softfloat-macros.h 23.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719

/*============================================================================

This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2b.

Written by John R. Hauser.  This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704.  Funding was partially provided by the
National Science Foundation under grant MIP-9311980.  The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
arithmetic/SoftFloat.html'.

THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
INSTITUTE (possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.

Derivative works are acceptable, even for commercial purposes, so long as
(1) the source code for the derivative work includes prominent notice that
the work is derivative, and (2) the source code includes prominent notice with
these four paragraphs for those parts of this code that are retained.

=============================================================================*/

/*----------------------------------------------------------------------------
| Shifts `a' right by the number of bits given in `count'.  If any nonzero
| bits are shifted off, they are ``jammed'' into the least significant bit of
| the result by setting the least significant bit to 1.  The value of `count'
| can be arbitrarily large; in particular, if `count' is greater than 32, the
| result will be either 0 or 1, depending on whether `a' is zero or nonzero.
| The result is stored in the location pointed to by `zPtr'.
*----------------------------------------------------------------------------*/

INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr )
{
    bits32 z;

    if ( count == 0 ) {
        z = a;
    }
    else if ( count < 32 ) {
        z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 );
    }
    else {
        z = ( a != 0 );
    }
    *zPtr = z;

}

/*----------------------------------------------------------------------------
| Shifts `a' right by the number of bits given in `count'.  If any nonzero
| bits are shifted off, they are ``jammed'' into the least significant bit of
| the result by setting the least significant bit to 1.  The value of `count'
| can be arbitrarily large; in particular, if `count' is greater than 64, the
| result will be either 0 or 1, depending on whether `a' is zero or nonzero.
| The result is stored in the location pointed to by `zPtr'.
*----------------------------------------------------------------------------*/

INLINE void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr )
{
    bits64 z;

    if ( count == 0 ) {
        z = a;
    }
    else if ( count < 64 ) {
        z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 );
    }
    else {
        z = ( a != 0 );
    }
    *zPtr = z;

}

/*----------------------------------------------------------------------------
| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64
| _plus_ the number of bits given in `count'.  The shifted result is at most
| 64 nonzero bits; this is stored at the location pointed to by `z0Ptr'.  The
| bits shifted off form a second 64-bit result as follows:  The _last_ bit
| shifted off is the most-significant bit of the extra result, and the other
| 63 bits of the extra result are all zero if and only if _all_but_the_last_
| bits shifted off were all zero.  This extra result is stored in the location
| pointed to by `z1Ptr'.  The value of `count' can be arbitrarily large.
|     (This routine makes more sense if `a0' and `a1' are considered to form
| a fixed-point value with binary point between `a0' and `a1'.  This fixed-
| point value is shifted right by the number of bits given in `count', and
| the integer part of the result is returned at the location pointed to by
| `z0Ptr'.  The fractional part of the result may be slightly corrupted as
| described above, and is returned at the location pointed to by `z1Ptr'.)
*----------------------------------------------------------------------------*/

INLINE void
 shift64ExtraRightJamming(
     bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
{
    bits64 z0, z1;
    int8 negCount = ( - count ) & 63;

    if ( count == 0 ) {
        z1 = a1;
        z0 = a0;
    }
    else if ( count < 64 ) {
        z1 = ( a0<<negCount ) | ( a1 != 0 );
        z0 = a0>>count;
    }
    else {
        if ( count == 64 ) {
            z1 = a0 | ( a1 != 0 );
        }
        else {
            z1 = ( ( a0 | a1 ) != 0 );
        }
        z0 = 0;
    }
    *z1Ptr = z1;
    *z0Ptr = z0;

}

/*----------------------------------------------------------------------------
| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
| number of bits given in `count'.  Any bits shifted off are lost.  The value
| of `count' can be arbitrarily large; in particular, if `count' is greater
| than 128, the result will be 0.  The result is broken into two 64-bit pieces
| which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
*----------------------------------------------------------------------------*/

