Blame view

kqemu.c 27.8 KB
bellard authored
1
2
/*
 *  KQEMU support
3
 *
4
 *  Copyright (c) 2005-2008 Fabrice Bellard
bellard authored
5
6
7
8
9
10
11
12
13
14
15
16
17
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
bellard authored
19
20
21
 */
#include "config.h"
#ifdef _WIN32
22
#define WIN32_LEAN_AND_MEAN
bellard authored
23
#include <windows.h>
24
#include <winioctl.h>
bellard authored
25
26
27
#else
#include <sys/types.h>
#include <sys/mman.h>
28
#include <sys/ioctl.h>
bellard authored
29
#endif
30
#ifdef HOST_SOLARIS
31
#include <sys/ioccom.h>
32
#endif
bellard authored
33
34
35
36
37
38
39
40
41
42
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <inttypes.h>

#include "cpu.h"
#include "exec-all.h"
43
#include "qemu-common.h"
bellard authored
44
45
46
47

#ifdef USE_KQEMU

#define DEBUG
48
//#define PROFILE
bellard authored
49
50
51

#ifdef DEBUG
52
53
#  define LOG_INT(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
#  define LOG_INT_STATE(env) log_cpu_state_mask(CPU_LOG_INT, (env), 0)
54
55
56
57
58
#else
#  define LOG_INT(...) do { } while (0)
#  define LOG_INT_STATE(env) do { } while (0)
#endif
bellard authored
59
60
#include <unistd.h>
#include <fcntl.h>
bellard authored
61
#include "kqemu.h"
bellard authored
62
63
64
65
#ifdef _WIN32
#define KQEMU_DEVICE "\\\\.\\kqemu"
#else
bellard authored
66
#define KQEMU_DEVICE "/dev/kqemu"
67
68
#endif
69
70
static void qpi_init(void);
71
72
73
74
75
76
77
78
79
#ifdef _WIN32
#define KQEMU_INVALID_FD INVALID_HANDLE_VALUE
HANDLE kqemu_fd = KQEMU_INVALID_FD;
#define kqemu_closefd(x) CloseHandle(x)
#else
#define KQEMU_INVALID_FD -1
int kqemu_fd = KQEMU_INVALID_FD;
#define kqemu_closefd(x) close(x)
#endif
bellard authored
80
81
82
83
84
/* 0 = not allowed
   1 = user kqemu
   2 = kernel kqemu
*/
bellard authored
85
int kqemu_allowed = 1;
86
uint64_t *pages_to_flush;
bellard authored
87
unsigned int nb_pages_to_flush;
88
uint64_t *ram_pages_to_update;
89
unsigned int nb_ram_pages_to_update;
90
uint64_t *modified_ram_pages;
91
92
unsigned int nb_modified_ram_pages;
uint8_t *modified_ram_pages_table;
93
94
int qpi_io_memory;
uint32_t kqemu_comm_base; /* physical address of the QPI communication page */
bellard authored
95
96
97
98
99
100

#define cpuid(index, eax, ebx, ecx, edx) \
  asm volatile ("cpuid" \
                : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) \
                : "0" (index))
bellard authored
101
102
103
104
105
106
#ifdef __x86_64__
static int is_cpuid_supported(void)
{
    return 1;
}
#else
bellard authored
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
static int is_cpuid_supported(void)
{
    int v0, v1;
    asm volatile ("pushf\n"
                  "popl %0\n"
                  "movl %0, %1\n"
                  "xorl $0x00200000, %0\n"
                  "pushl %0\n"
                  "popf\n"
                  "pushf\n"
                  "popl %0\n"
                  : "=a" (v0), "=d" (v1)
                  :
                  : "cc");
    return (v0 != v1);
}
bellard authored
123
#endif
bellard authored
124
125
126

static void kqemu_update_cpuid(CPUState *env)
{
bellard authored
127
    int critical_features_mask, features, ext_features, ext_features_mask;
bellard authored
128
129
130
131
132
133
    uint32_t eax, ebx, ecx, edx;

