musicpal.c 38.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
/*
 * Marvell MV88W8618 / Freecom MusicPal emulation.
 *
 * Copyright (c) 2008 Jan Kiszka
 *
 * This code is licenced under the GNU GPL v2.
 */

#include "hw.h"
#include "arm-misc.h"
#include "devices.h"
#include "net.h"
#include "sysemu.h"
#include "boards.h"
#include "pc.h"
#include "qemu-timer.h"
#include "block.h"
#include "flash.h"
#include "console.h"
#include "audio/audio.h"
#include "i2c.h"

#define MP_ETH_BASE             0x80008000
#define MP_ETH_SIZE             0x00001000

#define MP_UART1_BASE           0x8000C840
#define MP_UART2_BASE           0x8000C940

#define MP_FLASHCFG_BASE        0x90006000
#define MP_FLASHCFG_SIZE        0x00001000

#define MP_AUDIO_BASE           0x90007000
#define MP_AUDIO_SIZE           0x00001000

#define MP_PIC_BASE             0x90008000
#define MP_PIC_SIZE             0x00001000

#define MP_PIT_BASE             0x90009000
#define MP_PIT_SIZE             0x00001000

#define MP_LCD_BASE             0x9000c000
#define MP_LCD_SIZE             0x00001000

#define MP_SRAM_BASE            0xC0000000
#define MP_SRAM_SIZE            0x00020000

#define MP_RAM_DEFAULT_SIZE     32*1024*1024
#define MP_FLASH_SIZE_MAX       32*1024*1024

#define MP_TIMER1_IRQ           4
/* ... */
#define MP_TIMER4_IRQ           7
#define MP_EHCI_IRQ             8
#define MP_ETH_IRQ              9
#define MP_UART1_IRQ            11
#define MP_UART2_IRQ            11
#define MP_GPIO_IRQ             12
#define MP_RTC_IRQ              28
#define MP_AUDIO_IRQ            30

static uint32_t gpio_in_state = 0xffffffff;
static uint32_t gpio_out_state;
static ram_addr_t sram_off;

/* Address conversion helpers */
static void *target2host_addr(uint32_t addr)
{
    if (addr < MP_SRAM_BASE) {
        if (addr >= MP_RAM_DEFAULT_SIZE)
            return NULL;
        return (void *)(phys_ram_base + addr);
    } else {
        if (addr >= MP_SRAM_BASE + MP_SRAM_SIZE)
            return NULL;
        return (void *)(phys_ram_base + sram_off + addr - MP_SRAM_BASE);
    }
}

static uint32_t host2target_addr(void *addr)
{
    if (addr < ((void *)phys_ram_base) + sram_off)
        return (unsigned long)addr - (unsigned long)phys_ram_base;
    else
        return (unsigned long)addr - (unsigned long)phys_ram_base -
            sram_off + MP_SRAM_BASE;
}


typedef enum i2c_state {
    STOPPED = 0,
    INITIALIZING,
    SENDING_BIT7,
    SENDING_BIT6,
    SENDING_BIT5,
    SENDING_BIT4,
    SENDING_BIT3,
    SENDING_BIT2,
    SENDING_BIT1,
    SENDING_BIT0,
    WAITING_FOR_ACK,
    RECEIVING_BIT7,
    RECEIVING_BIT6,
    RECEIVING_BIT5,
    RECEIVING_BIT4,
    RECEIVING_BIT3,
    RECEIVING_BIT2,
    RECEIVING_BIT1,
    RECEIVING_BIT0,
    SENDING_ACK
} i2c_state;

typedef struct i2c_interface {
    i2c_bus *bus;
    i2c_state state;
    int last_data;
    int last_clock;
    uint8_t buffer;
    int current_addr;
} i2c_interface;

static void i2c_enter_stop(i2c_interface *i2c)
{
    if (i2c->current_addr >= 0)
        i2c_end_transfer(i2c->bus);
    i2c->current_addr = -1;
    i2c->state = STOPPED;
}

static void i2c_state_update(i2c_interface *i2c, int data, int clock)
{
    if (!i2c)
        return;

    switch (i2c->state) {
    case STOPPED:
        if (data == 0 && i2c->last_data == 1 && clock == 1)
            i2c->state = INITIALIZING;
        break;

    case INITIALIZING:
        if (clock == 0 && i2c->last_clock == 1 && data == 0)
            i2c->state = SENDING_BIT7;
        else
            i2c_enter_stop(i2c);
        break;

    case SENDING_BIT7 ... SENDING_BIT0:
        if (clock == 0 && i2c->last_clock == 1) {
            i2c->buffer = (i2c->buffer << 1) | data;
            i2c->state++; /* will end up in WAITING_FOR_ACK */
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
            i2c_enter_stop(i2c);
        break;

    case WAITING_FOR_ACK:
        if (clock == 0 && i2c->last_clock == 1) {
            if (i2c->current_addr < 0) {
                i2c->current_addr = i2c->buffer;
                i2c_start_transfer(i2c->bus, i2c->current_addr & 0xfe,
                                   i2c->buffer & 1);
            } else
                i2c_send(i2c->bus, i2c->buffer);
            if (i2c->current_addr & 1) {
                i2c->state = RECEIVING_BIT7;
                i2c->buffer = i2c_recv(i2c->bus);
            } else
                i2c->state = SENDING_BIT7;
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
            i2c_enter_stop(i2c);
        break;

    case RECEIVING_BIT7 ... RECEIVING_BIT0:
        if (clock == 0 && i2c->last_clock == 1) {
            i2c->state++; /* will end up in SENDING_ACK */
            i2c->buffer <<= 1;
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
            i2c_enter_stop(i2c);
        break;

    case SENDING_ACK:
        if (clock == 0 && i2c->last_clock == 1) {
            i2c->state = RECEIVING_BIT7;
            if (data == 0)
                i2c->buffer = i2c_recv(i2c->bus);
            else
                i2c_nack(i2c->bus);
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
            i2c_enter_stop(i2c);
        break;
    }

    i2c->last_data = data;
    i2c->last_clock = clock;
}

static int i2c_get_data(i2c_interface *i2c)
{
    if (!i2c)
        return 0;

    switch (i2c->state) {
    case RECEIVING_BIT7 ... RECEIVING_BIT0:
        return (i2c->buffer >> 7);

    case WAITING_FOR_ACK:
    default:
        return 0;
    }
}

static i2c_interface *mixer_i2c;

