1
2
/*
* KQEMU support
ths
authored
18 years ago
3
*
4
* Copyright ( c ) 2005 - 2008 Fabrice Bellard
5
6
7
8
9
10
11
12
13
14
15
16
17
*
* This library is free software ; you can redistribute it and / or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation ; either
* version 2 of the License , or ( at your option ) any later version .
*
* This library is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU
* Lesser General Public License for more details .
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library ; if not , write to the Free Software
18
* Foundation , Inc ., 51 Franklin Street , Fifth Floor , Boston MA 02110 - 1301 USA
19
20
21
*/
# include "config.h"
# ifdef _WIN32
ths
authored
17 years ago
22
# define WIN32_LEAN_AND_MEAN
23
# include < windows . h >
24
# include < winioctl . h >
25
26
27
# else
# include < sys / types . h >
# include < sys / mman . h >
28
# include < sys / ioctl . h >
29
# endif
ths
authored
18 years ago
30
# ifdef HOST_SOLARIS
ths
authored
18 years ago
31
# include < sys / ioccom . h >
ths
authored
18 years ago
32
# endif
33
34
35
36
37
38
39
40
41
42
# include < stdlib . h >
# include < stdio . h >
# include < stdarg . h >
# include < string . h >
# include < errno . h >
# include < unistd . h >
# include < inttypes . h >
# include "cpu.h"
# include "exec-all.h"
43
# include "qemu-common.h"
44
45
46
47
# ifdef USE_KQEMU
# define DEBUG
48
// # define PROFILE
49
50
51
# ifdef DEBUG
52
53
# define LOG_INT (...) qemu_log_mask ( CPU_LOG_INT , ## __VA_ARGS__ )
# define LOG_INT_STATE ( env ) log_cpu_state_mask ( CPU_LOG_INT , ( env ), 0 )
54
55
56
57
58
# else
# define LOG_INT (...) do { } while ( 0 )
# define LOG_INT_STATE ( env ) do { } while ( 0 )
# endif
59
60
# include < unistd . h >
# include < fcntl . h >
61
# include "kqemu.h"
62
63
64
65
# ifdef _WIN32
# define KQEMU_DEVICE " \\\\ . \\ kqemu"
# else
66
# define KQEMU_DEVICE "/dev/kqemu"
67
68
# endif
69
70
static void qpi_init ( void );
71
72
73
74
75
76
77
78
79
# ifdef _WIN32
# define KQEMU_INVALID_FD INVALID_HANDLE_VALUE
HANDLE kqemu_fd = KQEMU_INVALID_FD ;
# define kqemu_closefd ( x ) CloseHandle ( x )
# else
# define KQEMU_INVALID_FD - 1
int kqemu_fd = KQEMU_INVALID_FD ;
# define kqemu_closefd ( x ) close ( x )
# endif
80
81
82
83
84
/* 0 = not allowed
1 = user kqemu
2 = kernel kqemu
*/
85
int kqemu_allowed = 1 ;
86
uint64_t * pages_to_flush ;
87
unsigned int nb_pages_to_flush ;
88
uint64_t * ram_pages_to_update ;
89
unsigned int nb_ram_pages_to_update ;
90
uint64_t * modified_ram_pages ;
91
92
unsigned int nb_modified_ram_pages ;
uint8_t * modified_ram_pages_table ;
93
94
int qpi_io_memory ;
uint32_t kqemu_comm_base ; /* physical address of the QPI communication page */
95
96
97
98
99
100
# define cpuid ( index , eax , ebx , ecx , edx ) \
asm volatile ( "cpuid" \
: "=a" ( eax ), "=b" ( ebx ), "=c" ( ecx ), "=d" ( edx ) \
: "0" ( index ))
101
102
103
104
105
106
# ifdef __x86_64__
static int is_cpuid_supported ( void )
{
return 1 ;
}
# else
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