    /* the following features are kept identical on the host and
       target cpus because they are important for user code. Strictly
       speaking, only SSE really matters because the OS must support
       it if the user code uses it. */
134
135
136
    critical_features_mask =
        CPUID_CMOV | CPUID_CX8 |
        CPUID_FXSR | CPUID_MMX | CPUID_SSE |
bellard authored
137
        CPUID_SSE2 | CPUID_SEP;
bellard authored
138
    ext_features_mask = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR;
bellard authored
139
140
    if (!is_cpuid_supported()) {
        features = 0;
bellard authored
141
        ext_features = 0;
bellard authored
142
143
144
    } else {
        cpuid(1, eax, ebx, ecx, edx);
        features = edx;
bellard authored
145
        ext_features = ecx;
bellard authored
146
    }
bellard authored
147
148
149
150
151
152
#ifdef __x86_64__
    /* NOTE: on x86_64 CPUs, SYSENTER is not supported in
       compatibility mode, so in order to have the best performances
       it is better not to use it */
    features &= ~CPUID_SEP;
#endif
bellard authored
153
154
    env->cpuid_features = (env->cpuid_features & ~critical_features_mask) |
        (features & critical_features_mask);
bellard authored
155
156
    env->cpuid_ext_features = (env->cpuid_ext_features & ~ext_features_mask) |
        (ext_features & ext_features_mask);
bellard authored
157
158
159
160
161
162
163
    /* XXX: we could update more of the target CPUID state so that the
       non accelerated code sees exactly the same CPU features as the
       accelerated code */
}

int kqemu_init(CPUState *env)
{
164
    struct kqemu_init kinit;
bellard authored
165
    int ret, version;
166
167
168
#ifdef _WIN32
    DWORD temp;
#endif
bellard authored
169
170
171
172

    if (!kqemu_allowed)
        return -1;
173
174
175
176
177
#ifdef _WIN32
    kqemu_fd = CreateFile(KQEMU_DEVICE, GENERIC_WRITE | GENERIC_READ,
                          FILE_SHARE_READ | FILE_SHARE_WRITE,
                          NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,
                          NULL);
178
179
180
181
182
    if (kqemu_fd == KQEMU_INVALID_FD) {
        fprintf(stderr, "Could not open '%s' - QEMU acceleration layer not activated: %lu\n",
                KQEMU_DEVICE, GetLastError());
        return -1;
    }
183
#else
bellard authored
184
    kqemu_fd = open(KQEMU_DEVICE, O_RDWR);
185
    if (kqemu_fd == KQEMU_INVALID_FD) {
186
187
        fprintf(stderr, "Could not open '%s' - QEMU acceleration layer not activated: %s\n",
                KQEMU_DEVICE, strerror(errno));
bellard authored
188
189
        return -1;
    }
190
#endif
bellard authored
191
    version = 0;
192
193
194
195
#ifdef _WIN32
    DeviceIoControl(kqemu_fd, KQEMU_GET_VERSION, NULL, 0,
                    &version, sizeof(version), &temp, NULL);
#else
bellard authored
196
    ioctl(kqemu_fd, KQEMU_GET_VERSION, &version);
197
#endif
bellard authored
198
199
200
201
202
203
    if (version != KQEMU_VERSION) {
        fprintf(stderr, "Version mismatch between kqemu module and qemu (%08x %08x) - disabling kqemu use\n",
                version, KQEMU_VERSION);
        goto fail;
    }
204
    pages_to_flush = qemu_vmalloc(KQEMU_MAX_PAGES_TO_FLUSH *
205
                                  sizeof(uint64_t));
bellard authored
206
207
208
    if (!pages_to_flush)
        goto fail;
209
    ram_pages_to_update = qemu_vmalloc(KQEMU_MAX_RAM_PAGES_TO_UPDATE *
210
                                       sizeof(uint64_t));
211
212
213
    if (!ram_pages_to_update)
        goto fail;
214
    modified_ram_pages = qemu_vmalloc(KQEMU_MAX_MODIFIED_RAM_PAGES *
215
                                      sizeof(uint64_t));
216
217
218
219
220
221
    if (!modified_ram_pages)
        goto fail;
    modified_ram_pages_table = qemu_mallocz(phys_ram_size >> TARGET_PAGE_BITS);
    if (!modified_ram_pages_table)
        goto fail;
222
223
224
225
226
227
228
    memset(&kinit, 0, sizeof(kinit)); /* set the paddings to zero */
    kinit.ram_base = phys_ram_base;
    kinit.ram_size = phys_ram_size;
    kinit.ram_dirty = phys_ram_dirty;
    kinit.pages_to_flush = pages_to_flush;
    kinit.ram_pages_to_update = ram_pages_to_update;
    kinit.modified_ram_pages = modified_ram_pages;
229
#ifdef _WIN32
230
    ret = DeviceIoControl(kqemu_fd, KQEMU_INIT, &kinit, sizeof(kinit),
231
232
                          NULL, 0, &temp, NULL) == TRUE ? 0 : -1;
#else
233
    ret = ioctl(kqemu_fd, KQEMU_INIT, &kinit);
234
#endif
bellard authored
235
236
237
    if (ret < 0) {
        fprintf(stderr, "Error %d while initializing QEMU acceleration layer - disabling it for now\n", ret);
    fail:
238
239
        kqemu_closefd(kqemu_fd);
        kqemu_fd = KQEMU_INVALID_FD;
bellard authored
240
241
242
        return -1;
    }
    kqemu_update_cpuid(env);
243
    env->kqemu_enabled = kqemu_allowed;
bellard authored
244
    nb_pages_to_flush = 0;
245
    nb_ram_pages_to_update = 0;
246
247