#ifdef HAS_AUDIO

/* Audio register offsets */
#define MP_AUDIO_PLAYBACK_MODE  0x00
#define MP_AUDIO_CLOCK_DIV      0x18
#define MP_AUDIO_IRQ_STATUS     0x20
#define MP_AUDIO_IRQ_ENABLE     0x24
#define MP_AUDIO_TX_START_LO    0x28
#define MP_AUDIO_TX_THRESHOLD   0x2C
#define MP_AUDIO_TX_STATUS      0x38
#define MP_AUDIO_TX_START_HI    0x40

/* Status register and IRQ enable bits */
#define MP_AUDIO_TX_HALF        (1 << 6)
#define MP_AUDIO_TX_FULL        (1 << 7)

/* Playback mode bits */
#define MP_AUDIO_16BIT_SAMPLE   (1 << 0)
#define MP_AUDIO_PLAYBACK_EN    (1 << 7)
#define MP_AUDIO_CLOCK_24MHZ    (1 << 9)

/* Wolfson 8750 I2C address */
#define MP_WM_ADDR              0x34

const char audio_name[] = "mv88w8618";

typedef struct musicpal_audio_state {
    uint32_t base;
    qemu_irq irq;
    uint32_t playback_mode;
    uint32_t status;
    uint32_t irq_enable;
    unsigned long phys_buf;
    void *target_buffer;
    unsigned int threshold;
    unsigned int play_pos;
    unsigned int last_free;
    uint32_t clock_div;
    i2c_slave *wm;
} musicpal_audio_state;

static void audio_callback(void *opaque, int free_out, int free_in)
{
    musicpal_audio_state *s = opaque;
    int16_t *codec_buffer;
    int pos, block_size;

    if (!(s->playback_mode & MP_AUDIO_PLAYBACK_EN))
        return;

    if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
        free_out <<= 2;
    else
        free_out <<= 1;

    block_size = s->threshold/2;
    if (free_out - s->last_free < block_size)
        return;

    if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
        memcpy(wm8750_dac_buffer(s->wm, block_size >> 2),
               (uint32_t *)(s->target_buffer + s->play_pos),
               block_size);
    else {
        codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
        for (pos = 0; pos < block_size; pos += 2) {
            *codec_buffer++ = cpu_to_le16(256 *
                    *(int8_t *)(s->target_buffer + s->play_pos + pos));
            *codec_buffer++ = cpu_to_le16(256 *
                    *(int8_t *)(s->target_buffer + s->play_pos + pos + 1));
        }
    }
    wm8750_dac_commit(s->wm);

    s->last_free = free_out - block_size;

    if (s->play_pos == 0) {
        s->status |= MP_AUDIO_TX_HALF;
        s->play_pos = block_size;
    } else {
        s->status |= MP_AUDIO_TX_FULL;
        s->play_pos = 0;
    }

    if (s->status & s->irq_enable)
        qemu_irq_raise(s->irq);
}

static void musicpal_audio_clock_update(musicpal_audio_state *s)
{
    int rate;

    if (s->playback_mode & MP_AUDIO_CLOCK_24MHZ)
        rate = 24576000 / 64; /* 24.576MHz */
    else
        rate = 11289600 / 64; /* 11.2896MHz */

    rate /= ((s->clock_div >> 8) & 0xff) + 1;

    wm8750_set_bclk_in(s->wm, rate);
}

static uint32_t musicpal_audio_read(void *opaque, target_phys_addr_t offset)
{
    musicpal_audio_state *s = opaque;

    offset -= s->base;
    switch (offset) {
    case MP_AUDIO_PLAYBACK_MODE:
        return s->playback_mode;

    case MP_AUDIO_CLOCK_DIV:
        return s->clock_div;

    case MP_AUDIO_IRQ_STATUS:
        return s->status;

    case MP_AUDIO_IRQ_ENABLE:
        return s->irq_enable;

    case MP_AUDIO_TX_STATUS:
        return s->play_pos >> 2;

    default:
        return 0;
    }
}

static void musicpal_audio_write(void *opaque, target_phys_addr_t offset,
                                 uint32_t value)
{
    musicpal_audio_state *s = opaque;

    offset -= s->base;
    switch (offset) {
    case MP_AUDIO_PLAYBACK_MODE:
        if (value & MP_AUDIO_PLAYBACK_EN &&
            !(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) {
            s->status = 0;
            s->last_free = 0;
            s->play_pos = 0;
        }
        s->playback_mode = value;
        musicpal_audio_clock_update(s);
        break;

    case MP_AUDIO_CLOCK_DIV:
        s->clock_div = value;
        s->last_free = 0;
        s->play_pos = 0;
        musicpal_audio_clock_update(s);
        break;

    case MP_AUDIO_IRQ_STATUS:
        s->status &= ~value;
        break;

    case MP_AUDIO_IRQ_ENABLE:
        s->irq_enable = value;
        if (s->status & s->irq_enable)
            qemu_irq_raise(s->irq);
        break;

    case MP_AUDIO_TX_START_LO:
        s->phys_buf = (s->phys_buf & 0xFFFF0000) | (value & 0xFFFF);
        s->target_buffer = target2host_addr(s->phys_buf);
        s->play_pos = 0;
        s->last_free = 0;
        break;

    case MP_AUDIO_TX_THRESHOLD:
        s->threshold = (value + 1) * 4;
        break;

    case MP_AUDIO_TX_START_HI:
        s->phys_buf = (s->phys_buf & 0xFFFF) | (value << 16);
        s->target_buffer = target2host_addr(s->phys_buf);
        s->play_pos = 0;
        s->last_free = 0;
        break;
    }
}

