey, opaque, 0);
}

static void musb_schedule1_cb(USBPacket *packey, void *opaque)
{
    return musb_schedule_cb(packey, opaque, 1);
}

static int musb_timeout(int ttype, int speed, int val)
{
#if 1
    return val << 3;
#endif

    switch (ttype) {
    case USB_ENDPOINT_XFER_CONTROL:
        if (val < 2)
            return 0;
        else if (speed == USB_SPEED_HIGH)
            return 1 << (val - 1);
        else
            return 8 << (val - 1);

    case USB_ENDPOINT_XFER_INT:
        if (speed == USB_SPEED_HIGH)
            if (val < 2)
                return 0;
            else
                return 1 << (val - 1);
        else
            return val << 3;

    case USB_ENDPOINT_XFER_BULK:
    case USB_ENDPOINT_XFER_ISOC:
        if (val < 2)
            return 0;
        else if (speed == USB_SPEED_HIGH)
            return 1 << (val - 1);
        else
            return 8 << (val - 1);
        /* TODO: what with low-speed Bulk and Isochronous?  */
    }

    cpu_abort(cpu_single_env, "bad interval\n");
}

static inline void musb_packet(struct musb_s *s, struct musb_ep_s *ep,
                int epnum, int pid, int len, USBCallback cb, int dir)
{
    int ret;
    int idx = epnum && dir;
    int ttype;

    /* ep->type[0,1] contains:
     * in bits 7:6 the speed (0 - invalid, 1 - high, 2 - full, 3 - slow)
     * in bits 5:4 the transfer type (BULK / INT)
     * in bits 3:0 the EP num
     */
    ttype = epnum ? (ep->type[idx] >> 4) & 3 : 0;

    ep->timeout[dir] = musb_timeout(ttype,
                    ep->type[idx] >> 6, ep->interval[idx]);
    ep->interrupt[dir] = ttype == USB_ENDPOINT_XFER_INT;
    ep->delayed_cb[dir] = cb;
    cb = dir ? musb_schedule1_cb : musb_schedule0_cb;

    ep->packey[dir].pid = pid;
    /* A wild guess on the FADDR semantics... */
    ep->packey[dir].devaddr = ep->faddr[idx];
    ep->packey[dir].devep = ep->type[idx] & 0xf;
    ep->packey[dir].data = (void *) ep->buf[idx];
    ep->packey[dir].len = len;
    ep->packey[dir].complete_cb = cb;
    ep->packey[dir].complete_opaque = ep;

    if (s->port.dev)
        ret = s->port.dev->handle_packet(s->port.dev, &ep->packey[dir]);
    else
        ret = USB_RET_NODEV;

    if (ret == USB_RET_ASYNC) {
        ep->status[dir] = len;
        return;
    }

    ep->status[dir] = ret;
    usb_packet_complete(&ep->packey[dir]);
}

static void musb_tx_packet_complete(USBPacket *packey, void *opaque)
{
    /* Unfortunately we can't use packey->devep because that's the remote
     * endpoint number and may be different than our local.  */
    struct musb_ep_s *ep = (struct musb_ep_s *) opaque;
    int epnum = ep->epnum;
    struct musb_s *s = ep->musb;

    ep->fifostart[0] = 0;
    ep->fifolen[0] = 0;
#ifdef CLEAR_NAK
    if (ep->status[0] != USB_RET_NAK) {
#endif
        if (epnum)
            ep->csr[0] &= ~(MGC_M_TXCSR_FIFONOTEMPTY | MGC_M_TXCSR_TXPKTRDY);
        else
            ep->csr[0] &= ~MGC_M_CSR0_TXPKTRDY;
#ifdef CLEAR_NAK
    }
#endif

    /* Clear all of the error bits first */
    if (epnum)
        ep->csr[0] &= ~(MGC_M_TXCSR_H_ERROR | MGC_M_TXCSR_H_RXSTALL |
                        MGC_M_TXCSR_H_NAKTIMEOUT);
    else
        ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL |
                        MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING);

    if (ep->status[0] == USB_RET_STALL) {
        /* Command not supported by target! */
        ep->status[0] = 0;

        if (epnum)
            ep->csr[0] |= MGC_M_TXCSR_H_RXSTALL;
        else
            ep->csr[0] |= MGC_M_CSR0_H_RXSTALL;
    }

    if (ep->status[0] == USB_RET_NAK) {
        ep->status[0] = 0;