    qpi_init();
bellard authored
248
249
250
251
252
    return 0;
}

void kqemu_flush_page(CPUState *env, target_ulong addr)
{
253
    LOG_INT("kqemu_flush_page: addr=" TARGET_FMT_lx "\n", addr);
bellard authored
254
255
256
257
258
259
260
261
    if (nb_pages_to_flush >= KQEMU_MAX_PAGES_TO_FLUSH)
        nb_pages_to_flush = KQEMU_FLUSH_ALL;
    else
        pages_to_flush[nb_pages_to_flush++] = addr;
}

void kqemu_flush(CPUState *env, int global)
{
262
    LOG_INT("kqemu_flush:\n");
bellard authored
263
264
265
    nb_pages_to_flush = KQEMU_FLUSH_ALL;
}
266
267
void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr)
{
268
    LOG_INT("kqemu_set_notdirty: addr=%08lx\n", 
269
                (unsigned long)ram_addr);
bellard authored
270
271
272
    /* we only track transitions to dirty state */
    if (phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] != 0xff)
        return;
273
274
275
276
277
278
    if (nb_ram_pages_to_update >= KQEMU_MAX_RAM_PAGES_TO_UPDATE)
        nb_ram_pages_to_update = KQEMU_RAM_PAGES_UPDATE_ALL;
    else
        ram_pages_to_update[nb_ram_pages_to_update++] = ram_addr;
}
279
280
281
282
static void kqemu_reset_modified_ram_pages(void)
{
    int i;
    unsigned long page_index;
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
    for(i = 0; i < nb_modified_ram_pages; i++) {
        page_index = modified_ram_pages[i] >> TARGET_PAGE_BITS;
        modified_ram_pages_table[page_index] = 0;
    }
    nb_modified_ram_pages = 0;
}

void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr)
{
    unsigned long page_index;
    int ret;
#ifdef _WIN32
    DWORD temp;
#endif

    page_index = ram_addr >> TARGET_PAGE_BITS;
    if (!modified_ram_pages_table[page_index]) {
#if 0
        printf("%d: modify_page=%08lx\n", nb_modified_ram_pages, ram_addr);
#endif
        modified_ram_pages_table[page_index] = 1;
        modified_ram_pages[nb_modified_ram_pages++] = ram_addr;
        if (nb_modified_ram_pages >= KQEMU_MAX_MODIFIED_RAM_PAGES) {
            /* flush */
#ifdef _WIN32
309
310
            ret = DeviceIoControl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES,
                                  &nb_modified_ram_pages,
311
312
313
                                  sizeof(nb_modified_ram_pages),
                                  NULL, 0, &temp, NULL);
#else
314
            ret = ioctl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES,
315
316
317
318
319
320
321
                        &nb_modified_ram_pages);
#endif
            kqemu_reset_modified_ram_pages();
        }
    }
}
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
void kqemu_set_phys_mem(uint64_t start_addr, ram_addr_t size, 
                        ram_addr_t phys_offset)
{
    struct kqemu_phys_mem kphys_mem1, *kphys_mem = &kphys_mem1;
    uint64_t end;
    int ret, io_index;

    end = (start_addr + size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
    start_addr &= TARGET_PAGE_MASK;
    kphys_mem->phys_addr = start_addr;
    kphys_mem->size = end - start_addr;
    kphys_mem->ram_addr = phys_offset & TARGET_PAGE_MASK;
    io_index = phys_offset & ~TARGET_PAGE_MASK;
    switch(io_index) {
    case IO_MEM_RAM:
        kphys_mem->io_index = KQEMU_IO_MEM_RAM;
        break;
    case IO_MEM_ROM:
        kphys_mem->io_index = KQEMU_IO_MEM_ROM;
        break;
    default:
        if (qpi_io_memory == io_index) {
            kphys_mem->io_index = KQEMU_IO_MEM_COMM;
        } else {
            kphys_mem->io_index = KQEMU_IO_MEM_UNASSIGNED;
        }
        break;
    }
#ifdef _WIN32
    {
        DWORD temp;
        ret = DeviceIoControl(kqemu_fd, KQEMU_SET_PHYS_MEM, 
                              kphys_mem, sizeof(*kphys_mem),
                              NULL, 0, &temp, NULL) == TRUE ? 0 : -1;
    }
#else
    ret = ioctl(kqemu_fd, KQEMU_SET_PHYS_MEM, kphys_mem);
#endif
    if (ret < 0) {
        fprintf(stderr, "kqemu: KQEMU_SET_PHYS_PAGE error=%d: start_addr=0x%016" PRIx64 " size=0x%08lx phys_offset=0x%08lx\n",
                ret, start_addr, 
                (unsigned long)size, (unsigned long)phys_offset);
    }
}
bellard authored
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
struct fpstate {
    uint16_t fpuc;
    uint16_t dummy1;
    uint16_t fpus;
    uint16_t dummy2;
    uint16_t fptag;
    uint16_t dummy3;