static void musicpal_audio_reset(void *opaque)
{
    musicpal_audio_state *s = opaque;

    s->playback_mode = 0;
    s->status = 0;
    s->irq_enable = 0;
}

static CPUReadMemoryFunc *musicpal_audio_readfn[] = {
    musicpal_audio_read,
    musicpal_audio_read,
    musicpal_audio_read
};

static CPUWriteMemoryFunc *musicpal_audio_writefn[] = {
    musicpal_audio_write,
    musicpal_audio_write,
    musicpal_audio_write
};

static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
{
    AudioState *audio;
    musicpal_audio_state *s;
    i2c_interface *i2c;
    int iomemtype;

    audio = AUD_init();
    if (!audio) {
        AUD_log(audio_name, "No audio state\n");
        return NULL;
    }

    s = qemu_mallocz(sizeof(musicpal_audio_state));
    if (!s)
        return NULL;
    s->base = base;
    s->irq = irq;

    i2c = qemu_mallocz(sizeof(i2c_interface));
    if (!i2c)
        return NULL;
    i2c->bus = i2c_init_bus();
    i2c->current_addr = -1;

    s->wm = wm8750_init(i2c->bus, audio);
    if (!s->wm)
        return NULL;
    i2c_set_slave_address(s->wm, MP_WM_ADDR);
    wm8750_data_req_set(s->wm, audio_callback, s);

    iomemtype = cpu_register_io_memory(0, musicpal_audio_readfn,
                       musicpal_audio_writefn, s);
    cpu_register_physical_memory(base, MP_AUDIO_SIZE, iomemtype);

    qemu_register_reset(musicpal_audio_reset, s);

    return i2c;
}
#else  /* !HAS_AUDIO */
static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
{
    return NULL;
}
#endif /* !HAS_AUDIO */

/* Ethernet register offsets */
#define MP_ETH_SMIR             0x010
#define MP_ETH_PCXR             0x408
#define MP_ETH_SDCMR            0x448
#define MP_ETH_ICR              0x450
#define MP_ETH_IMR              0x458
#define MP_ETH_FRDP0            0x480
#define MP_ETH_FRDP1            0x484
#define MP_ETH_FRDP2            0x488
#define MP_ETH_FRDP3            0x48C
#define MP_ETH_CRDP0            0x4A0
#define MP_ETH_CRDP1            0x4A4
#define MP_ETH_CRDP2            0x4A8
#define MP_ETH_CRDP3            0x4AC
#define MP_ETH_CTDP0            0x4E0
#define MP_ETH_CTDP1            0x4E4
#define MP_ETH_CTDP2            0x4E8
#define MP_ETH_CTDP3            0x4EC

/* MII PHY access */
#define MP_ETH_SMIR_DATA        0x0000FFFF
#define MP_ETH_SMIR_ADDR        0x03FF0000
#define MP_ETH_SMIR_OPCODE      (1 << 26) /* Read value */
#define MP_ETH_SMIR_RDVALID     (1 << 27)

/* PHY registers */
#define MP_ETH_PHY1_BMSR        0x00210000
#define MP_ETH_PHY1_PHYSID1     0x00410000
#define MP_ETH_PHY1_PHYSID2     0x00610000

#define MP_PHY_BMSR_LINK        0x0004
#define MP_PHY_BMSR_AUTONEG     0x0008

#define MP_PHY_88E3015          0x01410E20

/* TX descriptor status */
#define MP_ETH_TX_OWN           (1 << 31)

/* RX descriptor status */
#define MP_ETH_RX_OWN           (1 << 31)

/* Interrupt cause/mask bits */
#define MP_ETH_IRQ_RX_BIT       0
#define MP_ETH_IRQ_RX           (1 << MP_ETH_IRQ_RX_BIT)
#define MP_ETH_IRQ_TXHI_BIT     2
#define MP_ETH_IRQ_TXLO_BIT     3

/* Port config bits */
#define MP_ETH_PCXR_2BSM_BIT    28 /* 2-byte incoming suffix */

/* SDMA command bits */
#define MP_ETH_CMD_TXHI         (1 << 23)
#define MP_ETH_CMD_TXLO         (1 << 22)

typedef struct mv88w8618_tx_desc {
    uint32_t cmdstat;
    uint16_t res;
    uint16_t bytes;
    uint32_t buffer;
    uint32_t next;
} mv88w8618_tx_desc;

typedef struct mv88w8618_rx_desc {
    uint32_t cmdstat;
    uint16_t bytes;
    uint16_t buffer_size;
    uint32_t buffer;
    uint32_t next;
} mv88w8618_rx_desc;

typedef struct mv88w8618_eth_state {
    uint32_t base;
    qemu_irq irq;
    uint32_t smir;
    uint32_t icr;
    uint32_t imr;
    int vlan_header;
    mv88w8618_tx_desc *tx_queue[2];
    mv88w8618_rx_desc *rx_queue[4];
    mv88w8618_rx_desc *frx_queue[4];
    mv88w8618_rx_desc *cur_rx[4];
    VLANClientState *vc;
} mv88w8618_eth_state;

static int eth_can_receive(void *opaque)
{
    return 1;
}

static void eth_receive(void *opaque, const uint8_t *buf, int size)
{
    mv88w8618_eth_state *s = opaque;
    mv88w8618_rx_desc *desc;
    int i;

    for (i = 0; i < 4; i++) {
        desc = s->cur_rx[i];
        if (!desc)
            continue;
        do {
            if (le32_to_cpu(desc->cmdstat) & MP_ETH_RX_OWN &&
                le16_to_cpu(desc->buffer_size) >= size) {
                memcpy(target2host_addr(le32_to_cpu(desc->buffer) +
                                        s->vlan_header),
                       buf, size);
                desc->bytes = cpu_to_le16(size + s->vlan_header);
                desc->cmdstat &= cpu_to_le32(~MP_ETH_RX_OWN);
                s->cur_rx[i] = target2host_addr(le32_to_cpu(desc->next));