static int is_cpuid_supported ( void )
{
int v0 , v1 ;
asm volatile ( "pushf \n "
"popl %0 \n "
"movl %0, %1 \n "
"xorl $0x00200000, %0 \n "
"pushl %0 \n "
"popf \n "
"pushf \n "
"popl %0 \n "
: "=a" ( v0 ), "=d" ( v1 )
:
: "cc" );
return ( v0 != v1 );
}
123
# endif
124
125
126
static void kqemu_update_cpuid ( CPUState * env )
{
127
int critical_features_mask , features , ext_features , ext_features_mask ;
128
129
130
131
132
133
uint32_t eax , ebx , ecx , edx ;
/* the following features are kept identical on the host and
target cpus because they are important for user code . Strictly
speaking , only SSE really matters because the OS must support
it if the user code uses it . */
ths
authored
18 years ago
134
135
136
critical_features_mask =
CPUID_CMOV | CPUID_CX8 |
CPUID_FXSR | CPUID_MMX | CPUID_SSE |
137
CPUID_SSE2 | CPUID_SEP ;
138
ext_features_mask = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR ;
139
140
if ( ! is_cpuid_supported ()) {
features = 0 ;
141
ext_features = 0 ;
142
143
144
} else {
cpuid ( 1 , eax , ebx , ecx , edx );
features = edx ;
145
ext_features = ecx ;
146
}
147
148
149
150
151
152
# ifdef __x86_64__
/* NOTE : on x86_64 CPUs , SYSENTER is not supported in
compatibility mode , so in order to have the best performances
it is better not to use it */
features &= ~ CPUID_SEP ;
# endif
153
154
env -> cpuid_features = ( env -> cpuid_features & ~ critical_features_mask ) |
( features & critical_features_mask );
155
156
env -> cpuid_ext_features = ( env -> cpuid_ext_features & ~ ext_features_mask ) |
( ext_features & ext_features_mask );
157
158
159
160
161
162
163
/* XXX : we could update more of the target CPUID state so that the
non accelerated code sees exactly the same CPU features as the
accelerated code */
}
int kqemu_init ( CPUState * env )
{
164
struct kqemu_init kinit ;
165
int ret , version ;
166
167
168
# ifdef _WIN32
DWORD temp ;
# endif
169
170
171
172
if ( ! kqemu_allowed )
return - 1 ;
173
174
175
176
177
# ifdef _WIN32
kqemu_fd = CreateFile ( KQEMU_DEVICE , GENERIC_WRITE | GENERIC_READ ,
FILE_SHARE_READ | FILE_SHARE_WRITE ,
NULL , OPEN_EXISTING , FILE_ATTRIBUTE_NORMAL ,
NULL );
malc
authored
17 years ago
178
179
180
181
182
if ( kqemu_fd == KQEMU_INVALID_FD ) {
fprintf ( stderr , "Could not open '%s' - QEMU acceleration layer not activated: %lu \n " ,
KQEMU_DEVICE , GetLastError ());
return - 1 ;
}
183
# else
184
kqemu_fd = open ( KQEMU_DEVICE , O_RDWR );
185
if ( kqemu_fd == KQEMU_INVALID_FD ) {
ths
authored
18 years ago
186
187
fprintf ( stderr , "Could not open '%s' - QEMU acceleration layer not activated: %s \n " ,
KQEMU_DEVICE , strerror ( errno ));
188
189
return - 1 ;
}
malc
authored
17 years ago
190
# endif
191
version = 0 ;
192
193
194
195
# ifdef _WIN32
DeviceIoControl ( kqemu_fd , KQEMU_GET_VERSION , NULL , 0 ,
& version , sizeof ( version ), & temp , NULL );
# else
196
ioctl ( kqemu_fd , KQEMU_GET_VERSION , & version );
197
# endif
198
199
200
201
202
203
if ( version != KQEMU_VERSION ) {
