mips_malta.c 24 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
/*
 * QEMU Malta board support
 *
 * Copyright (c) 2006 Aurelien Jarno
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include "vl.h"

#ifdef TARGET_WORDS_BIGENDIAN
#define BIOS_FILENAME "mips_bios.bin"
#else
#define BIOS_FILENAME "mipsel_bios.bin"
#endif

#ifdef TARGET_MIPS64
#define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffULL)
#else
#define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffU)
#endif

#define ENVP_ADDR (int32_t)0x80002000
#define VIRT_TO_PHYS_ADDEND (-((int64_t)(int32_t)0x80000000))

#define ENVP_NB_ENTRIES	 	16
#define ENVP_ENTRY_SIZE	 	256


extern FILE *logfile;

typedef struct {
    uint32_t leds;
    uint32_t brk;
    uint32_t gpout;
    uint32_t i2cin;
    uint32_t i2coe;
    uint32_t i2cout;
    uint32_t i2csel;
    CharDriverState *display;
    char display_text[9];
    SerialState *uart;
} MaltaFPGAState;

static PITState *pit;

/* Malta FPGA */
static void malta_fpga_update_display(void *opaque)
{
    char leds_text[9];
    int i;
    MaltaFPGAState *s = opaque;

    for (i = 7 ; i >= 0 ; i--) {
        if (s->leds & (1 << i))
            leds_text[i] = '#';
	else
            leds_text[i] = ' ';
    }
    leds_text[8] = '\0';

    qemu_chr_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
    qemu_chr_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
}

/*
 * EEPROM 24C01 / 24C02 emulation.
 *
 * Emulation for serial EEPROMs:
 * 24C01 - 1024 bit (128 x 8)
 * 24C02 - 2048 bit (256 x 8)
 *
 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
 */

//~ #define DEBUG

#if defined(DEBUG)
#  define logout(fmt, args...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ##args)
#else
#  define logout(fmt, args...) ((void)0)
#endif

struct _eeprom24c0x_t {
  uint8_t tick;
  uint8_t address;
  uint8_t command;
  uint8_t ack;
  uint8_t scl;
  uint8_t sda;
  uint8_t data;
  //~ uint16_t size;
  uint8_t contents[256];
};

typedef struct _eeprom24c0x_t eeprom24c0x_t;

static eeprom24c0x_t eeprom = {
    contents: {
        /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
        /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
        /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
        /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
        /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
        /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
        /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
        /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
        /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
        /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
        /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
        /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
        /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
        /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
        /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
        /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
    },
};

static uint8_t eeprom24c0x_read()
{
    logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
        eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
    return eeprom.sda;
}

static void eeprom24c0x_write(int scl, int sda)
{
    if (eeprom.scl && scl && (eeprom.sda != sda)) {
        logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
                eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
        if (!sda) {
            eeprom.tick = 1;
            eeprom.command = 0;
        }
    } else if (eeprom.tick == 0 && !eeprom.ack) {
        /* Waiting for start. */
        logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
                eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
    } else if (!eeprom.scl && scl) {
        logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
                eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
        if (eeprom.ack) {
            logout("\ti2c ack bit = 0\n");
            sda = 0;
            eeprom.ack = 0;
        } else if (eeprom.sda == sda) {
            uint8_t bit = (sda != 0);
            logout("\ti2c bit = %d\n", bit);
            if (eeprom.tick < 9) {
                eeprom.command <<= 1;
                eeprom.command += bit;
                eeprom.tick++;
                if (eeprom.tick == 9) {
                    logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
                    eeprom.ack = 1;
                }
            } else if (eeprom.tick < 17) {
                if (eeprom.command & 1) {
                    sda = ((eeprom.data & 0x80) != 0);
                }
                eeprom.address <<= 1;
                eeprom.address += bit;
                eeprom.tick++;
                eeprom.data <<= 1;
                if (eeprom.tick == 17) {
                    eeprom.data = eeprom.contents[eeprom.address];
                    logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
                    eeprom.ack = 1;
                    eeprom.tick = 0;
                }
            } else if (eeprom.tick >= 17) {
                sda = 0;
            }
        } else {
            logout("\tsda changed with raising scl\n");
        }
    } else {
        logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
    }
    eeprom.scl = scl;
    eeprom.sda = sda;
}