INLINE void
 shift128Right(
     bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
{
    bits64 z0, z1;
    int8 negCount = ( - count ) & 63;

    if ( count == 0 ) {
        z1 = a1;
        z0 = a0;
    }
    else if ( count < 64 ) {
        z1 = ( a0<<negCount ) | ( a1>>count );
        z0 = a0>>count;
    }
    else {
        z1 = ( count < 64 ) ? ( a0>>( count & 63 ) ) : 0;
        z0 = 0;
    }
    *z1Ptr = z1;
    *z0Ptr = z0;

}

/*----------------------------------------------------------------------------
| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
| number of bits given in `count'.  If any nonzero bits are shifted off, they
| are ``jammed'' into the least significant bit of the result by setting the
| least significant bit to 1.  The value of `count' can be arbitrarily large;
| in particular, if `count' is greater than 128, the result will be either
| 0 or 1, depending on whether the concatenation of `a0' and `a1' is zero or
| nonzero.  The result is broken into two 64-bit pieces which are stored at
| the locations pointed to by `z0Ptr' and `z1Ptr'.
*----------------------------------------------------------------------------*/

INLINE void
 shift128RightJamming(
     bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
{
    bits64 z0, z1;
    int8 negCount = ( - count ) & 63;

    if ( count == 0 ) {
        z1 = a1;
        z0 = a0;
    }
    else if ( count < 64 ) {
        z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 );
        z0 = a0>>count;
    }
    else {
        if ( count == 64 ) {
            z1 = a0 | ( a1 != 0 );
        }
        else if ( count < 128 ) {
            z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 );
        }
        else {
            z1 = ( ( a0 | a1 ) != 0 );
        }
        z0 = 0;
    }
    *z1Ptr = z1;
    *z0Ptr = z0;

}

/*----------------------------------------------------------------------------
| Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' right
| by 64 _plus_ the number of bits given in `count'.  The shifted result is
| at most 128 nonzero bits; these are broken into two 64-bit pieces which are
| stored at the locations pointed to by `z0Ptr' and `z1Ptr'.  The bits shifted
| off form a third 64-bit result as follows:  The _last_ bit shifted off is
| the most-significant bit of the extra result, and the other 63 bits of the
| extra result are all zero if and only if _all_but_the_last_ bits shifted off
| were all zero.  This extra result is stored in the location pointed to by
| `z2Ptr'.  The value of `count' can be arbitrarily large.
|     (This routine makes more sense if `a0', `a1', and `a2' are considered
| to form a fixed-point value with binary point between `a1' and `a2'.  This
| fixed-point value is shifted right by the number of bits given in `count',
| and the integer part of the result is returned at the locations pointed to
| by `z0Ptr' and `z1Ptr'.  The fractional part of the result may be slightly
| corrupted as described above, and is returned at the location pointed to by
| `z2Ptr'.)
*----------------------------------------------------------------------------*/

INLINE void
 shift128ExtraRightJamming(
     bits64 a0,
     bits64 a1,
     bits64 a2,
     int16 count,
     bits64 *z0Ptr,
     bits64 *z1Ptr,
     bits64 *z2Ptr
 )
{
    bits64 z0, z1, z2;
    int8 negCount = ( - count ) & 63;

    if ( count == 0 ) {
        z2 = a2;
        z1 = a1;
        z0 = a0;
    }
    else {
        if ( count < 64 ) {
            z2 = a1<<negCount;
            z1 = ( a0<<negCount ) | ( a1>>count );
            z0 = a0>>count;
        }
        else {
            if ( count == 64 ) {
                z2 = a1;
                z1 = a0;
            }
            else {
                a2 |= a1;
                if ( count < 128 ) {
                    z2 = a0<<negCount;
                    z1 = a0>>( count & 63 );
                }
                else {
                    z2 = ( count == 128 ) ? a0 : ( a0 != 0 );
                    z1 = 0;
                }
            }
            z0 = 0;
        }
        z2 |= ( a2 != 0 );
    }
    *z2Ptr = z2;
    *z1Ptr = z1;
    *z0Ptr = z0;

