lance.c 13.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
/*
 * QEMU Lance emulation
 * 
 * Copyright (c) 2003-2004 Fabrice Bellard
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include "vl.h"

/* debug LANCE card */
#define DEBUG_LANCE

#define PHYS_JJ_IOMMU	0x10000000	/* First page of sun4m IOMMU */
#define PHYS_JJ_LEDMA   0x78400010      /* ledma, off by 10 from unused SCSI */
#define PHYS_JJ_LE      0x78C00000      /* LANCE, typical sun4m */

#ifndef LANCE_LOG_TX_BUFFERS
#define LANCE_LOG_TX_BUFFERS 4
#define LANCE_LOG_RX_BUFFERS 4
#endif

#define CRC_POLYNOMIAL_BE 0x04c11db7UL  /* Ethernet CRC, big endian */
#define CRC_POLYNOMIAL_LE 0xedb88320UL  /* Ethernet CRC, little endian */


#define LE_CSR0 0
#define LE_CSR1 1
#define LE_CSR2 2
#define LE_CSR3 3
#define LE_MAXREG (LE_CSR3 + 1)

#define LE_RDP  0
#define LE_RAP  1

#define LE_MO_PROM      0x8000  /* Enable promiscuous mode */

#define	LE_C0_ERR	0x8000	/* Error: set if BAB, SQE, MISS or ME is set */
#define	LE_C0_BABL	0x4000	/* BAB:  Babble: tx timeout. */
#define	LE_C0_CERR	0x2000	/* SQE:  Signal quality error */
#define	LE_C0_MISS	0x1000	/* MISS: Missed a packet */
#define	LE_C0_MERR	0x0800	/* ME:   Memory error */
#define	LE_C0_RINT	0x0400	/* Received interrupt */
#define	LE_C0_TINT	0x0200	/* Transmitter Interrupt */
#define	LE_C0_IDON	0x0100	/* IFIN: Init finished. */
#define	LE_C0_INTR	0x0080	/* Interrupt or error */
#define	LE_C0_INEA	0x0040	/* Interrupt enable */
#define	LE_C0_RXON	0x0020	/* Receiver on */
#define	LE_C0_TXON	0x0010	/* Transmitter on */
#define	LE_C0_TDMD	0x0008	/* Transmitter demand */
#define	LE_C0_STOP	0x0004	/* Stop the card */
#define	LE_C0_STRT	0x0002	/* Start the card */
#define	LE_C0_INIT	0x0001	/* Init the card */

#define	LE_C3_BSWP	0x4     /* SWAP */
#define	LE_C3_ACON	0x2	/* ALE Control */
#define	LE_C3_BCON	0x1	/* Byte control */

/* Receive message descriptor 1 */
#define LE_R1_OWN       0x80    /* Who owns the entry */
#define LE_R1_ERR       0x40    /* Error: if FRA, OFL, CRC or BUF is set */
#define LE_R1_FRA       0x20    /* FRA: Frame error */
#define LE_R1_OFL       0x10    /* OFL: Frame overflow */
#define LE_R1_CRC       0x08    /* CRC error */
#define LE_R1_BUF       0x04    /* BUF: Buffer error */
#define LE_R1_SOP       0x02    /* Start of packet */
#define LE_R1_EOP       0x01    /* End of packet */
#define LE_R1_POK       0x03    /* Packet is complete: SOP + EOP */

#define LE_T1_OWN       0x80    /* Lance owns the packet */
#define LE_T1_ERR       0x40    /* Error summary */
#define LE_T1_EMORE     0x10    /* Error: more than one retry needed */
#define LE_T1_EONE      0x08    /* Error: one retry needed */
#define LE_T1_EDEF      0x04    /* Error: deferred */
#define LE_T1_SOP       0x02    /* Start of packet */
#define LE_T1_EOP       0x01    /* End of packet */
#define LE_T1_POK	0x03	/* Packet is complete: SOP + EOP */

#define LE_T3_BUF       0x8000  /* Buffer error */
#define LE_T3_UFL       0x4000  /* Error underflow */
#define LE_T3_LCOL      0x1000  /* Error late collision */
#define LE_T3_CLOS      0x0800  /* Error carrier loss */
#define LE_T3_RTY       0x0400  /* Error retry */
#define LE_T3_TDR       0x03ff  /* Time Domain Reflectometry counter */