        /* NAK timeouts are only generated in Bulk transfers and
         * Data-errors in Isochronous.  */
        if (ep->interrupt[0]) {
            return;
        }

        if (epnum)
            ep->csr[0] |= MGC_M_TXCSR_H_NAKTIMEOUT;
        else
            ep->csr[0] |= MGC_M_CSR0_H_NAKTIMEOUT;
    }

    if (ep->status[0] < 0) {
        if (ep->status[0] == USB_RET_BABBLE)
            musb_intr_set(s, musb_irq_rst_babble, 1);

        /* Pretend we've tried three times already and failed (in
         * case of USB_TOKEN_SETUP).  */
        if (epnum)
            ep->csr[0] |= MGC_M_TXCSR_H_ERROR;
        else
            ep->csr[0] |= MGC_M_CSR0_H_ERROR;

        musb_tx_intr_set(s, epnum, 1);
        return;
    }
    /* TODO: check len for over/underruns of an OUT packet?  */

#ifdef SETUPLEN_HACK
    if (!epnum && ep->packey[0].pid == USB_TOKEN_SETUP)
        s->setup_len = ep->packey[0].data[6];
#endif

    /* In DMA mode: if no error, assert DMA request for this EP,
     * and skip the interrupt.  */
    musb_tx_intr_set(s, epnum, 1);
}

static void musb_rx_packet_complete(USBPacket *packey, void *opaque)
{
    /* Unfortunately we can't use packey->devep because that's the remote
     * endpoint number and may be different than our local.  */
    struct musb_ep_s *ep = (struct musb_ep_s *) opaque;
    int epnum = ep->epnum;
    struct musb_s *s = ep->musb;

    ep->fifostart[1] = 0;
    ep->fifolen[1] = 0;

#ifdef CLEAR_NAK
    if (ep->status[1] != USB_RET_NAK) {
#endif
        ep->csr[1] &= ~MGC_M_RXCSR_H_REQPKT;
        if (!epnum)
            ep->csr[0] &= ~MGC_M_CSR0_H_REQPKT;
#ifdef CLEAR_NAK
    }
#endif

    /* Clear all of the imaginable error bits first */
    ep->csr[1] &= ~(MGC_M_RXCSR_H_ERROR | MGC_M_RXCSR_H_RXSTALL |
                    MGC_M_RXCSR_DATAERROR);
    if (!epnum)
        ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL |
                        MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING);

    if (ep->status[1] == USB_RET_STALL) {
        ep->status[1] = 0;
        packey->len = 0;

        ep->csr[1] |= MGC_M_RXCSR_H_RXSTALL;
        if (!epnum)
            ep->csr[0] |= MGC_M_CSR0_H_RXSTALL;
    }

    if (ep->status[1] == USB_RET_NAK) {
        ep->status[1] = 0;

        /* NAK timeouts are only generated in Bulk transfers and
         * Data-errors in Isochronous.  */
        if (ep->interrupt[1])
            return musb_packet(s, ep, epnum, USB_TOKEN_IN,
                            packey->len, musb_rx_packet_complete, 1);

        ep->csr[1] |= MGC_M_RXCSR_DATAERROR;
        if (!epnum)
            ep->csr[0] |= MGC_M_CSR0_H_NAKTIMEOUT;
    }

    if (ep->status[1] < 0) {
        if (ep->status[1] == USB_RET_BABBLE) {
            musb_intr_set(s, musb_irq_rst_babble, 1);
            return;
        }