}

/*----------------------------------------------------------------------------
| Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the
| number of bits given in `count'.  Any bits shifted off are lost.  The value
| of `count' must be less than 64.  The result is broken into two 64-bit
| pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
*----------------------------------------------------------------------------*/

INLINE void
 shortShift128Left(
     bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
{

    *z1Ptr = a1<<count;
    *z0Ptr =
        ( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 63 ) );

}

/*----------------------------------------------------------------------------
| Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left
| by the number of bits given in `count'.  Any bits shifted off are lost.
| The value of `count' must be less than 64.  The result is broken into three
| 64-bit pieces which are stored at the locations pointed to by `z0Ptr',
| `z1Ptr', and `z2Ptr'.
*----------------------------------------------------------------------------*/

INLINE void
 shortShift192Left(
     bits64 a0,
     bits64 a1,
     bits64 a2,
     int16 count,
     bits64 *z0Ptr,
     bits64 *z1Ptr,
     bits64 *z2Ptr
 )
{
    bits64 z0, z1, z2;
    int8 negCount;

    z2 = a2<<count;
    z1 = a1<<count;
    z0 = a0<<count;
    if ( 0 < count ) {
        negCount = ( ( - count ) & 63 );
        z1 |= a2>>negCount;
        z0 |= a1>>negCount;
    }
    *z2Ptr = z2;
    *z1Ptr = z1;
    *z0Ptr = z0;

}

/*----------------------------------------------------------------------------
| Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit
| value formed by concatenating `b0' and `b1'.  Addition is modulo 2^128, so
| any carry out is lost.  The result is broken into two 64-bit pieces which
| are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
*----------------------------------------------------------------------------*/

INLINE void
 add128(
     bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
{
    bits64 z1;

    z1 = a1 + b1;
    *z1Ptr = z1;
    *z0Ptr = a0 + b0 + ( z1 < a1 );

}

/*----------------------------------------------------------------------------
| Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the
| 192-bit value formed by concatenating `b0', `b1', and `b2'.  Addition is
| modulo 2^192, so any carry out is lost.  The result is broken into three
| 64-bit pieces which are stored at the locations pointed to by `z0Ptr',
| `z1Ptr', and `z2Ptr'.
*----------------------------------------------------------------------------*/

INLINE void
 add192(
     bits64 a0,
     bits64 a1,
     bits64 a2,
     bits64 b0,
     bits64 b1,
     bits64 b2,
     bits64 *z0Ptr,
     bits64 *z1Ptr,
     bits64 *z2Ptr
 )
{
    bits64 z0, z1, z2;
    int8 carry0, carry1;

    z2 = a2 + b2;
    carry1 = ( z2 < a2 );
    z1 = a1 + b1;
    carry0 = ( z1 < a1 );
    z0 = a0 + b0;
    z1 += carry1;
    z0 += ( z1 < carry1 );
    z0 += carry0;
    *z2Ptr = z2;
    *z1Ptr = z1;
    *z0Ptr = z0;

}

/*----------------------------------------------------------------------------
| Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the
| 128-bit value formed by concatenating `a0' and `a1'.  Subtraction is modulo
| 2^128, so any borrow out (carry out) is lost.  The result is broken into two
| 64-bit pieces which are stored at the locations pointed to by `z0Ptr' and
| `z1Ptr'.
*----------------------------------------------------------------------------*/

INLINE void
 sub128(
     bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
{

    *z1Ptr = a1 - b1;
    *z0Ptr = a0 - b0 - ( a1 < b1 );

}

/*----------------------------------------------------------------------------
| Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2'
| from the 192-bit value formed by concatenating `a0', `a1', and `a2'.
| Subtraction is modulo 2^192, so any borrow out (carry out) is lost.  The
| result is broken into three 64-bit pieces which are stored at the locations
| pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'.
*----------------------------------------------------------------------------*/