                s->icr |= MP_ETH_IRQ_RX;
                if (s->icr & s->imr)
                    qemu_irq_raise(s->irq);
                return;
            }
            desc = target2host_addr(le32_to_cpu(desc->next));
        } while (desc != s->rx_queue[i]);
    }
}

static void eth_send(mv88w8618_eth_state *s, int queue_index)
{
    mv88w8618_tx_desc *desc = s->tx_queue[queue_index];

    do {
        if (le32_to_cpu(desc->cmdstat) & MP_ETH_TX_OWN) {
            qemu_send_packet(s->vc,
                             target2host_addr(le32_to_cpu(desc->buffer)),
                             le16_to_cpu(desc->bytes));
            desc->cmdstat &= cpu_to_le32(~MP_ETH_TX_OWN);
            s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index);
        }
        desc = target2host_addr(le32_to_cpu(desc->next));
    } while (desc != s->tx_queue[queue_index]);
}

static uint32_t mv88w8618_eth_read(void *opaque, target_phys_addr_t offset)
{
    mv88w8618_eth_state *s = opaque;

    offset -= s->base;
    switch (offset) {
    case MP_ETH_SMIR:
        if (s->smir & MP_ETH_SMIR_OPCODE) {
            switch (s->smir & MP_ETH_SMIR_ADDR) {
            case MP_ETH_PHY1_BMSR:
                return MP_PHY_BMSR_LINK | MP_PHY_BMSR_AUTONEG |
                       MP_ETH_SMIR_RDVALID;
            case MP_ETH_PHY1_PHYSID1:
                return (MP_PHY_88E3015 >> 16) | MP_ETH_SMIR_RDVALID;
            case MP_ETH_PHY1_PHYSID2:
                return (MP_PHY_88E3015 & 0xFFFF) | MP_ETH_SMIR_RDVALID;
            default:
                return MP_ETH_SMIR_RDVALID;
            }
        }
        return 0;

    case MP_ETH_ICR:
        return s->icr;

    case MP_ETH_IMR:
        return s->imr;

    case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
        return host2target_addr(s->frx_queue[(offset - MP_ETH_FRDP0)/4]);

    case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
        return host2target_addr(s->rx_queue[(offset - MP_ETH_CRDP0)/4]);

    case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
        return host2target_addr(s->tx_queue[(offset - MP_ETH_CTDP0)/4]);

    default:
        return 0;
    }
}

static void mv88w8618_eth_write(void *opaque, target_phys_addr_t offset,
                                uint32_t value)
{
    mv88w8618_eth_state *s = opaque;

    offset -= s->base;
    switch (offset) {
    case MP_ETH_SMIR:
        s->smir = value;
        break;

    case MP_ETH_PCXR:
        s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2;
        break;

    case MP_ETH_SDCMR:
        if (value & MP_ETH_CMD_TXHI)
            eth_send(s, 1);
        if (value & MP_ETH_CMD_TXLO)
            eth_send(s, 0);
        if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr)
            qemu_irq_raise(s->irq);
        break;

    case MP_ETH_ICR:
        s->icr &= value;
        break;

    case MP_ETH_IMR:
        s->imr = value;
        if (s->icr & s->imr)
            qemu_irq_raise(s->irq);
        break;

    case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
        s->frx_queue[(offset - MP_ETH_FRDP0)/4] = target2host_addr(value);
        break;

    case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
        s->rx_queue[(offset - MP_ETH_CRDP0)/4] =
            s->cur_rx[(offset - MP_ETH_CRDP0)/4] = target2host_addr(value);
        break;

    case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
        s->tx_queue[(offset - MP_ETH_CTDP0)/4] = target2host_addr(value);
        break;
    }
}

static CPUReadMemoryFunc *mv88w8618_eth_readfn[] = {
    mv88w8618_eth_read,
    mv88w8618_eth_read,
    mv88w8618_eth_read
};

static CPUWriteMemoryFunc *mv88w8618_eth_writefn[] = {
    mv88w8618_eth_write,
    mv88w8618_eth_write,
    mv88w8618_eth_write
};

static void mv88w8618_eth_init(NICInfo *nd, uint32_t base, qemu_irq irq)
{
    mv88w8618_eth_state *s;
    int iomemtype;

    s = qemu_mallocz(sizeof(mv88w8618_eth_state));
    if (!s)
        return;
    s->base = base;
    s->irq = irq;
    s->vc = qemu_new_vlan_client(nd->vlan, eth_receive, eth_can_receive, s);
    iomemtype = cpu_register_io_memory(0, mv88w8618_eth_readfn,
                                       mv88w8618_eth_writefn, s);
    cpu_register_physical_memory(base, MP_ETH_SIZE, iomemtype);
}

/* LCD register offsets */
#define MP_LCD_IRQCTRL          0x180
#define MP_LCD_IRQSTAT          0x184
#define MP_LCD_SPICTRL          0x1ac
#define MP_LCD_INST             0x1bc
#define MP_LCD_DATA             0x1c0

/* Mode magics */
#define MP_LCD_SPI_DATA         0x00100011
#define MP_LCD_SPI_CMD          0x00104011
#define MP_LCD_SPI_INVALID      0x00000000

/* Commmands */
#define MP_LCD_INST_SETPAGE0    0xB0
/* ... */
#define MP_LCD_INST_SETPAGE7    0xB7