#define TX_RING_SIZE			(1 << (LANCE_LOG_TX_BUFFERS))
#define TX_RING_MOD_MASK		(TX_RING_SIZE - 1)
#define TX_RING_LEN_BITS		((LANCE_LOG_TX_BUFFERS) << 29)

#define RX_RING_SIZE			(1 << (LANCE_LOG_RX_BUFFERS))
#define RX_RING_MOD_MASK		(RX_RING_SIZE - 1)
#define RX_RING_LEN_BITS		((LANCE_LOG_RX_BUFFERS) << 29)

#define PKT_BUF_SZ		1544
#define RX_BUFF_SIZE            PKT_BUF_SZ
#define TX_BUFF_SIZE            PKT_BUF_SZ

struct lance_rx_desc {
	unsigned short rmd0;        /* low address of packet */
	unsigned char  rmd1_bits;   /* descriptor bits */
	unsigned char  rmd1_hadr;   /* high address of packet */
	short    length;    	    /* This length is 2s complement (negative)!
				     * Buffer length
				     */
	unsigned short mblength;    /* This is the actual number of bytes received */
};

struct lance_tx_desc {
	unsigned short tmd0;        /* low address of packet */
	unsigned char  tmd1_bits;   /* descriptor bits */
	unsigned char  tmd1_hadr;   /* high address of packet */
	short length;          	    /* Length is 2s complement (negative)! */
	unsigned short misc;
};

/* The LANCE initialization block, described in databook. */
/* On the Sparc, this block should be on a DMA region     */
struct lance_init_block {
	unsigned short mode;		/* Pre-set mode (reg. 15) */
	unsigned char phys_addr[6];     /* Physical ethernet address */
	unsigned filter[2];		/* Multicast filter. */

	/* Receive and transmit ring base, along with extra bits. */
	unsigned short rx_ptr;		/* receive descriptor addr */
	unsigned short rx_len;		/* receive len and high addr */
	unsigned short tx_ptr;		/* transmit descriptor addr */
	unsigned short tx_len;		/* transmit len and high addr */
    
	/* The Tx and Rx ring entries must aligned on 8-byte boundaries. */
	struct lance_rx_desc brx_ring[RX_RING_SIZE];
	struct lance_tx_desc btx_ring[TX_RING_SIZE];
    
	char   tx_buf [TX_RING_SIZE][TX_BUFF_SIZE];
	char   pad[2];			/* align rx_buf for copy_and_sum(). */
	char   rx_buf [RX_RING_SIZE][RX_BUFF_SIZE];
};

#define LEDMA_REGS 4
#if 0
/* Structure to describe the current status of DMA registers on the Sparc */
struct sparc_dma_registers {
    uint32_t cond_reg;	/* DMA condition register */
    uint32_t st_addr;	/* Start address of this transfer */
    uint32_t cnt;	/* How many bytes to transfer */
    uint32_t dma_test;	/* DMA test register */
};
#endif

typedef struct LEDMAState {
    uint32_t regs[LEDMA_REGS];
} LEDMAState;

typedef struct LANCEState {
    NetDriverState *nd;
    uint32_t leptr;
    uint16_t addr;
    uint16_t regs[LE_MAXREG];
    uint8_t phys[6]; /* mac address */
    int irq;
    LEDMAState *ledma;
} LANCEState;

static int lance_io_memory;

static unsigned int rxptr, txptr;

static void lance_send(void *opaque);

static void lance_reset(LANCEState *s)
{
    memcpy(s->phys, s->nd->macaddr, 6);
    rxptr = 0;
    txptr = 0;
    s->regs[LE_CSR0] = LE_C0_STOP;
}

static uint32_t lance_mem_readw(void *opaque, target_phys_addr_t addr)
{
    LANCEState *s = opaque;
    uint32_t saddr;

    saddr = addr - PHYS_JJ_LE;
    switch (saddr >> 1) {
    case LE_RDP:
	return s->regs[s->addr];
    case LE_RAP:
	return s->addr;
    default:
	break;
    }
    return 0;
}

static void lance_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
    LANCEState *s = opaque;
    uint32_t saddr;
    uint16_t clear, reg;

    saddr = addr - PHYS_JJ_LE;
    switch (saddr >> 1) {
    case LE_RDP:
	switch(s->addr) {
	case LE_CSR0:
	    if (val & LE_C0_STOP) {
		s->regs[LE_CSR0] = LE_C0_STOP;
		break;
	    }

	    reg = s->regs[LE_CSR0];