static uint32_t malta_fpga_readl(void *opaque, target_phys_addr_t addr)
{
    MaltaFPGAState *s = opaque;
    uint32_t val = 0;
    uint32_t saddr;

    saddr = (addr & 0xfffff);

    switch (saddr) {

    /* SWITCH Register */
    case 0x00200:
        val = 0x00000000;		/* All switches closed */
	break;

    /* STATUS Register */
    case 0x00208:
#ifdef TARGET_WORDS_BIGENDIAN
        val = 0x00000012;
#else
        val = 0x00000010;
#endif
        break;

    /* JMPRS Register */
    case 0x00210:
        val = 0x00;
        break;

    /* LEDBAR Register */
    case 0x00408:
        val = s->leds;
        break;

    /* BRKRES Register */
    case 0x00508:
        val = s->brk;
        break;

    /* UART Registers */
    case 0x00900:
    case 0x00908:
    case 0x00910:
    case 0x00918:
    case 0x00920:
    case 0x00928:
    case 0x00930:
    case 0x00938:
        val = serial_mm_readb(s->uart, addr);
        break;

    /* GPOUT Register */
    case 0x00a00:
        val = s->gpout;
        break;

    /* XXX: implement a real I2C controller */

    /* GPINP Register */
    case 0x00a08:
        /* IN = OUT until a real I2C control is implemented */
        if (s->i2csel)
            val = s->i2cout;
        else
            val = 0x00;
        break;

    /* I2CINP Register */
    case 0x00b00:
        val = ((s->i2cin & ~1) | eeprom24c0x_read());
        break;

    /* I2COE Register */
    case 0x00b08:
        val = s->i2coe;
        break;

    /* I2COUT Register */
    case 0x00b10:
        val = s->i2cout;
        break;

    /* I2CSEL Register */
    case 0x00b18:
        val = s->i2csel;
        break;

    default:
#if 0
        printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
		addr);
#endif
        break;
    }
    return val;
}

static void malta_fpga_writel(void *opaque, target_phys_addr_t addr,
                              uint32_t val)
{
    MaltaFPGAState *s = opaque;
    uint32_t saddr;

    saddr = (addr & 0xfffff);

    switch (saddr) {

    /* SWITCH Register */
    case 0x00200:
        break;

    /* JMPRS Register */
    case 0x00210:
        break;

    /* LEDBAR Register */
    /* XXX: implement a 8-LED array */
    case 0x00408:
        s->leds = val & 0xff;
        break;

    /* ASCIIWORD Register */
    case 0x00410:
        snprintf(s->display_text, 9, "%08X", val);
        malta_fpga_update_display(s);
        break;

    /* ASCIIPOS0 to ASCIIPOS7 Registers */
    case 0x00418:
    case 0x00420:
    case 0x00428:
    case 0x00430:
    case 0x00438:
    case 0x00440:
    case 0x00448:
    case 0x00450:
        s->display_text[(saddr - 0x00418) >> 3] = (char) val;
        malta_fpga_update_display(s);
        break;

    /* SOFTRES Register */
    case 0x00500:
        if (val == 0x42)
            qemu_system_reset_request ();
        break;

    /* BRKRES Register */
    case 0x00508:
        s->brk = val & 0xff;
        break;

    /* UART Registers */
    case 0x00900:
    case 0x00908:
    case 0x00910:
    case 0x00918:
    case 0x00920:
    case 0x00928:
    case 0x00930:
    case 0x00938:
        serial_mm_writeb(s->uart, addr, val);
        break;

    /* GPOUT Register */
    case 0x00a00:
        s->gpout = val & 0xff;
        break;