#define MP_LCD_TEXTCOLOR        0xe0e0ff /* RRGGBB */

typedef struct musicpal_lcd_state {
    uint32_t base;
    uint32_t mode;
    uint32_t irqctrl;
    int page;
    int page_off;
    DisplayState *ds;
    uint8_t video_ram[128*64/8];
} musicpal_lcd_state;

static uint32_t lcd_brightness;

static uint8_t scale_lcd_color(uint8_t col)
{
    int tmp = col;

    switch (lcd_brightness) {
    case 0x00000007: /* 0 */
        return 0;

    case 0x00020000: /* 1 */
        return (tmp * 1) / 7;

    case 0x00020001: /* 2 */
        return (tmp * 2) / 7;

    case 0x00040000: /* 3 */
        return (tmp * 3) / 7;

    case 0x00010006: /* 4 */
        return (tmp * 4) / 7;

    case 0x00020005: /* 5 */
        return (tmp * 5) / 7;

    case 0x00040003: /* 6 */
        return (tmp * 6) / 7;

    case 0x00030004: /* 7 */
    default:
        return col;
    }
}

#define SET_LCD_PIXEL(depth, type) \
static inline void glue(set_lcd_pixel, depth) \
        (musicpal_lcd_state *s, int x, int y, type col) \
{ \
    int dx, dy; \
    type *pixel = &((type *) s->ds->data)[(y * 128 * 3 + x) * 3]; \
\
    for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \
        for (dx = 0; dx < 3; dx++, pixel++) \
            *pixel = col; \
}
SET_LCD_PIXEL(8, uint8_t)
SET_LCD_PIXEL(16, uint16_t)
SET_LCD_PIXEL(32, uint32_t)

#include "pixel_ops.h"

static void lcd_refresh(void *opaque)
{
    musicpal_lcd_state *s = opaque;
    int x, y, col;

    switch (s->ds->depth) {
    case 0:
        return;
#define LCD_REFRESH(depth, func) \
    case depth: \
        col = func(scale_lcd_color((MP_LCD_TEXTCOLOR >> 16) & 0xff), \
                   scale_lcd_color((MP_LCD_TEXTCOLOR >> 8) & 0xff), \
                   scale_lcd_color(MP_LCD_TEXTCOLOR & 0xff)); \
        for (x = 0; x < 128; x++) \
            for (y = 0; y < 64; y++) \
                if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \
                    glue(set_lcd_pixel, depth)(s, x, y, col); \
                else \
                    glue(set_lcd_pixel, depth)(s, x, y, 0); \
        break;
    LCD_REFRESH(8, rgb_to_pixel8)
    LCD_REFRESH(16, rgb_to_pixel16)
    LCD_REFRESH(32, (s->ds->bgr ? rgb_to_pixel32bgr : rgb_to_pixel32))
    default:
        cpu_abort(cpu_single_env, "unsupported colour depth %i\n",
                  s->ds->depth);
    }

    dpy_update(s->ds, 0, 0, 128*3, 64*3);
}

static uint32_t musicpal_lcd_read(void *opaque, target_phys_addr_t offset)
{
    musicpal_lcd_state *s = opaque;

    offset -= s->base;
    switch (offset) {
    case MP_LCD_IRQCTRL:
        return s->irqctrl;

    default:
        return 0;
    }
}

static void musicpal_lcd_write(void *opaque, target_phys_addr_t offset,
                               uint32_t value)
{
    musicpal_lcd_state *s = opaque;

    offset -= s->base;
    switch (offset) {
    case MP_LCD_IRQCTRL:
        s->irqctrl = value;
        break;

    case MP_LCD_SPICTRL:
        if (value == MP_LCD_SPI_DATA || value == MP_LCD_SPI_CMD)
            s->mode = value;
        else
            s->mode = MP_LCD_SPI_INVALID;
        break;

    case MP_LCD_INST:
        if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) {
            s->page = value - MP_LCD_INST_SETPAGE0;
            s->page_off = 0;
        }
        break;

    case MP_LCD_DATA:
        if (s->mode == MP_LCD_SPI_CMD) {
            if (value >= MP_LCD_INST_SETPAGE0 &&
                value <= MP_LCD_INST_SETPAGE7) {
                s->page = value - MP_LCD_INST_SETPAGE0;
                s->page_off = 0;
            }
        } else if (s->mode == MP_LCD_SPI_DATA) {
            s->video_ram[s->page*128 + s->page_off] = value;
            s->page_off = (s->page_off + 1) & 127;
        }
        break;
    }
}

static CPUReadMemoryFunc *musicpal_lcd_readfn[] = {
    musicpal_lcd_read,
    musicpal_lcd_read,
    musicpal_lcd_read
};

static CPUWriteMemoryFunc *musicpal_lcd_writefn[] = {
    musicpal_lcd_write,
    musicpal_lcd_write,
    musicpal_lcd_write
};

static void musicpal_lcd_init(DisplayState *ds, uint32_t base)
{
    musicpal_lcd_state *s;
    int iomemtype;

    s = qemu_mallocz(sizeof(musicpal_lcd_state));
    if (!s)
        return;
    s->base = base;
    s->ds = ds;
    iomemtype = cpu_register_io_memory(0, musicpal_lcd_readfn,
                                       musicpal_lcd_writefn, s);
    cpu_register_physical_memory(base, MP_LCD_SIZE, iomemtype);

    graphic_console_init(ds, lcd_refresh, NULL, NULL, NULL, s);
    dpy_resize(ds, 128*3, 64*3);
}

/* PIC register offsets */
#define MP_PIC_STATUS           0x00
#define MP_PIC_ENABLE_SET       0x08
#define MP_PIC_ENABLE_CLR       0x0C

typedef struct mv88w8618_pic_state
{
    uint32_t base;
    uint32_t level;
    uint32_t enabled;
    qemu_irq parent_irq;
} mv88w8618_pic_state;

static void mv88w8618_pic_update(mv88w8618_pic_state *s)
{
    qemu_set_irq(s->parent_irq, (s->level & s->enabled));
}

static void mv88w8618_pic_set_irq(void *opaque, int irq, int level)
{
    mv88w8618_pic_state *s = opaque;

    if (level)
        s->level |= 1 << irq;
    else
        s->level &= ~(1 << irq);
    mv88w8618_pic_update(s);
}

static uint32_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset)
{
    mv88w8618_pic_state *s = opaque;

    offset -= s->base;
    switch (offset) {
    case MP_PIC_STATUS:
        return s->level & s->enabled;

    default:
        return 0;
    }
}

static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset,
                                uint32_t value)
{
    mv88w8618_pic_state *s = opaque;