        /* Pretend we've tried three times already and failed (in
         * case of a control transfer).  */
        ep->csr[1] |= MGC_M_RXCSR_H_ERROR;
        if (!epnum)
            ep->csr[0] |= MGC_M_CSR0_H_ERROR;

        musb_rx_intr_set(s, epnum, 1);
        return;
    }
    /* TODO: check len for over/underruns of an OUT packet?  */
    /* TODO: perhaps make use of e->ext_size[1] here.  */

    packey->len = ep->status[1];

    if (!(ep->csr[1] & (MGC_M_RXCSR_H_RXSTALL | MGC_M_RXCSR_DATAERROR))) {
        ep->csr[1] |= MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY;
        if (!epnum)
            ep->csr[0] |= MGC_M_CSR0_RXPKTRDY;

        ep->rxcount = packey->len; /* XXX: MIN(packey->len, ep->maxp[1]); */
        /* In DMA mode: assert DMA request for this EP */
    }

    /* Only if DMA has not been asserted */
    musb_rx_intr_set(s, epnum, 1);
}

static void musb_tx_rdy(struct musb_s *s, int epnum)
{
    struct musb_ep_s *ep = s->ep + epnum;
    int pid;
    int total, valid = 0;

    ep->fifostart[0] += ep->fifolen[0];
    ep->fifolen[0] = 0;

    /* XXX: how's the total size of the packet retrieved exactly in
     * the generic case?  */
    total = ep->maxp[0] & 0x3ff;

    if (ep->ext_size[0]) {
        total = ep->ext_size[0];
        ep->ext_size[0] = 0;
        valid = 1;
    }

    /* If the packet is not fully ready yet, wait for a next segment.  */
    if (epnum && (ep->fifostart[0] << 2) < total)
        return;

    if (!valid)
        total = ep->fifostart[0] << 2;

    pid = USB_TOKEN_OUT;
    if (!epnum && (ep->csr[0] & MGC_M_CSR0_H_SETUPPKT)) {
        pid = USB_TOKEN_SETUP;
        if (total != 8)
            printf("%s: illegal SETUPPKT length of %i bytes\n",
                            __FUNCTION__, total);
        /* Controller should retry SETUP packets three times on errors
         * but it doesn't make sense for us to do that.  */
    }

    return musb_packet(s, ep, epnum, pid,
                    total, musb_tx_packet_complete, 0);
}

static void musb_rx_req(struct musb_s *s, int epnum)
{
    struct musb_ep_s *ep = s->ep + epnum;
    int total;

    /* If we already have a packet, which didn't fit into the
     * 64 bytes of the FIFO, only move the FIFO start and return. (Obsolete) */
    if (ep->packey[1].pid == USB_TOKEN_IN && ep->status[1] >= 0 &&
                    (ep->fifostart[1] << 2) + ep->rxcount <
                    ep->packey[1].len) {
        ep->fifostart[1] += ep->rxcount >> 2;
        ep->fifolen[1] = 0;

        ep->rxcount = MIN(ep->packey[0].len - (ep->fifostart[1] << 2),
                        ep->maxp[1]);

        ep->csr[1] &= ~MGC_M_RXCSR_H_REQPKT;
        if (!epnum)
            ep->csr[0] &= ~MGC_M_CSR0_H_REQPKT;

        /* Clear all of the error bits first */
        ep->csr[1] &= ~(MGC_M_RXCSR_H_ERROR | MGC_M_RXCSR_H_RXSTALL |
                        MGC_M_RXCSR_DATAERROR);
        if (!epnum)
            ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL |
                            MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING);

        ep->csr[1] |= MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY;
        if (!epnum)
            ep->csr[0] |= MGC_M_CSR0_RXPKTRDY;
        musb_rx_intr_set(s, epnum, 1);
        return;
    }

    /* The driver sets maxp[1] to 64 or less because it knows the hardware
     * FIFO is this deep.  Bigger packets get split in
     * usb_generic_handle_packet but we can also do the splitting locally
     * for performance.  It turns out we can also have a bigger FIFO and
     * ignore the limit set in ep->maxp[1].  The Linux MUSB driver deals
     * OK with single packets of even 32KB and we avoid splitting, however
     * usb_msd.c sometimes sends a packet bigger than what Linux expects
     * (e.g. 8192 bytes instead of 4096) and we get an OVERRUN.  Splitting
     * hides this overrun from Linux.  Up to 4096 everything is fine
     * though.  Currently this is disabled.
     *
     * XXX: mind ep->fifosize.  */
    total = MIN(ep->maxp[1] & 0x3ff, sizeof(s->buf));