    /* I2COE Register */
    case 0x00b08:
        s->i2coe = val & 0x03;
        break;

    /* I2COUT Register */
    case 0x00b10:
        eeprom24c0x_write(val & 0x02, val & 0x01);
        s->i2cout = val;
        break;

    /* I2CSEL Register */
    case 0x00b18:
        s->i2csel = val & 0x01;
        break;

    default:
#if 0
        printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
		addr);
#endif
        break;
    }
}

static CPUReadMemoryFunc *malta_fpga_read[] = {
   malta_fpga_readl,
   malta_fpga_readl,
   malta_fpga_readl
};

static CPUWriteMemoryFunc *malta_fpga_write[] = {
   malta_fpga_writel,
   malta_fpga_writel,
   malta_fpga_writel
};

void malta_fpga_reset(void *opaque)
{
    MaltaFPGAState *s = opaque;

    s->leds   = 0x00;
    s->brk    = 0x0a;
    s->gpout  = 0x00;
    s->i2cin  = 0x3;
    s->i2coe  = 0x0;
    s->i2cout = 0x3;
    s->i2csel = 0x1;

    s->display_text[8] = '\0';
    snprintf(s->display_text, 9, "        ");
    malta_fpga_update_display(s);
}

MaltaFPGAState *malta_fpga_init(target_phys_addr_t base, CPUState *env)
{
    MaltaFPGAState *s;
    CharDriverState *uart_chr;
    int malta;

    s = (MaltaFPGAState *)qemu_mallocz(sizeof(MaltaFPGAState));

    malta = cpu_register_io_memory(0, malta_fpga_read,
                                   malta_fpga_write, s);

    cpu_register_physical_memory(base, 0x100000, malta);

    s->display = qemu_chr_open("vc");
    qemu_chr_printf(s->display, "\e[HMalta LEDBAR\r\n");
    qemu_chr_printf(s->display, "+--------+\r\n");
    qemu_chr_printf(s->display, "+        +\r\n");
    qemu_chr_printf(s->display, "+--------+\r\n");
    qemu_chr_printf(s->display, "\n");
    qemu_chr_printf(s->display, "Malta ASCII\r\n");
    qemu_chr_printf(s->display, "+--------+\r\n");
    qemu_chr_printf(s->display, "+        +\r\n");
    qemu_chr_printf(s->display, "+--------+\r\n");

    uart_chr = qemu_chr_open("vc");
    qemu_chr_printf(uart_chr, "CBUS UART\r\n");
    s->uart = serial_mm_init(base, 3, env->irq[2], uart_chr, 0);

    malta_fpga_reset(s);
    qemu_register_reset(malta_fpga_reset, s);

    return s;
}

/* Audio support */
#ifdef HAS_AUDIO
static void audio_init (PCIBus *pci_bus)
{
    struct soundhw *c;
    int audio_enabled = 0;

    for (c = soundhw; !audio_enabled && c->name; ++c) {
        audio_enabled = c->enabled;
    }

    if (audio_enabled) {
        AudioState *s;

        s = AUD_init ();
        if (s) {
            for (c = soundhw; c->name; ++c) {
                if (c->enabled) {
                    if (c->isa) {
                        fprintf(stderr, "qemu: Unsupported Sound Card: %s\n", c->name);
                        exit(1);
                    }
                    else {
                        if (pci_bus) {
                            c->init.init_pci (pci_bus, s);
                        }
                    }
                }
            }
        }
    }
}
#endif

/* Network support */
static void network_init (PCIBus *pci_bus)
{
    int i;
    NICInfo *nd;

    for(i = 0; i < nb_nics; i++) {
        nd = &nd_table[i];
        if (!nd->model) {
            nd->model = "pcnet";
        }
        if (i == 0  && strcmp(nd->model, "pcnet") == 0) {
            /* The malta board has a PCNet card using PCI SLOT 11 */
            pci_nic_init(pci_bus, nd, 88);
        } else {
            pci_nic_init(pci_bus, nd, -1);
        }
    }
}

/* ROM and pseudo bootloader

   The following code implements a very very simple bootloader. It first
   loads the registers a0 to a3 to the values expected by the OS, and
   then jump at the kernel address.