    offset -= s->base;
    switch (offset) {
    case MP_PIC_ENABLE_SET:
        s->enabled |= value;
        break;

    case MP_PIC_ENABLE_CLR:
        s->enabled &= ~value;
        s->level &= ~value;
        break;
    }
    mv88w8618_pic_update(s);
}

static void mv88w8618_pic_reset(void *opaque)
{
    mv88w8618_pic_state *s = opaque;

    s->level = 0;
    s->enabled = 0;
}

static CPUReadMemoryFunc *mv88w8618_pic_readfn[] = {
    mv88w8618_pic_read,
    mv88w8618_pic_read,
    mv88w8618_pic_read
};

static CPUWriteMemoryFunc *mv88w8618_pic_writefn[] = {
    mv88w8618_pic_write,
    mv88w8618_pic_write,
    mv88w8618_pic_write
};

static qemu_irq *mv88w8618_pic_init(uint32_t base, qemu_irq parent_irq)
{
    mv88w8618_pic_state *s;
    int iomemtype;
    qemu_irq *qi;

    s = qemu_mallocz(sizeof(mv88w8618_pic_state));
    if (!s)
        return NULL;
    qi = qemu_allocate_irqs(mv88w8618_pic_set_irq, s, 32);
    s->base = base;
    s->parent_irq = parent_irq;
    iomemtype = cpu_register_io_memory(0, mv88w8618_pic_readfn,
                                       mv88w8618_pic_writefn, s);
    cpu_register_physical_memory(base, MP_PIC_SIZE, iomemtype);

    qemu_register_reset(mv88w8618_pic_reset, s);

    return qi;
}

/* PIT register offsets */
#define MP_PIT_TIMER1_LENGTH    0x00
/* ... */
#define MP_PIT_TIMER4_LENGTH    0x0C
#define MP_PIT_CONTROL          0x10
#define MP_PIT_TIMER1_VALUE     0x14
/* ... */
#define MP_PIT_TIMER4_VALUE     0x20
#define MP_BOARD_RESET          0x34

/* Magic board reset value (probably some watchdog behind it) */
#define MP_BOARD_RESET_MAGIC    0x10000

typedef struct mv88w8618_timer_state {
    ptimer_state *timer;
    uint32_t limit;
    int freq;
    qemu_irq irq;
} mv88w8618_timer_state;

typedef struct mv88w8618_pit_state {
    void *timer[4];
    uint32_t control;
    uint32_t base;
} mv88w8618_pit_state;

static void mv88w8618_timer_tick(void *opaque)
{
    mv88w8618_timer_state *s = opaque;

    qemu_irq_raise(s->irq);
}

static void *mv88w8618_timer_init(uint32_t freq, qemu_irq irq)
{
    mv88w8618_timer_state *s;
    QEMUBH *bh;

    s = qemu_mallocz(sizeof(mv88w8618_timer_state));
    s->irq = irq;
    s->freq = freq;

    bh = qemu_bh_new(mv88w8618_timer_tick, s);
    s->timer = ptimer_init(bh);

    return s;
}

static uint32_t mv88w8618_pit_read(void *opaque, target_phys_addr_t offset)
{
    mv88w8618_pit_state *s = opaque;
    mv88w8618_timer_state *t;

    offset -= s->base;
    switch (offset) {
    case MP_PIT_TIMER1_VALUE ... MP_PIT_TIMER4_VALUE:
        t = s->timer[(offset-MP_PIT_TIMER1_VALUE) >> 2];
        return ptimer_get_count(t->timer);

    default:
        return 0;
    }
}

static void mv88w8618_pit_write(void *opaque, target_phys_addr_t offset,
                                uint32_t value)
{
    mv88w8618_pit_state *s = opaque;
    mv88w8618_timer_state *t;
    int i;

    offset -= s->base;
    switch (offset) {
    case MP_PIT_TIMER1_LENGTH ... MP_PIT_TIMER4_LENGTH:
        t = s->timer[offset >> 2];
        t->limit = value;
        ptimer_set_limit(t->timer, t->limit, 1);
        break;

    case MP_PIT_CONTROL:
        for (i = 0; i < 4; i++) {
            if (value & 0xf) {
                t = s->timer[i];
                ptimer_set_limit(t->timer, t->limit, 0);
                ptimer_set_freq(t->timer, t->freq);
                ptimer_run(t->timer, 0);
            }
            value >>= 4;
        }
        break;

    case MP_BOARD_RESET:
        if (value == MP_BOARD_RESET_MAGIC)
            qemu_system_reset_request();
        break;
    }
}

static CPUReadMemoryFunc *mv88w8618_pit_readfn[] = {
    mv88w8618_pit_read,
    mv88w8618_pit_read,
    mv88w8618_pit_read
};

static CPUWriteMemoryFunc *mv88w8618_pit_writefn[] = {
    mv88w8618_pit_write,
    mv88w8618_pit_write,
    mv88w8618_pit_write
};

static void mv88w8618_pit_init(uint32_t base, qemu_irq *pic, int irq)
{
    int iomemtype;
    mv88w8618_pit_state *s;

    s = qemu_mallocz(sizeof(mv88w8618_pit_state));
    if (!s)
        return;

    s->base = base;
    /* Letting them all run at 1 MHz is likely just a pragmatic
     * simplification. */
    s->timer[0] = mv88w8618_timer_init(1000000, pic[irq]);
    s->timer[1] = mv88w8618_timer_init(1000000, pic[irq + 1]);
    s->timer[2] = mv88w8618_timer_init(1000000, pic[irq + 2]);
    s->timer[3] = mv88w8618_timer_init(1000000, pic[irq + 3]);

    iomemtype = cpu_register_io_memory(0, mv88w8618_pit_readfn,
                                       mv88w8618_pit_writefn, s);
    cpu_register_physical_memory(base, MP_PIT_SIZE, iomemtype);
}