    uint32_t fpip;
    uint32_t fpcs;
    uint32_t fpoo;
    uint32_t fpos;
    uint8_t fpregs1[8 * 10];
};

struct fpxstate {
    uint16_t fpuc;
    uint16_t fpus;
    uint16_t fptag;
    uint16_t fop;
    uint32_t fpuip;
    uint16_t cs_sel;
    uint16_t dummy0;
    uint32_t fpudp;
    uint16_t ds_sel;
    uint16_t dummy1;
    uint32_t mxcsr;
    uint32_t mxcsr_mask;
    uint8_t fpregs1[8 * 16];
bellard authored
396
397
    uint8_t xmm_regs[16 * 16];
    uint8_t dummy2[96];
bellard authored
398
399
400
401
402
403
404
405
};

static struct fpxstate fpx1 __attribute__((aligned(16)));

static void restore_native_fp_frstor(CPUState *env)
{
    int fptag, i, j;
    struct fpstate fp1, *fp = &fp1;
406
bellard authored
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
    fp->fpuc = env->fpuc;
    fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
    fptag = 0;
    for (i=7; i>=0; i--) {
	fptag <<= 2;
	if (env->fptags[i]) {
            fptag |= 3;
        } else {
            /* the FPU automatically computes it */
        }
    }
    fp->fptag = fptag;
    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&fp->fpregs1[i * 10], &env->fpregs[j].d, 10);
        j = (j + 1) & 7;
    }
    asm volatile ("frstor %0" : "=m" (*fp));
}
426
bellard authored
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
static void save_native_fp_fsave(CPUState *env)
{
    int fptag, i, j;
    uint16_t fpuc;
    struct fpstate fp1, *fp = &fp1;

    asm volatile ("fsave %0" : : "m" (*fp));
    env->fpuc = fp->fpuc;
    env->fpstt = (fp->fpus >> 11) & 7;
    env->fpus = fp->fpus & ~0x3800;
    fptag = fp->fptag;
    for(i = 0;i < 8; i++) {
        env->fptags[i] = ((fptag & 3) == 3);
        fptag >>= 2;
    }
    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 10], 10);
        j = (j + 1) & 7;
    }
    /* we must restore the default rounding state */
    fpuc = 0x037f | (env->fpuc & (3 << 10));
    asm volatile("fldcw %0" : : "m" (fpuc));
}

static void restore_native_fp_fxrstor(CPUState *env)
{
    struct fpxstate *fp = &fpx1;
    int i, j, fptag;

    fp->fpuc = env->fpuc;
    fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
    fptag = 0;
    for(i = 0; i < 8; i++)
        fptag |= (env->fptags[i] << i);
    fp->fptag = fptag ^ 0xff;

    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&fp->fpregs1[i * 16], &env->fpregs[j].d, 10);
        j = (j + 1) & 7;
    }
    if (env->cpuid_features & CPUID_SSE) {
        fp->mxcsr = env->mxcsr;
        /* XXX: check if DAZ is not available */
        fp->mxcsr_mask = 0xffff;
bellard authored
473
        memcpy(fp->xmm_regs, env->xmm_regs, CPU_NB_REGS * 16);
bellard authored
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
    }
    asm volatile ("fxrstor %0" : "=m" (*fp));
}

static void save_native_fp_fxsave(CPUState *env)
{
    struct fpxstate *fp = &fpx1;
    int fptag, i, j;
    uint16_t fpuc;

    asm volatile ("fxsave %0" : : "m" (*fp));
    env->fpuc = fp->fpuc;
    env->fpstt = (fp->fpus >> 11) & 7;
    env->fpus = fp->fpus & ~0x3800;
    fptag = fp->fptag ^ 0xff;
    for(i = 0;i < 8; i++) {
        env->fptags[i] = (fptag >> i) & 1;
    }
    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 16], 10);
        j = (j + 1) & 7;
    }
    if (env->cpuid_features & CPUID_SSE) {
        env->mxcsr = fp->mxcsr;
bellard authored
499
        memcpy(env->xmm_regs, fp->xmm_regs, CPU_NB_REGS * 16);
bellard authored
500
501
502
503
504
505
506
507
    }