#ifdef SETUPLEN_HACK
    /* Why should *we* do that instead of Linux?  */
    if (!epnum) {
        if (ep->packey[0].devaddr == 2)
            total = MIN(s->setup_len, 8);
        else
            total = MIN(s->setup_len, 64);
        s->setup_len -= total;
    }
#endif

    return musb_packet(s, ep, epnum, USB_TOKEN_IN,
                    total, musb_rx_packet_complete, 1);
}

static void musb_ep_frame_cancel(struct musb_ep_s *ep, int dir)
{
    if (ep->intv_timer[dir])
        qemu_del_timer(ep->intv_timer[dir]);
}

/* Bus control */
static uint8_t musb_busctl_readb(void *opaque, int ep, int addr)
{
    struct musb_s *s = (struct musb_s *) opaque;

    switch (addr) {
    /* For USB2.0 HS hubs only */
    case MUSB_HDRC_TXHUBADDR:
        return s->ep[ep].haddr[0];
    case MUSB_HDRC_TXHUBPORT:
        return s->ep[ep].hport[0];
    case MUSB_HDRC_RXHUBADDR:
        return s->ep[ep].haddr[1];
    case MUSB_HDRC_RXHUBPORT:
        return s->ep[ep].hport[1];

    default:
        printf("%s: unknown register at %02x\n", __FUNCTION__, addr);
        return 0x00;
    };
}

static void musb_busctl_writeb(void *opaque, int ep, int addr, uint8_t value)
{
    struct musb_s *s = (struct musb_s *) opaque;

    switch (addr) {
    case MUSB_HDRC_TXHUBADDR:
        s->ep[ep].haddr[0] = value;
        break;
    case MUSB_HDRC_TXHUBPORT:
        s->ep[ep].hport[0] = value;
        break;
    case MUSB_HDRC_RXHUBADDR:
        s->ep[ep].haddr[1] = value;
        break;
    case MUSB_HDRC_RXHUBPORT:
        s->ep[ep].hport[1] = value;
        break;

    default:
        printf("%s: unknown register at %02x\n", __FUNCTION__, addr);
    };
}

static uint16_t musb_busctl_readh(void *opaque, int ep, int addr)
{
    struct musb_s *s = (struct musb_s *) opaque;

    switch (addr) {
    case MUSB_HDRC_TXFUNCADDR:
        return s->ep[ep].faddr[0];
    case MUSB_HDRC_RXFUNCADDR:
        return s->ep[ep].faddr[1];

    default:
        return musb_busctl_readb(s, ep, addr) |
                (musb_busctl_readb(s, ep, addr | 1) << 8);
    };
}

static void musb_busctl_writeh(void *opaque, int ep, int addr, uint16_t value)
{
    struct musb_s *s = (struct musb_s *) opaque;

    switch (addr) {
    case MUSB_HDRC_TXFUNCADDR:
        s->ep[ep].faddr[0] = value;
        break;
    case MUSB_HDRC_RXFUNCADDR:
        s->ep[ep].faddr[1] = value;
        break;

    default:
        musb_busctl_writeb(s, ep, addr, value & 0xff);
        musb_busctl_writeb(s, ep, addr | 1, value >> 8);
    };
}

/* Endpoint control */
static uint8_t musb_ep_readb(void *opaque, int ep, int addr)
{
    struct musb_s *s = (struct musb_s *) opaque;

    switch (addr) {
    case MUSB_HDRC_TXTYPE:
        return s->ep[ep].type[0];
    case MUSB_HDRC_TXINTERVAL:
        return s->ep[ep].interval[0];
    case MUSB_HDRC_RXTYPE:
        return s->ep[ep].type[1];
    case MUSB_HDRC_RXINTERVAL:
        return s->ep[ep].interval[1];
    case (MUSB_HDRC_FIFOSIZE & ~1):
        return 0x00;
    case MUSB_HDRC_FIFOSIZE:
        return ep ? s->ep[ep].fifosize : s->ep[ep].config;