	    // 1 = clear for some bits
	    reg &= ~(val & 0x7f00);

	    // generated bits
	    reg &= ~(LE_C0_ERR | LE_C0_INTR);
	    if (reg & 0x7100)
		reg |= LE_C0_ERR;
	    if (reg & 0x7f00)
		reg |= LE_C0_INTR;

	    // direct bit
	    reg &= ~LE_C0_INEA;
	    reg |= val & LE_C0_INEA;

	    // exclusive bits
	    if (val & LE_C0_INIT) {
		reg |= LE_C0_IDON | LE_C0_INIT;
		reg &= ~LE_C0_STOP;
	    }
	    else if (val & LE_C0_STRT) {
		reg |= LE_C0_STRT | LE_C0_RXON | LE_C0_TXON;
		reg &= ~LE_C0_STOP;
	    }

	    s->regs[LE_CSR0] = reg;

	    // trigger bits
	    //if (val & LE_C0_TDMD)

	    if ((s->regs[LE_CSR0] & LE_C0_INTR) && (s->regs[LE_CSR0] & LE_C0_INEA))
		pic_set_irq(s->irq, 1);
	    break;
	case LE_CSR1:
	    s->leptr = (s->leptr & 0xffff0000) | (val & 0xffff);
	    s->regs[s->addr] = val;
	    break;
	case LE_CSR2:
	    s->leptr = (s->leptr & 0xffff) | ((val & 0xffff) << 16);
	    s->regs[s->addr] = val;
	    break;
	case LE_CSR3:
	    s->regs[s->addr] = val;
	    break;
	}
	break;
    case LE_RAP:
	if (val < LE_MAXREG)
	    s->addr = val;
	break;
    default:
	break;
    }
    lance_send(s);
}

static CPUReadMemoryFunc *lance_mem_read[3] = {
    lance_mem_readw,
    lance_mem_readw,
    lance_mem_readw,
};

static CPUWriteMemoryFunc *lance_mem_write[3] = {
    lance_mem_writew,
    lance_mem_writew,
    lance_mem_writew,
};


/* return the max buffer size if the LANCE can receive more data */
static int lance_can_receive(void *opaque)
{
    LANCEState *s = opaque;
    void *dmaptr = (void *) (s->leptr + s->ledma->regs[3]);
    struct lance_init_block *ib;
    int i;
    uint16_t temp;

    if ((s->regs[LE_CSR0] & LE_C0_STOP) == LE_C0_STOP)
	return 0;

    ib = (void *) iommu_translate(dmaptr);

    for (i = 0; i < RX_RING_SIZE; i++) {
	cpu_physical_memory_read(&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1);
	temp &= 0xff;
	if (temp == (LE_R1_OWN)) {
#ifdef DEBUG_LANCE
	    fprintf(stderr, "lance: can receive %d\n", RX_BUFF_SIZE);
#endif
	    return RX_BUFF_SIZE;
	}
    }
#ifdef DEBUG_LANCE
    fprintf(stderr, "lance: cannot receive\n");
#endif
    return 0;
}

#define MIN_BUF_SIZE 60

static void lance_receive(void *opaque, const uint8_t *buf, int size)
{
    LANCEState *s = opaque;
    void *dmaptr = (void *) (s->leptr + s->ledma->regs[3]);
    struct lance_init_block *ib;
    unsigned int i, old_rxptr, j;
    uint16_t temp;

    if ((s->regs[LE_CSR0] & LE_C0_STOP) == LE_C0_STOP)
	return;

    ib = (void *) iommu_translate(dmaptr);

    old_rxptr = rxptr;
    for (i = rxptr; i != ((old_rxptr - 1) & RX_RING_MOD_MASK); i = (i + 1) & RX_RING_MOD_MASK) {
	cpu_physical_memory_read(&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1);
	if (temp == (LE_R1_OWN)) {
	    rxptr = (rxptr + 1) & RX_RING_MOD_MASK;
	    temp = size;
	    bswap16s(&temp);
	    cpu_physical_memory_write(&ib->brx_ring[i].mblength, (void *) &temp, 2);
#if 0
	    cpu_physical_memory_write(&ib->rx_buf[i], buf, size);
#else
	    for (j = 0; j < size; j++) {
		cpu_physical_memory_write(((void *)&ib->rx_buf[i]) + j, &buf[j], 1);
	    }
#endif
	    temp = LE_R1_POK;
	    cpu_physical_memory_write(&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1);
	    s->regs[LE_CSR0] |= LE_C0_RINT | LE_C0_INTR;
	    if ((s->regs[LE_CSR0] & LE_C0_INTR) && (s->regs[LE_CSR0] & LE_C0_INEA))
		pic_set_irq(s->irq, 1);
#ifdef DEBUG_LANCE
	    fprintf(stderr, "lance: got packet, len %d\n", size);
#endif
	    return;
	}
    }
}