    /* we must restore the default rounding state */
    asm volatile ("fninit");
    fpuc = 0x037f | (env->fpuc & (3 << 10));
    asm volatile("fldcw %0" : : "m" (fpuc));
}
bellard authored
508
509
510
511
static int do_syscall(CPUState *env,
                      struct kqemu_cpu_state *kenv)
{
    int selector;
512
bellard authored
513
    selector = (env->star >> 32) & 0xffff;
514
#ifdef TARGET_X86_64
bellard authored
515
    if (env->hflags & HF_LMA_MASK) {
516
517
        int code64;
bellard authored
518
519
520
        env->regs[R_ECX] = kenv->next_eip;
        env->regs[11] = env->eflags;
521
522
        code64 = env->hflags & HF_CS64_MASK;
bellard authored
523
        cpu_x86_set_cpl(env, 0);
524
525
        cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
                               0, 0xffffffff,
bellard authored
526
                               DESC_G_MASK | DESC_P_MASK |
bellard authored
527
528
                               DESC_S_MASK |
                               DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK);
529
        cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
bellard authored
530
531
532
533
534
                               0, 0xffffffff,
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_W_MASK | DESC_A_MASK);
        env->eflags &= ~env->fmask;
535
        if (code64)
bellard authored
536
537
538
            env->eip = env->lstar;
        else
            env->eip = env->cstar;
539
    } else
bellard authored
540
541
542
#endif
    {
        env->regs[R_ECX] = (uint32_t)kenv->next_eip;
543
bellard authored
544
        cpu_x86_set_cpl(env, 0);
545
546
        cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
                           0, 0xffffffff,
bellard authored
547
548
549
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
550
        cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
bellard authored
551
552
553
554
555
556
557
558
559
560
                               0, 0xffffffff,
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_W_MASK | DESC_A_MASK);
        env->eflags &= ~(IF_MASK | RF_MASK | VM_MASK);
        env->eip = (uint32_t)env->star;
    }
    return 2;
}
561
#ifdef CONFIG_PROFILER
562
563
564
565
566
567
568
569
570
571
572

#define PC_REC_SIZE 1
#define PC_REC_HASH_BITS 16
#define PC_REC_HASH_SIZE (1 << PC_REC_HASH_BITS)

typedef struct PCRecord {
    unsigned long pc;
    int64_t count;
    struct PCRecord *next;
} PCRecord;
573
574
static PCRecord *pc_rec_hash[PC_REC_HASH_SIZE];
static int nb_pc_records;
575
576
static void kqemu_record_pc(unsigned long pc)
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
{
    unsigned long h;
    PCRecord **pr, *r;

    h = pc / PC_REC_SIZE;
    h = h ^ (h >> PC_REC_HASH_BITS);
    h &= (PC_REC_HASH_SIZE - 1);
    pr = &pc_rec_hash[h];
    for(;;) {
        r = *pr;
        if (r == NULL)
            break;
        if (r->pc == pc) {
            r->count++;
            return;
        }
        pr = &r->next;
    }
    r = malloc(sizeof(PCRecord));
    r->count = 1;
    r->pc = pc;
    r->next = NULL;
    *pr = r;
    nb_pc_records++;
}
603
static int pc_rec_cmp(const void *p1, const void *p2)
604
605
606
607
608
609
610
611
612
613
614
{
    PCRecord *r1 = *(PCRecord **)p1;
    PCRecord *r2 = *(PCRecord **)p2;
    if (r1->count < r2->count)
        return 1;
    else if (r1->count == r2->count)
        return 0;
    else
        return -1;
}
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
static void kqemu_record_flush(void)
{
    PCRecord *r, *r_next;
    int h;

    for(h = 0; h < PC_REC_HASH_SIZE; h++) {
        for(r = pc_rec_hash[h]; r != NULL; r = r_next) {
            r_next = r->next;
            free(r);
        }
        pc_rec_hash[h] = NULL;
    }
    nb_pc_records = 0;
}
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
void kqemu_record_dump(void)
{
    PCRecord **pr, *r;
    int i, h;
    FILE *f;
    int64_t total, sum;