   The bootloader should pass the locations of the kernel arguments and
   environment variables tables. Those tables contain the 32-bit address
   of NULL terminated strings. The environment variables table should be
   terminated by a NULL address.

   For a simpler implementation, the number of kernel arguments is fixed
   to two (the name of the kernel and the command line), and the two
   tables are actually the same one.

   The registers a0 to a3 should contain the following values:
     a0 - number of kernel arguments
     a1 - 32-bit address of the kernel arguments table
     a2 - 32-bit address of the environment variables table
     a3 - RAM size in bytes
*/

static void write_bootloader (CPUState *env, unsigned long bios_offset, int64_t kernel_entry)
{
    uint32_t *p;

    /* Small bootloader */
    p = (uint32_t *) (phys_ram_base + bios_offset);
    stl_raw(p++, 0x0bf00010);                                      /* j 0x1fc00040 */
    stl_raw(p++, 0x00000000);                                      /* nop */

    /* Second part of the bootloader */
    p = (uint32_t *) (phys_ram_base + bios_offset + 0x040);
    stl_raw(p++, 0x3c040000);                                      /* lui a0, 0 */
    stl_raw(p++, 0x34840002);                                      /* ori a0, a0, 2 */
    stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff));       /* lui a1, high(ENVP_ADDR) */
    stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff));               /* ori a1, a0, low(ENVP_ADDR) */
    stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
    stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff));         /* ori a2, a2, low(ENVP_ADDR + 8) */
    stl_raw(p++, 0x3c070000 | (env->ram_size >> 16));              /* lui a3, high(env->ram_size) */
    stl_raw(p++, 0x34e70000 | (env->ram_size & 0xffff));           /* ori a3, a3, low(env->ram_size) */

    /* Load BAR registers as done by YAMON */
    stl_raw(p++, 0x3c09bbe0);                                      /* lui t1, 0xbbe0 */

#ifdef TARGET_WORDS_BIGENDIAN
    stl_raw(p++, 0x3c08c000);                                      /* lui t0, 0xc000 */
#else
    stl_raw(p++, 0x340800c0);                                      /* ori t0, r0, 0x00c0 */
#endif
    stl_raw(p++, 0xad280048);                                      /* sw t0, 0x0048(t1) */
#ifdef TARGET_WORDS_BIGENDIAN
    stl_raw(p++, 0x3c084000);                                      /* lui t0, 0x4000 */
#else
    stl_raw(p++, 0x34080040);                                      /* ori t0, r0, 0x0040 */
#endif
    stl_raw(p++, 0xad280050);                                      /* sw t0, 0x0050(t1) */

#ifdef TARGET_WORDS_BIGENDIAN
    stl_raw(p++, 0x3c088000);                                      /* lui t0, 0x8000 */
#else
    stl_raw(p++, 0x34080080);                                      /* ori t0, r0, 0x0080 */
#endif
    stl_raw(p++, 0xad280058);                                      /* sw t0, 0x0058(t1) */
#ifdef TARGET_WORDS_BIGENDIAN
    stl_raw(p++, 0x3c083f00);                                      /* lui t0, 0x3f00 */
#else
    stl_raw(p++, 0x3408003f);                                      /* ori t0, r0, 0x003f */
#endif
    stl_raw(p++, 0xad280060);                                      /* sw t0, 0x0060(t1) */

#ifdef TARGET_WORDS_BIGENDIAN
    stl_raw(p++, 0x3c08c100);                                      /* lui t0, 0xc100 */
#else
    stl_raw(p++, 0x340800c1);                                      /* ori t0, r0, 0x00c1 */
#endif
    stl_raw(p++, 0xad280080);                                      /* sw t0, 0x0080(t1) */
#ifdef TARGET_WORDS_BIGENDIAN
    stl_raw(p++, 0x3c085e00);                                      /* lui t0, 0x5e00 */
#else
    stl_raw(p++, 0x3408005e);                                      /* ori t0, r0, 0x005e */
#endif
    stl_raw(p++, 0xad280088);                                      /* sw t0, 0x0088(t1) */