INLINE void
 sub192(
     bits64 a0,
     bits64 a1,
     bits64 a2,
     bits64 b0,
     bits64 b1,
     bits64 b2,
     bits64 *z0Ptr,
     bits64 *z1Ptr,
     bits64 *z2Ptr
 )
{
    bits64 z0, z1, z2;
    int8 borrow0, borrow1;

    z2 = a2 - b2;
    borrow1 = ( a2 < b2 );
    z1 = a1 - b1;
    borrow0 = ( a1 < b1 );
    z0 = a0 - b0;
    z0 -= ( z1 < borrow1 );
    z1 -= borrow1;
    z0 -= borrow0;
    *z2Ptr = z2;
    *z1Ptr = z1;
    *z0Ptr = z0;

}

/*----------------------------------------------------------------------------
| Multiplies `a' by `b' to obtain a 128-bit product.  The product is broken
| into two 64-bit pieces which are stored at the locations pointed to by
| `z0Ptr' and `z1Ptr'.
*----------------------------------------------------------------------------*/

INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr )
{
    bits32 aHigh, aLow, bHigh, bLow;
    bits64 z0, zMiddleA, zMiddleB, z1;

    aLow = a;
    aHigh = a>>32;
    bLow = b;
    bHigh = b>>32;
    z1 = ( (bits64) aLow ) * bLow;
    zMiddleA = ( (bits64) aLow ) * bHigh;
    zMiddleB = ( (bits64) aHigh ) * bLow;
    z0 = ( (bits64) aHigh ) * bHigh;
    zMiddleA += zMiddleB;
    z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 );
    zMiddleA <<= 32;
    z1 += zMiddleA;
    z0 += ( z1 < zMiddleA );
    *z1Ptr = z1;
    *z0Ptr = z0;

}

/*----------------------------------------------------------------------------
| Multiplies the 128-bit value formed by concatenating `a0' and `a1' by
| `b' to obtain a 192-bit product.  The product is broken into three 64-bit
| pieces which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
| `z2Ptr'.
*----------------------------------------------------------------------------*/

INLINE void
 mul128By64To192(
     bits64 a0,
     bits64 a1,
     bits64 b,
     bits64 *z0Ptr,
     bits64 *z1Ptr,
     bits64 *z2Ptr
 )
{
    bits64 z0, z1, z2, more1;

    mul64To128( a1, b, &z1, &z2 );
    mul64To128( a0, b, &z0, &more1 );
    add128( z0, more1, 0, z1, &z0, &z1 );
    *z2Ptr = z2;
    *z1Ptr = z1;
    *z0Ptr = z0;

}

/*----------------------------------------------------------------------------
| Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the
| 128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit
| product.  The product is broken into four 64-bit pieces which are stored at
| the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
*----------------------------------------------------------------------------*/

INLINE void
 mul128To256(
     bits64 a0,
     bits64 a1,
     bits64 b0,
     bits64 b1,
     bits64 *z0Ptr,
     bits64 *z1Ptr,
     bits64 *z2Ptr,
     bits64 *z3Ptr
 )
{
    bits64 z0, z1, z2, z3;
    bits64 more1, more2;

    mul64To128( a1, b1, &z2, &z3 );
    mul64To128( a1, b0, &z1, &more2 );
    add128( z1, more2, 0, z2, &z1, &z2 );
    mul64To128( a0, b0, &z0, &more1 );
    add128( z0, more1, 0, z1, &z0, &z1 );
    mul64To128( a0, b1, &more1, &more2 );
    add128( more1, more2, 0, z2, &more1, &z2 );
    add128( z0, z1, 0, more1, &z0, &z1 );
    *z3Ptr = z3;
    *z2Ptr = z2;
    *z1Ptr = z1;
    *z0Ptr = z0;