    pr = malloc(sizeof(PCRecord *) * nb_pc_records);
    i = 0;
    total = 0;
    for(h = 0; h < PC_REC_HASH_SIZE; h++) {
        for(r = pc_rec_hash[h]; r != NULL; r = r->next) {
            pr[i++] = r;
            total += r->count;
        }
    }
    qsort(pr, nb_pc_records, sizeof(PCRecord *), pc_rec_cmp);
647
648
649
650
651
652
    f = fopen("/tmp/kqemu.stats", "w");
    if (!f) {
        perror("/tmp/kqemu.stats");
        exit(1);
    }
bellard authored
653
    fprintf(f, "total: %" PRId64 "\n", total);
654
655
656
657
    sum = 0;
    for(i = 0; i < nb_pc_records; i++) {
        r = pr[i];
        sum += r->count;
658
659
660
        fprintf(f, "%08lx: %" PRId64 " %0.2f%% %0.2f%%\n",
                r->pc,
                r->count,
661
662
663
664
665
                (double)r->count / (double)total * 100.0,
                (double)sum / (double)total * 100.0);
    }
    fclose(f);
    free(pr);
666
667

    kqemu_record_flush();
668
669
670
}
#endif
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
static inline void kqemu_load_seg(struct kqemu_segment_cache *ksc,
                                  const SegmentCache *sc)
{
    ksc->selector = sc->selector;
    ksc->flags = sc->flags;
    ksc->limit = sc->limit;
    ksc->base = sc->base;
}

static inline void kqemu_save_seg(SegmentCache *sc,
                                  const struct kqemu_segment_cache *ksc)
{
    sc->selector = ksc->selector;
    sc->flags = ksc->flags;
    sc->limit = ksc->limit;
    sc->base = ksc->base;
}
bellard authored
689
690
691
int kqemu_cpu_exec(CPUState *env)
{
    struct kqemu_cpu_state kcpu_state, *kenv = &kcpu_state;
692
693
694
695
    int ret, cpl, i;
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif
696
697
698
#ifdef _WIN32
    DWORD temp;
#endif
bellard authored
699
700
701
702
#ifdef CONFIG_PROFILER
    ti = profile_getclock();
#endif
703
704
    LOG_INT("kqemu: cpu_exec: enter\n");
    LOG_INT_STATE(env);
705
706
    for(i = 0; i < CPU_NB_REGS; i++)
        kenv->regs[i] = env->regs[i];
bellard authored
707
708
    kenv->eip = env->eip;
    kenv->eflags = env->eflags;
709
710
711
712
713
714
    for(i = 0; i < 6; i++)
        kqemu_load_seg(&kenv->segs[i], &env->segs[i]);
    kqemu_load_seg(&kenv->ldt, &env->ldt);
    kqemu_load_seg(&kenv->tr, &env->tr);
    kqemu_load_seg(&kenv->gdt, &env->gdt);
    kqemu_load_seg(&kenv->idt, &env->idt);
bellard authored
715
716
717
718
719
    kenv->cr0 = env->cr[0];
    kenv->cr2 = env->cr[2];
    kenv->cr3 = env->cr[3];
    kenv->cr4 = env->cr[4];
    kenv->a20_mask = env->a20_mask;
bellard authored
720
    kenv->efer = env->efer;
721
722
723
724
725
    kenv->tsc_offset = 0;
    kenv->star = env->star;
    kenv->sysenter_cs = env->sysenter_cs;
    kenv->sysenter_esp = env->sysenter_esp;
    kenv->sysenter_eip = env->sysenter_eip;
726
#ifdef TARGET_X86_64
727
728
729
730
731
    kenv->lstar = env->lstar;
    kenv->cstar = env->cstar;
    kenv->fmask = env->fmask;
    kenv->kernelgsbase = env->kernelgsbase;
#endif
bellard authored
732
733
734
735
736
737
738
739
740
741
    if (env->dr[7] & 0xff) {
        kenv->dr7 = env->dr[7];
        kenv->dr0 = env->dr[0];
        kenv->dr1 = env->dr[1];
        kenv->dr2 = env->dr[2];
        kenv->dr3 = env->dr[3];
    } else {
        kenv->dr7 = 0;
    }
    kenv->dr6 = env->dr[6];
742
743
    cpl = (env->hflags & HF_CPL_MASK);
    kenv->cpl = cpl;
bellard authored
744
    kenv->nb_pages_to_flush = nb_pages_to_flush;
745
    kenv->user_only = (env->kqemu_enabled == 1);
746
747
    kenv->nb_ram_pages_to_update = nb_ram_pages_to_update;
    nb_ram_pages_to_update = 0;
748
    kenv->nb_modified_ram_pages = nb_modified_ram_pages;
749
750
751
752
753
754
755
    kqemu_reset_modified_ram_pages();

