mips_r4k.c
8.16 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
#include "vl.h"
#define DEBUG_IRQ_COUNT
#define BIOS_FILENAME "mips_bios.bin"
//#define BIOS_FILENAME "system.bin"
#define KERNEL_LOAD_ADDR 0x80010000
#define INITRD_LOAD_ADDR 0x80800000
/* MIPS R4K IRQ controler */
#if defined(DEBUG_IRQ_COUNT)
static uint64_t irq_count[16];
#endif
extern FILE *logfile;
void mips_set_irq (int n_IRQ, int level)
{
uint32_t mask;
if (n_IRQ < 0 || n_IRQ >= 8)
return;
mask = 0x100 << n_IRQ;
if (level != 0) {
#if 1
if (logfile) {
fprintf(logfile, "%s n %d l %d mask %08x %08x\n",
__func__, n_IRQ, level, mask, cpu_single_env->CP0_Status);
}
#endif
cpu_single_env->CP0_Cause |= mask;
if ((cpu_single_env->CP0_Status & 0x00000001) &&
(cpu_single_env->CP0_Status & mask)) {
#if defined(DEBUG_IRQ_COUNT)
irq_count[n_IRQ]++;
#endif
#if 1
if (logfile)
fprintf(logfile, "%s raise IRQ\n", __func__);
#endif
cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
}
} else {
cpu_single_env->CP0_Cause &= ~mask;
}
}
void pic_set_irq (int n_IRQ, int level)
{
mips_set_irq(n_IRQ + 2, level);
}
void pic_info (void)
{
term_printf("IRQ asserted: %02x mask: %02x\n",
(cpu_single_env->CP0_Cause >> 8) & 0xFF,
(cpu_single_env->CP0_Status >> 8) & 0xFF);
}
void irq_info (void)
{
#if !defined(DEBUG_IRQ_COUNT)
term_printf("irq statistic code not compiled.\n");
#else
int i;
int64_t count;
term_printf("IRQ statistics:\n");
for (i = 0; i < 8; i++) {
count = irq_count[i];
if (count > 0)
term_printf("%2d: %lld\n", i, count);
}
#endif
}
void cpu_mips_irqctrl_init (void)
{
}
uint32_t cpu_mips_get_random (CPUState *env)
{
uint32_t now = qemu_get_clock(vm_clock);
return now % (MIPS_TLB_NB - env->CP0_Wired) + env->CP0_Wired;
}
/* MIPS R4K timer */
uint32_t cpu_mips_get_count (CPUState *env)
{
return env->CP0_Count +
(uint32_t)muldiv64(qemu_get_clock(vm_clock),
100 * 1000 * 1000, ticks_per_sec);
}
static void cpu_mips_update_count (CPUState *env, uint32_t count,
uint32_t compare)
{
uint64_t now, next;
uint32_t tmp;
tmp = count;
if (count == compare)
tmp++;
now = qemu_get_clock(vm_clock);
next = now + muldiv64(compare - tmp, ticks_per_sec, 100 * 1000 * 1000);
if (next == now)
next++;
#if 1
if (logfile) {
fprintf(logfile, "%s: 0x%08llx %08x %08x => 0x%08llx\n",
__func__, now, count, compare, next - now);
}
#endif
/* Store new count and compare registers */
env->CP0_Compare = compare;
env->CP0_Count =
count - (uint32_t)muldiv64(now, 100 * 1000 * 1000, ticks_per_sec);
/* Adjust timer */
qemu_mod_timer(env->timer, next);
}
void cpu_mips_store_count (CPUState *env, uint32_t value)
{
cpu_mips_update_count(env, value, env->CP0_Compare);
}
void cpu_mips_store_compare (CPUState *env, uint32_t value)
{
cpu_mips_update_count(env, cpu_mips_get_count(env), value);
pic_set_irq(5, 0);
}
static void mips_timer_cb (void *opaque)
{
CPUState *env;
env = opaque;
#if 1
if (logfile) {
fprintf(logfile, "%s\n", __func__);
}
#endif
cpu_mips_update_count(env, cpu_mips_get_count(env), env->CP0_Compare);
pic_set_irq(5, 1);
}
void cpu_mips_clock_init (CPUState *env)
{
env->timer = qemu_new_timer(vm_clock, &mips_timer_cb, env);
env->CP0_Compare = 0;
cpu_mips_update_count(env, 1, 0);
}
static void io_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
{
if (logfile)
fprintf(logfile, "%s: addr %08x val %08x\n", __func__, addr, value);
cpu_outb(NULL, addr & 0xffff, value);
}
static uint32_t io_readb (void *opaque, target_phys_addr_t addr)
{
uint32_t ret = cpu_inb(NULL, addr & 0xffff);
if (logfile)