    default:
        printf("%s: unknown register at %02x\n", __FUNCTION__, addr);
        return 0x00;
    };
}

static void musb_ep_writeb(void *opaque, int ep, int addr, uint8_t value)
{
    struct musb_s *s = (struct musb_s *) opaque;

    switch (addr) {
    case MUSB_HDRC_TXTYPE:
        s->ep[ep].type[0] = value;
        break;
    case MUSB_HDRC_TXINTERVAL:
        s->ep[ep].interval[0] = value;
        musb_ep_frame_cancel(&s->ep[ep], 0);
        break;
    case MUSB_HDRC_RXTYPE:
        s->ep[ep].type[1] = value;
        break;
    case MUSB_HDRC_RXINTERVAL:
        s->ep[ep].interval[1] = value;
        musb_ep_frame_cancel(&s->ep[ep], 1);
        break;
    case (MUSB_HDRC_FIFOSIZE & ~1):
        break;
    case MUSB_HDRC_FIFOSIZE:
        printf("%s: somebody messes with fifosize (now %i bytes)\n",
                        __FUNCTION__, value);
        s->ep[ep].fifosize = value;
        break;

    default:
        printf("%s: unknown register at %02x\n", __FUNCTION__, addr);
    };
}

static uint16_t musb_ep_readh(void *opaque, int ep, int addr)
{
    struct musb_s *s = (struct musb_s *) opaque;
    uint16_t ret;

    switch (addr) {
    case MUSB_HDRC_TXMAXP:
        return s->ep[ep].maxp[0];
    case MUSB_HDRC_TXCSR:
        return s->ep[ep].csr[0];
    case MUSB_HDRC_RXMAXP:
        return s->ep[ep].maxp[1];
    case MUSB_HDRC_RXCSR:
        ret = s->ep[ep].csr[1];

        /* TODO: This and other bits probably depend on
         * ep->csr[1] & MGC_M_RXCSR_AUTOCLEAR.  */
        if (s->ep[ep].csr[1] & MGC_M_RXCSR_AUTOCLEAR)
            s->ep[ep].csr[1] &= ~MGC_M_RXCSR_RXPKTRDY;

        return ret;
    case MUSB_HDRC_RXCOUNT:
        return s->ep[ep].rxcount;

    default:
        return musb_ep_readb(s, ep, addr) |
                (musb_ep_readb(s, ep, addr | 1) << 8);
    };
}

static void musb_ep_writeh(void *opaque, int ep, int addr, uint16_t value)
{
    struct musb_s *s = (struct musb_s *) opaque;

    switch (addr) {
    case MUSB_HDRC_TXMAXP:
        s->ep[ep].maxp[0] = value;
        break;
    case MUSB_HDRC_TXCSR:
        if (ep) {
            s->ep[ep].csr[0] &= value & 0xa6;
            s->ep[ep].csr[0] |= value & 0xff59;
        } else {
            s->ep[ep].csr[0] &= value & 0x85;
            s->ep[ep].csr[0] |= value & 0xf7a;
        }

        musb_ep_frame_cancel(&s->ep[ep], 0);

        if ((ep && (value & MGC_M_TXCSR_FLUSHFIFO)) ||
                        (!ep && (value & MGC_M_CSR0_FLUSHFIFO))) {
            s->ep[ep].fifolen[0] = 0;
            s->ep[ep].fifostart[0] = 0;
            if (ep)
                s->ep[ep].csr[0] &=
                        ~(MGC_M_TXCSR_FIFONOTEMPTY | MGC_M_TXCSR_TXPKTRDY);
            else
                s->ep[ep].csr[0] &=
                        ~(MGC_M_CSR0_TXPKTRDY | MGC_M_CSR0_RXPKTRDY);
        }
        if (
                        (ep &&
#ifdef CLEAR_NAK
                         (value & MGC_M_TXCSR_TXPKTRDY) &&
                         !(value & MGC_M_TXCSR_H_NAKTIMEOUT)) ||
#else
                         (value & MGC_M_TXCSR_TXPKTRDY)) ||
#endif
                        (!ep &&
#ifdef CLEAR_NAK
                         (value & MGC_M_CSR0_TXPKTRDY) &&
                         !(value & MGC_M_CSR0_H_NAKTIMEOUT)))
#else
                         (value & MGC_M_CSR0_TXPKTRDY)))
#endif
            musb_tx_rdy(s, ep);
        if (!ep &&
                        (value & MGC_M_CSR0_H_REQPKT) &&
#ifdef CLEAR_NAK
                        !(value & (MGC_M_CSR0_H_NAKTIMEOUT |
                                        MGC_M_CSR0_RXPKTRDY)))
#else
                        !(value & MGC_M_CSR0_RXPKTRDY))
#endif
            musb_rx_req(s, ep);
        break;