static void lance_send(void *opaque)
{
    LANCEState *s = opaque;
    void *dmaptr = (void *) (s->leptr + s->ledma->regs[3]);
    struct lance_init_block *ib;
    unsigned int i, old_txptr, j;
    uint16_t temp;
    char pkt_buf[PKT_BUF_SZ];

    if ((s->regs[LE_CSR0] & LE_C0_STOP) == LE_C0_STOP)
	return;

    ib = (void *) iommu_translate(dmaptr);

    old_txptr = txptr;
    for (i = txptr; i != ((old_txptr - 1) & TX_RING_MOD_MASK); i = (i + 1) & TX_RING_MOD_MASK) {
	cpu_physical_memory_read(&ib->btx_ring[i].tmd1_bits, (void *) &temp, 1);
	if (temp == (LE_T1_POK|LE_T1_OWN)) {
	    cpu_physical_memory_read(&ib->btx_ring[i].length, (void *) &temp, 2);
	    bswap16s(&temp);
	    temp = (~temp) + 1;
#if 0
	    cpu_physical_memory_read(&ib->tx_buf[i], pkt_buf, temp);
#else
	    for (j = 0; j < temp; j++) {
		cpu_physical_memory_read(((void *)&ib->tx_buf[i]) + j, &pkt_buf[j], 1);
	    }
#endif

#ifdef DEBUG_LANCE
	    fprintf(stderr, "lance: sending packet, len %d\n", temp);
#endif
	    qemu_send_packet(s->nd, pkt_buf, temp);
	    temp = LE_T1_POK;
	    cpu_physical_memory_write(&ib->btx_ring[i].tmd1_bits, (void *) &temp, 1);
	    txptr = (txptr + 1) & TX_RING_MOD_MASK;
	    s->regs[LE_CSR0] |= LE_C0_TINT | LE_C0_INTR;
	}
    }
}

static int ledma_io_memory;

static uint32_t ledma_mem_readl(void *opaque, target_phys_addr_t addr)
{
    LEDMAState *s = opaque;
    uint32_t saddr;

    saddr = (addr - PHYS_JJ_LEDMA) >> 2;
    if (saddr < LEDMA_REGS)
	return s->regs[saddr];
    else
	return 0;
}

static void ledma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
    LEDMAState *s = opaque;
    uint32_t saddr;

    saddr = (addr - PHYS_JJ_LEDMA) >> 2;
    if (saddr < LEDMA_REGS)
	s->regs[saddr] = val;
}

static CPUReadMemoryFunc *ledma_mem_read[3] = {
    ledma_mem_readl,
    ledma_mem_readl,
    ledma_mem_readl,
};

static CPUWriteMemoryFunc *ledma_mem_write[3] = {
    ledma_mem_writel,
    ledma_mem_writel,
    ledma_mem_writel,
};

void lance_init(NetDriverState *nd, int irq)
{
    LANCEState *s;
    LEDMAState *led;

    s = qemu_mallocz(sizeof(LANCEState));
    if (!s)
        return;

    lance_io_memory = cpu_register_io_memory(0, lance_mem_read, lance_mem_write, s);
    cpu_register_physical_memory(PHYS_JJ_LE, 8,
                                 lance_io_memory);
    led = qemu_mallocz(sizeof(LEDMAState));
    if (!led)
        return;

    ledma_io_memory = cpu_register_io_memory(0, ledma_mem_read, ledma_mem_write, led);
    cpu_register_physical_memory(PHYS_JJ_LEDMA, 16,
                                 ledma_io_memory);

    s->nd = nd;
    s->ledma = led;
    s->irq = irq;

    lance_reset(s);
    qemu_add_read_packet(nd, lance_can_receive, lance_receive, s);
}