fprintf ( stderr , "Version mismatch between kqemu module and qemu (%08x %08x) - disabling kqemu use \n " ,
version , KQEMU_VERSION );
goto fail ;
}
ths
authored
18 years ago
204
pages_to_flush = qemu_vmalloc ( KQEMU_MAX_PAGES_TO_FLUSH *
205
sizeof ( uint64_t ));
206
207
208
if ( ! pages_to_flush )
goto fail ;
ths
authored
18 years ago
209
ram_pages_to_update = qemu_vmalloc ( KQEMU_MAX_RAM_PAGES_TO_UPDATE *
210
sizeof ( uint64_t ));
211
212
213
if ( ! ram_pages_to_update )
goto fail ;
ths
authored
18 years ago
214
modified_ram_pages = qemu_vmalloc ( KQEMU_MAX_MODIFIED_RAM_PAGES *
215
sizeof ( uint64_t ));
216
217
218
219
220
221
if ( ! modified_ram_pages )
goto fail ;
modified_ram_pages_table = qemu_mallocz ( phys_ram_size >> TARGET_PAGE_BITS );
if ( ! modified_ram_pages_table )
goto fail ;
222
223
224
225
226
227
228
memset ( & kinit , 0 , sizeof ( kinit )); /* set the paddings to zero */
kinit . ram_base = phys_ram_base ;
kinit . ram_size = phys_ram_size ;
kinit . ram_dirty = phys_ram_dirty ;
kinit . pages_to_flush = pages_to_flush ;
kinit . ram_pages_to_update = ram_pages_to_update ;
kinit . modified_ram_pages = modified_ram_pages ;
229
# ifdef _WIN32
230
ret = DeviceIoControl ( kqemu_fd , KQEMU_INIT , & kinit , sizeof ( kinit ),
231
232
NULL , 0 , & temp , NULL ) == TRUE ? 0 : - 1 ;
# else
233
ret = ioctl ( kqemu_fd , KQEMU_INIT , & kinit );
234
# endif
235
236
237
if ( ret < 0 ) {
fprintf ( stderr , "Error %d while initializing QEMU acceleration layer - disabling it for now \n " , ret );
fail :
238
239
kqemu_closefd ( kqemu_fd );
kqemu_fd = KQEMU_INVALID_FD ;
240
241
242
return - 1 ;
}
kqemu_update_cpuid ( env );
243
env -> kqemu_enabled = kqemu_allowed ;
244
nb_pages_to_flush = 0 ;
245
nb_ram_pages_to_update = 0 ;
246
247
qpi_init ();
248
249
250
251
252
return 0 ;
}
void kqemu_flush_page ( CPUState * env , target_ulong addr )
{
253
LOG_INT ( "kqemu_flush_page: addr=" TARGET_FMT_lx " \n " , addr );
254
255
256
257
258
259
260
261
if ( nb_pages_to_flush >= KQEMU_MAX_PAGES_TO_FLUSH )
nb_pages_to_flush = KQEMU_FLUSH_ALL ;
else
pages_to_flush [ nb_pages_to_flush ++ ] = addr ;
}
void kqemu_flush ( CPUState * env , int global )
{
262
LOG_INT ( "kqemu_flush: \n " );
263
264
265
nb_pages_to_flush = KQEMU_FLUSH_ALL ;
}
266
267
void kqemu_set_notdirty ( CPUState * env , ram_addr_t ram_addr )
{
268
LOG_INT ( "kqemu_set_notdirty: addr=%08lx \n " ,
269
( unsigned long ) ram_addr );
270
271
272
/* we only track transitions to dirty state */
if ( phys_ram_dirty [ ram_addr >> TARGET_PAGE_BITS ] != 0xff )
return ;
273
274
275
276
277
278
if ( nb_ram_pages_to_update >= KQEMU_MAX_RAM_PAGES_TO_UPDATE )
nb_ram_pages_to_update = KQEMU_RAM_PAGES_UPDATE_ALL ;
else
ram_pages_to_update [ nb_ram_pages_to_update ++ ] = ram_addr ;
}
279
280
281
282
static void kqemu_reset_modified_ram_pages ( void )
{
int i ;
unsigned long page_index ;
ths
authored
18 years ago
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
for ( i = 0 ; i < nb_modified_ram_pages ; i ++ ) {
page_index = modified_ram_pages [ i ] >> TARGET_PAGE_BITS ;