    if (env->cpuid_features & CPUID_FXSR)
        restore_native_fp_fxrstor(env);
    else
        restore_native_fp_frstor(env);
bellard authored
756
757
#ifdef _WIN32
758
759
760
761
762
763
764
765
    if (DeviceIoControl(kqemu_fd, KQEMU_EXEC,
                        kenv, sizeof(struct kqemu_cpu_state),
                        kenv, sizeof(struct kqemu_cpu_state),
                        &temp, NULL)) {
        ret = kenv->retval;
    } else {
        ret = -1;
    }
766
767
768
769
#else
    ioctl(kqemu_fd, KQEMU_EXEC, kenv);
    ret = kenv->retval;
#endif
770
771
772
773
    if (env->cpuid_features & CPUID_FXSR)
        save_native_fp_fxsave(env);
    else
        save_native_fp_fsave(env);
bellard authored
774
775
776
    for(i = 0; i < CPU_NB_REGS; i++)
        env->regs[i] = kenv->regs[i];
bellard authored
777
778
    env->eip = kenv->eip;
    env->eflags = kenv->eflags;
779
780
    for(i = 0; i < 6; i++)
        kqemu_save_seg(&env->segs[i], &kenv->segs[i]);
781
    cpu_x86_set_cpl(env, kenv->cpl);
782
    kqemu_save_seg(&env->ldt, &kenv->ldt);
783
784
785
    env->cr[0] = kenv->cr0;
    env->cr[4] = kenv->cr4;
    env->cr[3] = kenv->cr3;
bellard authored
786
787
    env->cr[2] = kenv->cr2;
    env->dr[6] = kenv->dr6;
788
#ifdef TARGET_X86_64
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
    env->kernelgsbase = kenv->kernelgsbase;
#endif

    /* flush pages as indicated by kqemu */
    if (kenv->nb_pages_to_flush >= KQEMU_FLUSH_ALL) {
        tlb_flush(env, 1);
    } else {
        for(i = 0; i < kenv->nb_pages_to_flush; i++) {
            tlb_flush_page(env, pages_to_flush[i]);
        }
    }
    nb_pages_to_flush = 0;