}

/*----------------------------------------------------------------------------
| Returns an approximation to the 64-bit integer quotient obtained by dividing
| `b' into the 128-bit value formed by concatenating `a0' and `a1'.  The
| divisor `b' must be at least 2^63.  If q is the exact quotient truncated
| toward zero, the approximation returned lies between q and q + 2 inclusive.
| If the exact quotient q is larger than 64 bits, the maximum positive 64-bit
| unsigned integer is returned.
*----------------------------------------------------------------------------*/

static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b )
{
    bits64 b0, b1;
    bits64 rem0, rem1, term0, term1;
    bits64 z;

    if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF );
    b0 = b>>32;
    z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32;
    mul64To128( b, z, &term0, &term1 );
    sub128( a0, a1, term0, term1, &rem0, &rem1 );
    while ( ( (sbits64) rem0 ) < 0 ) {
        z -= LIT64( 0x100000000 );
        b1 = b<<32;
        add128( rem0, rem1, b0, b1, &rem0, &rem1 );
    }
    rem0 = ( rem0<<32 ) | ( rem1>>32 );
    z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0;
    return z;

}

/*----------------------------------------------------------------------------
| Returns an approximation to the square root of the 32-bit significand given
| by `a'.  Considered as an integer, `a' must be at least 2^31.  If bit 0 of
| `aExp' (the least significant bit) is 1, the integer returned approximates
| 2^31*sqrt(`a'/2^31), where `a' is considered an integer.  If bit 0 of `aExp'
| is 0, the integer returned approximates 2^31*sqrt(`a'/2^30).  In either
| case, the approximation returned lies strictly within +/-2 of the exact
| value.
*----------------------------------------------------------------------------*/

static bits32 estimateSqrt32( int16 aExp, bits32 a )
{
    static const bits16 sqrtOddAdjustments[] = {
        0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
        0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
    };
    static const bits16 sqrtEvenAdjustments[] = {
        0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
        0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
    };
    int8 index;
    bits32 z;

    index = ( a>>27 ) & 15;
    if ( aExp & 1 ) {
        z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ];
        z = ( ( a / z )<<14 ) + ( z<<15 );
        a >>= 1;
    }
    else {
        z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ];
        z = a / z + z;
        z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );
        if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 );
    }
    return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 );

}

/*----------------------------------------------------------------------------
| Returns the number of leading 0 bits before the most-significant 1 bit of
| `a'.  If `a' is zero, 32 is returned.
*----------------------------------------------------------------------------*/

static int8 countLeadingZeros32( bits32 a )
{
    static const int8 countLeadingZerosHigh[] = {
        8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
        3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
    };
    int8 shiftCount;

    shiftCount = 0;
    if ( a < 0x10000 ) {
        shiftCount += 16;
        a <<= 16;
    }
    if ( a < 0x1000000 ) {
        shiftCount += 8;
        a <<= 8;
    }
    shiftCount += countLeadingZerosHigh[ a>>24 ];
    return shiftCount;

}

/*----------------------------------------------------------------------------
| Returns the number of leading 0 bits before the most-significant 1 bit of
| `a'.  If `a' is zero, 64 is returned.
*----------------------------------------------------------------------------*/

static int8 countLeadingZeros64( bits64 a )
{
    int8 shiftCount;

    shiftCount = 0;
    if ( a < ( (bits64) 1 )<<32 ) {
        shiftCount += 32;
    }
    else {
        a >>= 32;
    }
    shiftCount += countLeadingZeros32( a );
    return shiftCount;

}

/*----------------------------------------------------------------------------
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1'
| is equal to the 128-bit value formed by concatenating `b0' and `b1'.
| Otherwise, returns 0.
*----------------------------------------------------------------------------*/

INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
{

    return ( a0 == b0 ) && ( a1 == b1 );

}

/*----------------------------------------------------------------------------
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
| than or equal to the 128-bit value formed by concatenating `b0' and `b1'.
| Otherwise, returns 0.
*----------------------------------------------------------------------------*/

INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
{

    return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );

}

/*----------------------------------------------------------------------------
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
| than the 128-bit value formed by concatenating `b0' and `b1'.  Otherwise,
| returns 0.
*----------------------------------------------------------------------------*/

INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
{

    return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );

}

/*----------------------------------------------------------------------------
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is
| not equal to the 128-bit value formed by concatenating `b0' and `b1'.
| Otherwise, returns 0.
*----------------------------------------------------------------------------*/

INLINE flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
{

    return ( a0 != b0 ) || ( a1 != b1 );

}