modified_ram_pages_table [ page_index ] = 0 ;
}
nb_modified_ram_pages = 0 ;
}
void kqemu_modify_page ( CPUState * env , ram_addr_t ram_addr )
{
unsigned long page_index ;
int ret ;
# ifdef _WIN32
DWORD temp ;
# endif
page_index = ram_addr >> TARGET_PAGE_BITS ;
if ( ! modified_ram_pages_table [ page_index ]) {
# if 0
printf ( "%d: modify_page=%08lx \n " , nb_modified_ram_pages , ram_addr );
# endif
modified_ram_pages_table [ page_index ] = 1 ;
modified_ram_pages [ nb_modified_ram_pages ++ ] = ram_addr ;
if ( nb_modified_ram_pages >= KQEMU_MAX_MODIFIED_RAM_PAGES ) {
/* flush */
# ifdef _WIN32
ths
authored
18 years ago
309
310
ret = DeviceIoControl ( kqemu_fd , KQEMU_MODIFY_RAM_PAGES ,
& nb_modified_ram_pages ,
311
312
313
sizeof ( nb_modified_ram_pages ),
NULL , 0 , & temp , NULL );
# else
ths
authored
18 years ago
314
ret = ioctl ( kqemu_fd , KQEMU_MODIFY_RAM_PAGES ,
315
316
317
318
319
320
321
& nb_modified_ram_pages );
# endif
kqemu_reset_modified_ram_pages ();
}
}
}
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
void kqemu_set_phys_mem ( uint64_t start_addr , ram_addr_t size ,
ram_addr_t phys_offset )
{
struct kqemu_phys_mem kphys_mem1 , * kphys_mem = & kphys_mem1 ;
uint64_t end ;
int ret , io_index ;
end = ( start_addr + size + TARGET_PAGE_SIZE - 1 ) & TARGET_PAGE_MASK ;
start_addr &= TARGET_PAGE_MASK ;
kphys_mem -> phys_addr = start_addr ;
kphys_mem -> size = end - start_addr ;
kphys_mem -> ram_addr = phys_offset & TARGET_PAGE_MASK ;
io_index = phys_offset & ~ TARGET_PAGE_MASK ;
switch ( io_index ) {
case IO_MEM_RAM :
kphys_mem -> io_index = KQEMU_IO_MEM_RAM ;
break ;
case IO_MEM_ROM :
kphys_mem -> io_index = KQEMU_IO_MEM_ROM ;
break ;
default :
if ( qpi_io_memory == io_index ) {
kphys_mem -> io_index = KQEMU_IO_MEM_COMM ;
} else {
kphys_mem -> io_index = KQEMU_IO_MEM_UNASSIGNED ;
}
break ;
}
# ifdef _WIN32
{
DWORD temp ;
ret = DeviceIoControl ( kqemu_fd , KQEMU_SET_PHYS_MEM ,
kphys_mem , sizeof ( * kphys_mem ),
NULL , 0 , & temp , NULL ) == TRUE ? 0 : - 1 ;
}
# else
ret = ioctl ( kqemu_fd , KQEMU_SET_PHYS_MEM , kphys_mem );
# endif
if ( ret < 0 ) {
fprintf ( stderr , "kqemu: KQEMU_SET_PHYS_PAGE error=%d: start_addr=0x%016" PRIx64 " size=0x%08lx phys_offset=0x%08lx \n " ,
ret , start_addr ,
( unsigned long ) size , ( unsigned long ) phys_offset );
}
}
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
struct fpstate {
uint16_t fpuc ;
uint16_t dummy1 ;
uint16_t fpus ;
uint16_t dummy2 ;
uint16_t fptag ;
uint16_t dummy3 ;
uint32_t fpip ;
uint32_t fpcs ;
uint32_t fpoo ;
uint32_t fpos ;
uint8_t fpregs1 [ 8 * 10 ];
};
struct fpxstate {
uint16_t fpuc ;
uint16_t fpus ;
uint16_t fptag ;
uint16_t fop ;
uint32_t fpuip ;
uint16_t cs_sel ;
uint16_t dummy0 ;
uint32_t fpudp ;
uint16_t ds_sel ;
uint16_t dummy1 ;
uint32_t mxcsr ;
uint32_t mxcsr_mask ;
uint8_t fpregs1 [ 8 * 16 ];
396
397
uint8_t xmm_regs [ 16 * 16 ];
uint8_t dummy2 [ 96 ];
398
399
400
401
402
403
404
405
};
static struct fpxstate fpx1 __attribute__ (( aligned ( 16 )));
static void restore_native_fp_frstor ( CPUState * env )