#ifdef CONFIG_PROFILER
    kqemu_time += profile_getclock() - ti;
    kqemu_exec_count++;
#endif
bellard authored
806
807
808
809
810
    if (kenv->nb_ram_pages_to_update > 0) {
        cpu_tlb_update_dirty(env);
    }
811
812
813
814
815
816
817
818
    if (kenv->nb_modified_ram_pages > 0) {
        for(i = 0; i < kenv->nb_modified_ram_pages; i++) {
            unsigned long addr;
            addr = modified_ram_pages[i];
            tb_invalidate_phys_page_range(addr, addr + TARGET_PAGE_SIZE, 0);
        }
    }
819
820
821
822
    /* restore the hidden flags */
    {
        unsigned int new_hflags;
#ifdef TARGET_X86_64
823
        if ((env->hflags & HF_LMA_MASK) &&
824
825
826
827
828
829
830
831
832
833
834
            (env->segs[R_CS].flags & DESC_L_MASK)) {
            /* long mode */
            new_hflags = HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
        } else
#endif
        {
            /* legacy / compatibility case */
            new_hflags = (env->segs[R_CS].flags & DESC_B_MASK)
                >> (DESC_B_SHIFT - HF_CS32_SHIFT);
            new_hflags |= (env->segs[R_SS].flags & DESC_B_MASK)
                >> (DESC_B_SHIFT - HF_SS32_SHIFT);
835
            if (!(env->cr[0] & CR0_PE_MASK) ||
836
837
838
839
840
841
842
843
844
                   (env->eflags & VM_MASK) ||
                   !(env->hflags & HF_CS32_MASK)) {
                /* XXX: try to avoid this test. The problem comes from the
                   fact that is real mode or vm86 mode we only modify the
                   'base' and 'selector' fields of the segment cache to go
                   faster. A solution may be to force addseg to one in
                   translate-i386.c. */
                new_hflags |= HF_ADDSEG_MASK;
            } else {
845
                new_hflags |= ((env->segs[R_DS].base |
846
                                env->segs[R_ES].base |
847
                                env->segs[R_SS].base) != 0) <<
848
849
850
                    HF_ADDSEG_SHIFT;
            }
        }
851
        env->hflags = (env->hflags &
852
853
854
           ~(HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)) |
            new_hflags;
    }
855
856
857
858
859
860
861
    /* update FPU flags */
    env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
        ((env->cr[0] << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
    if (env->cr[4] & CR4_OSFXSR_MASK)
        env->hflags |= HF_OSFXSR_MASK;
    else
        env->hflags &= ~HF_OSFXSR_MASK;
862
863
    LOG_INT("kqemu: kqemu_cpu_exec: ret=0x%x\n", ret);
bellard authored
864
865
866
    if (ret == KQEMU_RET_SYSCALL) {
        /* syscall instruction */
        return do_syscall(env, kenv);
867
    } else
bellard authored
868
869
870
871
872
    if ((ret & 0xff00) == KQEMU_RET_INT) {
        env->exception_index = ret & 0xff;
        env->error_code = 0;
        env->exception_is_int = 1;
        env->exception_next_eip = kenv->next_eip;
873
874
875
#ifdef CONFIG_PROFILER
        kqemu_ret_int_count++;
#endif
876
877
        LOG_INT("kqemu: interrupt v=%02x:\n", env->exception_index);
        LOG_INT_STATE(env);
bellard authored
878
879
880
881
882
883
        return 1;
    } else if ((ret & 0xff00) == KQEMU_RET_EXCEPTION) {
        env->exception_index = ret & 0xff;
        env->error_code = kenv->error_code;
        env->exception_is_int = 0;
        env->exception_next_eip = 0;
884
885
886
#ifdef CONFIG_PROFILER
        kqemu_ret_excp_count++;
#endif
887
        LOG_INT("kqemu: exception v=%02x e=%04x:\n",
bellard authored
888
                    env->exception_index, env->error_code);
889
        LOG_INT_STATE(env);
bellard authored
890
891
        return 1;
    } else if (ret == KQEMU_RET_INTR) {
892
893
894
#ifdef CONFIG_PROFILER
        kqemu_ret_intr_count++;
#endif
895
        LOG_INT_STATE(env);
bellard authored
896
        return 0;
897
    } else if (ret == KQEMU_RET_SOFTMMU) {
898
899
900
901
902
#ifdef CONFIG_PROFILER
        {
            unsigned long pc = env->eip + env->segs[R_CS].base;
            kqemu_record_pc(pc);
        }
903
#endif
904
        LOG_INT_STATE(env);
bellard authored
905
906
907
908
909
910
911
912
913
        return 2;
    } else {
        cpu_dump_state(env, stderr, fprintf, 0);
        fprintf(stderr, "Unsupported return value: 0x%x\n", ret);
        exit(1);
    }
    return 0;
}
914
915
void kqemu_cpu_interrupt(CPUState *env)
{
916
#if defined(_WIN32)
917
    /* cancelling the I/O request causes KQEMU to finish executing the
918
919
920
921
922
       current block and successfully returning. */
    CancelIo(kqemu_fd);
#endif
}
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
/* 
   QEMU paravirtualization interface. The current interface only
   allows to modify the IF and IOPL flags when running in
   kqemu.

   At this point it is not very satisfactory. I leave it for reference
   as it adds little complexity.
*/

#define QPI_COMM_PAGE_PHYS_ADDR 0xff000000

static uint32_t qpi_mem_readb(void *opaque, target_phys_addr_t addr)
{
    return 0;
}

static uint32_t qpi_mem_readw(void *opaque, target_phys_addr_t addr)
{
    return 0;
}

static void qpi_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
}

static void qpi_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
}

static uint32_t qpi_mem_readl(void *opaque, target_phys_addr_t addr)
{
    CPUState *env;

    env = cpu_single_env;
    if (!env)
        return 0;
    return env->eflags & (IF_MASK | IOPL_MASK);
}

/* Note: after writing to this address, the guest code must make sure
   it is exiting the current TB. pushf/popf can be used for that
   purpose. */
static void qpi_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
    CPUState *env;

    env = cpu_single_env;
    if (!env)
        return;
    env->eflags = (env->eflags & ~(IF_MASK | IOPL_MASK)) | 
        (val & (IF_MASK | IOPL_MASK));
}

static CPUReadMemoryFunc *qpi_mem_read[3] = {
    qpi_mem_readb,
    qpi_mem_readw,
    qpi_mem_readl,
};

static CPUWriteMemoryFunc *qpi_mem_write[3] = {
    qpi_mem_writeb,
    qpi_mem_writew,
    qpi_mem_writel,
};

static void qpi_init(void)
{
    kqemu_comm_base = 0xff000000 | 1;
    qpi_io_memory = cpu_register_io_memory(0, 
                                           qpi_mem_read, 
                                           qpi_mem_write, NULL);
    cpu_register_physical_memory(kqemu_comm_base & ~0xfff, 
                                 0x1000, qpi_io_memory);
}
bellard authored
997
#endif