    case MUSB_HDRC_RXMAXP:
        s->ep[ep].maxp[1] = value;
        break;
    case MUSB_HDRC_RXCSR:
        /* (DMA mode only) */
        if (
                (value & MGC_M_RXCSR_H_AUTOREQ) &&
                !(value & MGC_M_RXCSR_RXPKTRDY) &&
                (s->ep[ep].csr[1] & MGC_M_RXCSR_RXPKTRDY))
            value |= MGC_M_RXCSR_H_REQPKT;

        s->ep[ep].csr[1] &= 0x102 | (value & 0x4d);
        s->ep[ep].csr[1] |= value & 0xfeb0;

        musb_ep_frame_cancel(&s->ep[ep], 1);

        if (value & MGC_M_RXCSR_FLUSHFIFO) {
            s->ep[ep].fifolen[1] = 0;
            s->ep[ep].fifostart[1] = 0;
            s->ep[ep].csr[1] &= ~(MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY);
            /* If double buffering and we have two packets ready, flush
             * only the first one and set up the fifo at the second packet.  */
        }
#ifdef CLEAR_NAK
        if ((value & MGC_M_RXCSR_H_REQPKT) && !(value & MGC_M_RXCSR_DATAERROR))
#else
        if (value & MGC_M_RXCSR_H_REQPKT)
#endif
            musb_rx_req(s, ep);
        break;
    case MUSB_HDRC_RXCOUNT:
        s->ep[ep].rxcount = value;
        break;

    default:
        musb_ep_writeb(s, ep, addr, value & 0xff);
        musb_ep_writeb(s, ep, addr | 1, value >> 8);
    };
}

/* Generic control */
static uint32_t musb_readb(void *opaque, target_phys_addr_t addr)
{
    struct musb_s *s = (struct musb_s *) opaque;
    int ep, i;
    uint8_t ret;

    switch (addr) {
    case MUSB_HDRC_FADDR:
        return s->faddr;
    case MUSB_HDRC_POWER:
        return s->power;
    case MUSB_HDRC_INTRUSB:
        ret = s->intr;
        for (i = 0; i < sizeof(ret) * 8; i ++)
            if (ret & (1 << i))
                musb_intr_set(s, i, 0);
        return ret;
    case MUSB_HDRC_INTRUSBE:
        return s->mask;
    case MUSB_HDRC_INDEX:
        return s->idx;
    case MUSB_HDRC_TESTMODE:
        return 0x00;

    case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
        return musb_ep_readb(s, s->idx, addr & 0xf);

    case MUSB_HDRC_DEVCTL:
        return s->devctl;

    case MUSB_HDRC_TXFIFOSZ:
    case MUSB_HDRC_RXFIFOSZ:
    case MUSB_HDRC_VCTRL:
        /* TODO */
        return 0x00;

    case MUSB_HDRC_HWVERS:
        return (1 << 10) | 400;

    case (MUSB_HDRC_VCTRL | 1):
    case (MUSB_HDRC_HWVERS | 1):
    case (MUSB_HDRC_DEVCTL | 1):
        return 0x00;

    case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
        ep = (addr >> 3) & 0xf;
        return musb_busctl_readb(s, ep, addr & 0x7);

    case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
        ep = (addr >> 4) & 0xf;
        return musb_ep_readb(s, ep, addr & 0xf);

    default:
        printf("%s: unknown register at %02x\n", __FUNCTION__, (int) addr);
        return 0x00;
    };
}