    /* Jump to kernel code */
    stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff));    /* lui ra, high(kernel_entry) */
    stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff));            /* ori ra, ra, low(kernel_entry) */
    stl_raw(p++, 0x03e00008);                                      /* jr ra */
    stl_raw(p++, 0x00000000);                                      /* nop */
}

static void prom_set(int index, const char *string, ...)
{
    va_list ap;
    int32_t *p;
    int32_t table_addr;
    char *s;

    if (index >= ENVP_NB_ENTRIES)
        return;

    p = (int32_t *) (phys_ram_base + ENVP_ADDR + VIRT_TO_PHYS_ADDEND);
    p += index;

    if (string == NULL) {
        stl_raw(p, 0);
        return;
    }

    table_addr = ENVP_ADDR + sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
    s = (char *) (phys_ram_base + VIRT_TO_PHYS_ADDEND + table_addr);

    stl_raw(p, table_addr);

    va_start(ap, string);
    vsnprintf (s, ENVP_ENTRY_SIZE, string, ap);
    va_end(ap);
}

/* Kernel */
static int64_t load_kernel (CPUState *env)
{
    int64_t kernel_entry, kernel_low, kernel_high;
    int index = 0;
    long initrd_size;
    ram_addr_t initrd_offset;

    if (load_elf(env->kernel_filename, VIRT_TO_PHYS_ADDEND,
                 &kernel_entry, &kernel_low, &kernel_high) < 0) {
        fprintf(stderr, "qemu: could not load kernel '%s'\n",
                env->kernel_filename);
      exit(1);
    }

    /* load initrd */
    initrd_size = 0;
    initrd_offset = 0;
    if (env->initrd_filename) {
        initrd_size = get_image_size (env->initrd_filename);
        if (initrd_size > 0) {
            initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
            if (initrd_offset + initrd_size > env->ram_size) {
                fprintf(stderr,
                        "qemu: memory too small for initial ram disk '%s'\n",
                        env->initrd_filename);
                exit(1);
            }
            initrd_size = load_image(env->initrd_filename,
                                     phys_ram_base + initrd_offset);
        }
        if (initrd_size == (target_ulong) -1) {
            fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
                    env->initrd_filename);
            exit(1);
        }
    }

    /* Store command line.  */
    prom_set(index++, env->kernel_filename);
    if (initrd_size > 0)
        prom_set(index++, "rd_start=0x" TARGET_FMT_lx " rd_size=%li %s",
                 PHYS_TO_VIRT(initrd_offset), initrd_size,
                 env->kernel_cmdline);
    else
        prom_set(index++, env->kernel_cmdline);

    /* Setup minimum environment variables */
    prom_set(index++, "memsize");
    prom_set(index++, "%i", env->ram_size);
    prom_set(index++, "modetty0");
    prom_set(index++, "38400n8r");
    prom_set(index++, NULL);

    return kernel_entry;
}

static void main_cpu_reset(void *opaque)
{
    CPUState *env = opaque;
    cpu_reset(env);

    /* The bootload does not need to be rewritten as it is located in a
       read only location. The kernel location and the arguments table
       location does not change. */
    if (env->kernel_filename) {
        env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
        load_kernel (env);
    }
}

static
void mips_malta_init (int ram_size, int vga_ram_size, int boot_device,
                      DisplayState *ds, const char **fd_filename, int snapshot,
                      const char *kernel_filename, const char *kernel_cmdline,
                      const char *initrd_filename, const char *cpu_model)
{
    char buf[1024];
    unsigned long bios_offset;
    int64_t kernel_entry;
    PCIBus *pci_bus;
    CPUState *env;
    RTCState *rtc_state;
    /* fdctrl_t *floppy_controller; */
    MaltaFPGAState *malta_fpga;
    int ret;
    mips_def_t *def;
    qemu_irq *i8259;