/* Flash config register offsets */
#define MP_FLASHCFG_CFGR0    0x04

typedef struct mv88w8618_flashcfg_state {
    uint32_t base;
    uint32_t cfgr0;
} mv88w8618_flashcfg_state;

static uint32_t mv88w8618_flashcfg_read(void *opaque,
                                        target_phys_addr_t offset)
{
    mv88w8618_flashcfg_state *s = opaque;

    offset -= s->base;
    switch (offset) {
    case MP_FLASHCFG_CFGR0:
        return s->cfgr0;

    default:
        return 0;
    }
}

static void mv88w8618_flashcfg_write(void *opaque, target_phys_addr_t offset,
                                     uint32_t value)
{
    mv88w8618_flashcfg_state *s = opaque;

    offset -= s->base;
    switch (offset) {
    case MP_FLASHCFG_CFGR0:
        s->cfgr0 = value;
        break;
    }
}

static CPUReadMemoryFunc *mv88w8618_flashcfg_readfn[] = {
    mv88w8618_flashcfg_read,
    mv88w8618_flashcfg_read,
    mv88w8618_flashcfg_read
};

static CPUWriteMemoryFunc *mv88w8618_flashcfg_writefn[] = {
    mv88w8618_flashcfg_write,
    mv88w8618_flashcfg_write,
    mv88w8618_flashcfg_write
};

static void mv88w8618_flashcfg_init(uint32_t base)
{
    int iomemtype;
    mv88w8618_flashcfg_state *s;

    s = qemu_mallocz(sizeof(mv88w8618_flashcfg_state));
    if (!s)
        return;

    s->base = base;
    s->cfgr0 = 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
    iomemtype = cpu_register_io_memory(0, mv88w8618_flashcfg_readfn,
                       mv88w8618_flashcfg_writefn, s);
    cpu_register_physical_memory(base, MP_FLASHCFG_SIZE, iomemtype);
}

/* Various registers in the 0x80000000 domain */
#define MP_BOARD_REVISION       0x2018

#define MP_WLAN_MAGIC1          0xc11c
#define MP_WLAN_MAGIC2          0xc124

#define MP_GPIO_OE_LO           0xd008
#define MP_GPIO_OUT_LO          0xd00c
#define MP_GPIO_IN_LO           0xd010
#define MP_GPIO_ISR_LO          0xd020
#define MP_GPIO_OE_HI           0xd508
#define MP_GPIO_OUT_HI          0xd50c
#define MP_GPIO_IN_HI           0xd510
#define MP_GPIO_ISR_HI          0xd520

/* GPIO bits & masks */
#define MP_GPIO_WHEEL_VOL       (1 << 8)
#define MP_GPIO_WHEEL_VOL_INV   (1 << 9)
#define MP_GPIO_WHEEL_NAV       (1 << 10)
#define MP_GPIO_WHEEL_NAV_INV   (1 << 11)
#define MP_GPIO_LCD_BRIGHTNESS  0x00070000
#define MP_GPIO_BTN_FAVORITS    (1 << 19)
#define MP_GPIO_BTN_MENU        (1 << 20)
#define MP_GPIO_BTN_VOLUME      (1 << 21)
#define MP_GPIO_BTN_NAVIGATION  (1 << 22)
#define MP_GPIO_I2C_DATA_BIT    29
#define MP_GPIO_I2C_DATA        (1 << MP_GPIO_I2C_DATA_BIT)
#define MP_GPIO_I2C_CLOCK_BIT   30

/* LCD brightness bits in GPIO_OE_HI */
#define MP_OE_LCD_BRIGHTNESS    0x0007

static uint32_t musicpal_read(void *opaque, target_phys_addr_t offset)
{
    offset -= 0x80000000;
    switch (offset) {
    case MP_BOARD_REVISION:
        return 0x0031;

    case MP_GPIO_OE_HI: /* used for LCD brightness control */
        return lcd_brightness & MP_OE_LCD_BRIGHTNESS;

    case MP_GPIO_OUT_LO:
        return gpio_out_state & 0xFFFF;
    case MP_GPIO_OUT_HI:
        return gpio_out_state >> 16;

    case MP_GPIO_IN_LO:
        return gpio_in_state & 0xFFFF;
    case MP_GPIO_IN_HI:
        /* Update received I2C data */
        gpio_in_state = (gpio_in_state & ~MP_GPIO_I2C_DATA) |
                        (i2c_get_data(mixer_i2c) << MP_GPIO_I2C_DATA_BIT);
        return gpio_in_state >> 16;

    /* This is a simplification of reality */
    case MP_GPIO_ISR_LO:
        return ~gpio_in_state & 0xFFFF;
    case MP_GPIO_ISR_HI:
        return ~gpio_in_state >> 16;

    /* Workaround to allow loading the binary-only wlandrv.ko crap
     * from the original Freecom firmware. */
    case MP_WLAN_MAGIC1:
        return ~3;
    case MP_WLAN_MAGIC2:
        return -1;

    default:
        return 0;
    }
}

static void musicpal_write(void *opaque, target_phys_addr_t offset,
                           uint32_t value)
{
    offset -= 0x80000000;
    switch (offset) {
    case MP_GPIO_OE_HI: /* used for LCD brightness control */
        lcd_brightness = (lcd_brightness & MP_GPIO_LCD_BRIGHTNESS) |
                         (value & MP_OE_LCD_BRIGHTNESS);
        break;

    case MP_GPIO_OUT_LO:
        gpio_out_state = (gpio_out_state & 0xFFFF0000) | (value & 0xFFFF);
        break;
    case MP_GPIO_OUT_HI:
        gpio_out_state = (gpio_out_state & 0xFFFF) | (value << 16);
        lcd_brightness = (lcd_brightness & 0xFFFF) |
                         (gpio_out_state & MP_GPIO_LCD_BRIGHTNESS);
        i2c_state_update(mixer_i2c,
                         (gpio_out_state >> MP_GPIO_I2C_DATA_BIT) & 1,
                         (gpio_out_state >> MP_GPIO_I2C_CLOCK_BIT) & 1);
        break;

    }
}

/* Keyboard codes & masks */
#define KEY_PRESSED             0x80
#define KEY_CODE                0x7f