static void musb_writeb(void *opaque, target_phys_addr_t addr, uint32_t value)
{
    struct musb_s *s = (struct musb_s *) opaque;
    int ep;

    switch (addr) {
    case MUSB_HDRC_FADDR:
        s->faddr = value & 0x7f;
        break;
    case MUSB_HDRC_POWER:
        s->power = (value & 0xef) | (s->power & 0x10);
        /* MGC_M_POWER_RESET is also read-only in Peripheral Mode */
        if ((value & MGC_M_POWER_RESET) && s->port.dev) {
            usb_send_msg(s->port.dev, USB_MSG_RESET);
            /* Negotiate high-speed operation if MGC_M_POWER_HSENAB is set.  */
            if ((value & MGC_M_POWER_HSENAB) &&
                            s->port.dev->speed == USB_SPEED_HIGH)
                s->power |= MGC_M_POWER_HSMODE;	/* Success */
            /* Restart frame counting.  */
        }
        if (value & MGC_M_POWER_SUSPENDM) {
            /* When all transfers finish, suspend and if MGC_M_POWER_ENSUSPEND
             * is set, also go into low power mode.  Frame counting stops.  */
            /* XXX: Cleared when the interrupt register is read */
        }
        if (value & MGC_M_POWER_RESUME) {
            /* Wait 20ms and signal resuming on the bus.  Frame counting
             * restarts.  */
        }
        break;
    case MUSB_HDRC_INTRUSB:
        break;
    case MUSB_HDRC_INTRUSBE:
        s->mask = value & 0xff;
        break;
    case MUSB_HDRC_INDEX:
        s->idx = value & 0xf;
        break;
    case MUSB_HDRC_TESTMODE:
        break;

    case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
        musb_ep_writeb(s, s->idx, addr & 0xf, value);
        break;

    case MUSB_HDRC_DEVCTL:
        s->session = !!(value & MGC_M_DEVCTL_SESSION);
        musb_session_update(s,
                        !!s->port.dev,
                        !!(s->devctl & MGC_M_DEVCTL_SESSION));

        /* It seems this is the only R/W bit in this register?  */
        s->devctl &= ~MGC_M_DEVCTL_SESSION;
        s->devctl |= value & MGC_M_DEVCTL_SESSION;
        break;

    case MUSB_HDRC_TXFIFOSZ:
    case MUSB_HDRC_RXFIFOSZ:
    case MUSB_HDRC_VCTRL:
        /* TODO */
        break;

    case (MUSB_HDRC_VCTRL | 1):
    case (MUSB_HDRC_DEVCTL | 1):
        break;

    case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
        ep = (addr >> 3) & 0xf;
        musb_busctl_writeb(s, ep, addr & 0x7, value);
        break;

    case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
        ep = (addr >> 4) & 0xf;
        musb_ep_writeb(s, ep, addr & 0xf, value);
        break;

    default:
        printf("%s: unknown register at %02x\n", __FUNCTION__, (int) addr);
    };
}

static uint32_t musb_readh(void *opaque, target_phys_addr_t addr)
{
    struct musb_s *s = (struct musb_s *) opaque;
    int ep, i;
    uint16_t ret;

    switch (addr) {
    case MUSB_HDRC_INTRTX:
        ret = s->tx_intr;
        /* Auto clear */
        for (i = 0; i < sizeof(ret) * 8; i ++)
            if (ret & (1 << i))
                musb_tx_intr_set(s, i, 0);
        return ret;
    case MUSB_HDRC_INTRRX:
        ret = s->rx_intr;
        /* Auto clear */
        for (i = 0; i < sizeof(ret) * 8; i ++)
            if (ret & (1 << i))
                musb_rx_intr_set(s, i, 0);
        return ret;
    case MUSB_HDRC_INTRTXE:
        return s->tx_mask;
    case MUSB_HDRC_INTRRXE:
        return s->rx_mask;

    case MUSB_HDRC_FRAME:
        /* TODO */
        return 0x0000;
    case MUSB_HDRC_TXFIFOADDR:
        return s->ep[s->idx].fifoaddr[0];
    case MUSB_HDRC_RXFIFOADDR:
        return s->ep[s->idx].fifoaddr[1];