    /* init CPUs */
    if (cpu_model == NULL) {
#ifdef TARGET_MIPS64
        cpu_model = "R4000";
#else
        cpu_model = "4KEc";
#endif
    }
    if (mips_find_by_name(cpu_model, &def) != 0)
        def = NULL;
    env = cpu_init();
    cpu_mips_register(env, def);
    register_savevm("cpu", 0, 3, cpu_save, cpu_load, env);
    qemu_register_reset(main_cpu_reset, env);

    /* allocate RAM */
    cpu_register_physical_memory(0, ram_size, IO_MEM_RAM);

    /* Map the bios at two physical locations, as on the real board */
    bios_offset = ram_size + vga_ram_size;
    cpu_register_physical_memory(0x1e000000LL,
                                 BIOS_SIZE, bios_offset | IO_MEM_ROM);
    cpu_register_physical_memory(0x1fc00000LL,
                                 BIOS_SIZE, bios_offset | IO_MEM_ROM);

    /* Load a BIOS image except if a kernel image has been specified. In
       the later case, just write a small bootloader to the flash
       location. */
    if (kernel_filename) {
        env->ram_size = ram_size;
        env->kernel_filename = kernel_filename;
        env->kernel_cmdline = kernel_cmdline;
        env->initrd_filename = initrd_filename;
        kernel_entry = load_kernel(env);
        env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
        write_bootloader(env, bios_offset, kernel_entry);
    } else {
        snprintf(buf, sizeof(buf), "%s/%s", bios_dir, BIOS_FILENAME);
        ret = load_image(buf, phys_ram_base + bios_offset);
        if (ret < 0 || ret > BIOS_SIZE) {
            fprintf(stderr, "qemu: Warning, could not load MIPS bios '%s'\n",
                    buf);
            exit(1);
        }
    }

    /* Board ID = 0x420 (Malta Board with CoreLV)
       XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
       map to the board ID. */
    stl_raw(phys_ram_base + bios_offset + 0x10, 0x00000420);

    /* Init internal devices */
    cpu_mips_irq_init_cpu(env);
    cpu_mips_clock_init(env);
    cpu_mips_irqctrl_init();

    /* FPGA */
    malta_fpga = malta_fpga_init(0x1f000000LL, env);

    /* Interrupt controller */
    /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
    i8259 = i8259_init(env->irq[2]);

    /* Northbridge */
    pci_bus = pci_gt64120_init(i8259);

    /* Southbridge */
    piix4_init(pci_bus, 80);
    pci_piix3_ide_init(pci_bus, bs_table, 81, i8259);
    usb_uhci_init(pci_bus, 82);
    piix4_pm_init(pci_bus, 83);
    pit = pit_init(0x40, i8259[0]);
    DMA_init(0);

    /* Super I/O */
    i8042_init(i8259[1], i8259[12], 0x60);
    rtc_state = rtc_init(0x70, i8259[8]);
    if (serial_hds[0])
        serial_init(0x3f8, i8259[4], serial_hds[0]);
    if (serial_hds[1])
        serial_init(0x2f8, i8259[3], serial_hds[1]);
    if (parallel_hds[0])
        parallel_init(0x378, i8259[7], parallel_hds[0]);
    /* XXX: The floppy controller does not work correctly, something is
       probably wrong.
    floppy_controller = fdctrl_init(i8259[6], 2, 0, 0x3f0, fd_table); */

    /* Sound card */
#ifdef HAS_AUDIO
    audio_init(pci_bus);
#endif

    /* Network card */
    network_init(pci_bus);

    /* Optional PCI video card */
    pci_cirrus_vga_init(pci_bus, ds, phys_ram_base + ram_size,
                        ram_size, vga_ram_size);
}

QEMUMachine mips_malta_machine = {
    "malta",
    "MIPS Malta Core LV",
    mips_malta_init,
};