#define KEYCODE_TAB             0x0f
#define KEYCODE_ENTER           0x1c
#define KEYCODE_F               0x21
#define KEYCODE_M               0x32

#define KEYCODE_EXTENDED        0xe0
#define KEYCODE_UP              0x48
#define KEYCODE_DOWN            0x50
#define KEYCODE_LEFT            0x4b
#define KEYCODE_RIGHT           0x4d

static void musicpal_key_event(void *opaque, int keycode)
{
    qemu_irq irq = opaque;
    uint32_t event = 0;
    static int kbd_extended;

    if (keycode == KEYCODE_EXTENDED) {
        kbd_extended = 1;
        return;
    }

    if (kbd_extended)
        switch (keycode & KEY_CODE) {
        case KEYCODE_UP:
            event = MP_GPIO_WHEEL_NAV | MP_GPIO_WHEEL_NAV_INV;
            break;

        case KEYCODE_DOWN:
            event = MP_GPIO_WHEEL_NAV;
            break;

        case KEYCODE_LEFT:
            event = MP_GPIO_WHEEL_VOL | MP_GPIO_WHEEL_VOL_INV;
            break;

        case KEYCODE_RIGHT:
            event = MP_GPIO_WHEEL_VOL;
            break;
        }
    else
        switch (keycode & KEY_CODE) {
        case KEYCODE_F:
            event = MP_GPIO_BTN_FAVORITS;
            break;

        case KEYCODE_TAB:
            event = MP_GPIO_BTN_VOLUME;
            break;

        case KEYCODE_ENTER:
            event = MP_GPIO_BTN_NAVIGATION;
            break;

        case KEYCODE_M:
            event = MP_GPIO_BTN_MENU;
            break;
        }

    if (keycode & KEY_PRESSED)
        gpio_in_state |= event;
    else if (gpio_in_state & event) {
        gpio_in_state &= ~event;
        qemu_irq_raise(irq);
    }

    kbd_extended = 0;
}

static CPUReadMemoryFunc *musicpal_readfn[] = {
    musicpal_read,
    musicpal_read,
    musicpal_read,
};

static CPUWriteMemoryFunc *musicpal_writefn[] = {
    musicpal_write,
    musicpal_write,
    musicpal_write,
};

static struct arm_boot_info musicpal_binfo = {
    .loader_start = 0x0,
    .board_id = 0x20e,
};

static void musicpal_init(ram_addr_t ram_size, int vga_ram_size,
               const char *boot_device, DisplayState *ds,
               const char *kernel_filename, const char *kernel_cmdline,
               const char *initrd_filename, const char *cpu_model)
{
    CPUState *env;
    qemu_irq *pic;
    int index;
    int iomemtype;
    unsigned long flash_size;

    if (!cpu_model)
        cpu_model = "arm926";

    env = cpu_init(cpu_model);
    if (!env) {
        fprintf(stderr, "Unable to find CPU definition\n");
        exit(1);
    }
    pic = arm_pic_init_cpu(env);

    /* For now we use a fixed - the original - RAM size */
    cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE,
                                 qemu_ram_alloc(MP_RAM_DEFAULT_SIZE));

    sram_off = qemu_ram_alloc(MP_SRAM_SIZE);
    cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off);

    /* Catch various stuff not handled by separate subsystems */
    iomemtype = cpu_register_io_memory(0, musicpal_readfn,
                                       musicpal_writefn, env);
    cpu_register_physical_memory(0x80000000, 0x10000, iomemtype);

    pic = mv88w8618_pic_init(MP_PIC_BASE, pic[ARM_PIC_CPU_IRQ]);
    mv88w8618_pit_init(MP_PIT_BASE, pic, MP_TIMER1_IRQ);

    if (serial_hds[0])
        serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], /*1825000,*/
                   serial_hds[0], 1);
    if (serial_hds[1])
        serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], /*1825000,*/
                   serial_hds[1], 1);

    /* Register flash */
    index = drive_get_index(IF_PFLASH, 0, 0);
    if (index != -1) {
        flash_size = bdrv_getlength(drives_table[index].bdrv);
        if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 &&
            flash_size != 32*1024*1024) {
            fprintf(stderr, "Invalid flash image size\n");
            exit(1);
        }

        /*
         * The original U-Boot accesses the flash at 0xFE000000 instead of
         * 0xFF800000 (if there is 8 MB flash). So remap flash access if the
         * image is smaller than 32 MB.
         */
        pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size),
                              drives_table[index].bdrv, 0x10000,
                              (flash_size + 0xffff) >> 16,
                              MP_FLASH_SIZE_MAX / flash_size,
                              2, 0x00BF, 0x236D, 0x0000, 0x0000,
                              0x5555, 0x2AAA);
    }
    mv88w8618_flashcfg_init(MP_FLASHCFG_BASE);

    musicpal_lcd_init(ds, MP_LCD_BASE);

    qemu_add_kbd_event_handler(musicpal_key_event, pic[MP_GPIO_IRQ]);

    /*
     * Wait a bit to catch menu button during U-Boot start-up
     * (to trigger emergency update).
     */
    sleep(1);

    mv88w8618_eth_init(&nd_table[0], MP_ETH_BASE, pic[MP_ETH_IRQ]);

    mixer_i2c = musicpal_audio_init(MP_AUDIO_BASE, pic[MP_AUDIO_IRQ]);

    musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE;
    musicpal_binfo.kernel_filename = kernel_filename;
    musicpal_binfo.kernel_cmdline = kernel_cmdline;
    musicpal_binfo.initrd_filename = initrd_filename;
    arm_load_kernel(env, &musicpal_binfo);
}

QEMUMachine musicpal_machine = {
    "musicpal",
    "Marvell 88w8618 / MusicPal (ARM926EJ-S)",
    musicpal_init,
    MP_RAM_DEFAULT_SIZE + MP_SRAM_SIZE + MP_FLASH_SIZE_MAX + RAMSIZE_FIXED
};