fprintf(logfile, "%s: addr %08x val %08x\n", __func__, addr, ret);
return ret;
}
static void io_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
{
if (logfile)
fprintf(logfile, "%s: addr %08x val %08x\n", __func__, addr, value);
#ifdef TARGET_WORDS_BIGENDIAN
value = bswap16(value);
#endif
cpu_outw(NULL, addr & 0xffff, value);
}
static uint32_t io_readw (void *opaque, target_phys_addr_t addr)
{
uint32_t ret = cpu_inw(NULL, addr & 0xffff);
#ifdef TARGET_WORDS_BIGENDIAN
ret = bswap16(ret);
#endif
if (logfile)
fprintf(logfile, "%s: addr %08x val %08x\n", __func__, addr, ret);
return ret;
}
static void io_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
if (logfile)
fprintf(logfile, "%s: addr %08x val %08x\n", __func__, addr, value);
#ifdef TARGET_WORDS_BIGENDIAN
value = bswap32(value);
#endif
cpu_outl(NULL, addr & 0xffff, value);
}
static uint32_t io_readl (void *opaque, target_phys_addr_t addr)
{
uint32_t ret = cpu_inl(NULL, addr & 0xffff);
#ifdef TARGET_WORDS_BIGENDIAN
ret = bswap32(ret);
#endif
if (logfile)
fprintf(logfile, "%s: addr %08x val %08x\n", __func__, addr, ret);
return ret;
}
CPUWriteMemoryFunc *io_write[] = {
&io_writeb,
&io_writew,
&io_writel,
};
CPUReadMemoryFunc *io_read[] = {
&io_readb,
&io_readw,
&io_readl,
};
void mips_r4k_init (int ram_size, int vga_ram_size, int boot_device,
DisplayState *ds, const char **fd_filename, int snapshot,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename)
{
char buf[1024];
target_ulong kernel_base, kernel_size, initrd_base, initrd_size;
unsigned long bios_offset;
int io_memory;
int linux_boot;
int ret;
printf("%s: start\n", __func__);
linux_boot = (kernel_filename != NULL);
/* allocate RAM */
cpu_register_physical_memory(0, ram_size, IO_MEM_RAM);
bios_offset = ram_size + vga_ram_size;
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, BIOS_FILENAME);
printf("%s: load BIOS '%s' size %d\n", __func__, buf, BIOS_SIZE);
ret = load_image(buf, phys_ram_base + bios_offset);
if (ret != BIOS_SIZE) {
fprintf(stderr, "qemu: could not load MIPS bios '%s'\n", buf);
exit(1);
}
cpu_register_physical_memory((uint32_t)(0x1fc00000),
BIOS_SIZE, bios_offset | IO_MEM_ROM);
#if 0
memcpy(phys_ram_base + 0x10000, phys_ram_base + bios_offset, BIOS_SIZE);
cpu_single_env->PC = 0x80010004;
#else
cpu_single_env->PC = 0xBFC00004;
#endif
if (linux_boot) {
kernel_base = KERNEL_LOAD_ADDR;
/* now we can load the kernel */
kernel_size = load_image(kernel_filename,
phys_ram_base + (kernel_base - 0x80000000));
if (kernel_size == (target_ulong) -1) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
}
/* load initrd */
if (initrd_filename) {
initrd_base = INITRD_LOAD_ADDR;
initrd_size = load_image(initrd_filename,
phys_ram_base + initrd_base);
if (initrd_size == (target_ulong) -1) {
fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
initrd_filename);
exit(1);
}
} else {
initrd_base = 0;
initrd_size = 0;
}
cpu_single_env->PC = KERNEL_LOAD_ADDR;
} else {
kernel_base = 0;
kernel_size = 0;
initrd_base = 0;
initrd_size = 0;
}
/* Init internal devices */
cpu_mips_clock_init(cpu_single_env);
cpu_mips_irqctrl_init();
/* Register 64 KB of ISA IO space at 0x14000000 */
io_memory = cpu_register_io_memory(0, io_read, io_write, NULL);
cpu_register_physical_memory(0x14000000, 0x00010000, io_memory);
isa_mem_base = 0x10000000;
serial_init(0x3f8, 4, serial_hds[0]);
vga_initialize(NULL, ds, phys_ram_base + ram_size, ram_size,
vga_ram_size);
isa_ne2000_init(0x300, 9, &nd_table[0]);
}
QEMUMachine mips_machine = {
"mips",
"mips r4k platform",
mips_r4k_init,
};