    case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
        return musb_ep_readh(s, s->idx, addr & 0xf);

    case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
        ep = (addr >> 3) & 0xf;
        return musb_busctl_readh(s, ep, addr & 0x7);

    case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
        ep = (addr >> 4) & 0xf;
        return musb_ep_readh(s, ep, addr & 0xf);

    default:
        return musb_readb(s, addr) | (musb_readb(s, addr | 1) << 8);
    };
}

static void musb_writeh(void *opaque, target_phys_addr_t addr, uint32_t value)
{
    struct musb_s *s = (struct musb_s *) opaque;
    int ep;

    switch (addr) {
    case MUSB_HDRC_INTRTXE:
        s->tx_mask = value;
        /* XXX: the masks seem to apply on the raising edge like with
         * edge-triggered interrupts, thus no need to update.  I may be
         * wrong though.  */
        break;
    case MUSB_HDRC_INTRRXE:
        s->rx_mask = value;
        break;

    case MUSB_HDRC_FRAME:
        /* TODO */
        break;
    case MUSB_HDRC_TXFIFOADDR:
        s->ep[s->idx].fifoaddr[0] = value;
        s->ep[s->idx].buf[0] =
                s->buf + ((value << 1) & (sizeof(s->buf) / 4 - 1));
        break;
    case MUSB_HDRC_RXFIFOADDR:
        s->ep[s->idx].fifoaddr[1] = value;
        s->ep[s->idx].buf[1] =
                s->buf + ((value << 1) & (sizeof(s->buf) / 4 - 1));
        break;

    case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
        musb_ep_writeh(s, s->idx, addr & 0xf, value);
        break;

    case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
        ep = (addr >> 3) & 0xf;
        musb_busctl_writeh(s, ep, addr & 0x7, value);
        break;

    case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
        ep = (addr >> 4) & 0xf;
        musb_ep_writeh(s, ep, addr & 0xf, value);
        break;

    default:
        musb_writeb(s, addr, value & 0xff);
        musb_writeb(s, addr | 1, value >> 8);
    };
}

static uint32_t musb_readw(void *opaque, target_phys_addr_t addr)
{
    struct musb_s *s = (struct musb_s *) opaque;
    struct musb_ep_s *ep;
    int epnum;

    switch (addr) {
    case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
        epnum = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
        ep = s->ep + epnum;

        if (ep->fifolen[1] >= 16) {
            /* We have a FIFO underrun */
            printf("%s: EP%i FIFO is now empty, stop reading\n",
                            __FUNCTION__, epnum);
            return 0x00000000;
        }
        /* In DMA mode clear RXPKTRDY and set REQPKT automatically
         * (if AUTOREQ is set) */

        ep->csr[1] &= ~MGC_M_RXCSR_FIFOFULL;
        return ep->buf[1][ep->fifostart[1] + ep->fifolen[1] ++];

    default:
        printf("%s: unknown register at %02x\n", __FUNCTION__, (int) addr);
        return 0x00000000;
    };
}

static void musb_writew(void *opaque, target_phys_addr_t addr, uint32_t value)
{
    struct musb_s *s = (struct musb_s *) opaque;
    struct musb_ep_s *ep;
    int epnum;

    switch (addr) {
    case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
        epnum = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
        ep = s->ep + epnum;

        if (ep->fifolen[0] >= 16) {
            /* We have a FIFO overrun */
            printf("%s: EP%i FIFO exceeded 64 bytes, stop feeding data\n",
                            __FUNCTION__, epnum);
            break;
        }

        ep->buf[0][ep->fifostart[0] + ep->fifolen[0] ++] = value;
        if (epnum)
            ep->csr[0] |= MGC_M_TXCSR_FIFONOTEMPTY;
        break;

    default:
        printf("%s: unknown register at %02x\n", __FUNCTION__, (int) addr);
    };
}

CPUReadMemoryFunc *musb_read[] = {
    musb_readb,
    musb_readh,
    musb_readw,
};

CPUWriteMemoryFunc *musb_write[] = {
    musb_writeb,
    musb_writeh,
    musb_writew,
};