{
int fptag , i , j ;
struct fpstate fp1 , * fp = & fp1 ;
ths
authored
18 years ago
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
fp -> fpuc = env -> fpuc ;
fp -> fpus = ( env -> fpus & ~ 0x3800 ) | ( env -> fpstt & 0x7 ) << 11 ;
fptag = 0 ;
for ( i = 7 ; i >= 0 ; i -- ) {
fptag <<= 2 ;
if ( env -> fptags [ i ]) {
fptag |= 3 ;
} else {
/* the FPU automatically computes it */
}
}
fp -> fptag = fptag ;
j = env -> fpstt ;
for ( i = 0 ; i < 8 ; i ++ ) {
memcpy ( & fp -> fpregs1 [ i * 10 ], & env -> fpregs [ j ]. d , 10 );
j = ( j + 1 ) & 7 ;
}
asm volatile ( "frstor %0" : "=m" ( * fp ));
}
ths
authored
18 years ago
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
static void save_native_fp_fsave ( CPUState * env )
{
int fptag , i , j ;
uint16_t fpuc ;
struct fpstate fp1 , * fp = & fp1 ;
asm volatile ( "fsave %0" : : "m" ( * fp ));
env -> fpuc = fp -> fpuc ;
env -> fpstt = ( fp -> fpus >> 11 ) & 7 ;
env -> fpus = fp -> fpus & ~ 0x3800 ;
fptag = fp -> fptag ;
for ( i = 0 ; i < 8 ; i ++ ) {
env -> fptags [ i ] = (( fptag & 3 ) == 3 );
fptag >>= 2 ;
}
j = env -> fpstt ;
for ( i = 0 ; i < 8 ; i ++ ) {
memcpy ( & env -> fpregs [ j ]. d , & fp -> fpregs1 [ i * 10 ], 10 );
j = ( j + 1 ) & 7 ;
}
/* we must restore the default rounding state */
fpuc = 0x037f | ( env -> fpuc & ( 3 << 10 ));
asm volatile ( "fldcw %0" : : "m" ( fpuc ));
}
static void restore_native_fp_fxrstor ( CPUState * env )
{
struct fpxstate * fp = & fpx1 ;
int i , j , fptag ;
fp -> fpuc = env -> fpuc ;
fp -> fpus = ( env -> fpus & ~ 0x3800 ) | ( env -> fpstt & 0x7 ) << 11 ;
fptag = 0 ;
for ( i = 0 ; i < 8 ; i ++ )
fptag |= ( env -> fptags [ i ] << i );
fp -> fptag = fptag ^ 0xff ;
j = env -> fpstt ;
for ( i = 0 ; i < 8 ; i ++ ) {
memcpy ( & fp -> fpregs1 [ i * 16 ], & env -> fpregs [ j ]. d , 10 );
j = ( j + 1 ) & 7 ;
}
if ( env -> cpuid_features & CPUID_SSE ) {
fp -> mxcsr = env -> mxcsr ;
/* XXX: check if DAZ is not available */
fp -> mxcsr_mask = 0xffff ;
473
memcpy ( fp -> xmm_regs , env -> xmm_regs , CPU_NB_REGS * 16 );
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
}
asm volatile ( "fxrstor %0" : "=m" ( * fp ));
}
static void save_native_fp_fxsave ( CPUState * env )
{
struct fpxstate * fp = & fpx1 ;
int fptag , i , j ;
uint16_t fpuc ;
asm volatile ( "fxsave %0" : : "m" ( * fp ));
env -> fpuc = fp -> fpuc ;
env -> fpstt = ( fp -> fpus >> 11 ) & 7 ;
env -> fpus = fp -> fpus & ~ 0x3800 ;
fptag = fp -> fptag ^ 0xff ;
for ( i = 0 ; i < 8 ; i ++ ) {
env -> fptags [ i ] = ( fptag >> i ) & 1 ;
}
j = env -> fpstt ;
for ( i = 0 ; i < 8 ; i ++ ) {
memcpy ( & env -> fpregs [ j ]. d , & fp -> fpregs1 [ i * 16 ], 10 );
j = ( j + 1 ) & 7 ;
}
if ( env -> cpuid_features & CPUID_SSE ) {
env -> mxcsr = fp -> mxcsr ;
499
memcpy ( env -> xmm_regs , fp -> xmm_regs , CPU_NB_REGS * 16 );
500
501
502
503
504
505
506
507
}
/* we must restore the default rounding state */
asm volatile ( "fninit" );
fpuc = 0x037f | ( env -> fpuc & ( 3 << 10 ));
asm volatile ( "fldcw %0" : : "m" ( fpuc ));
}
508
509
510
511
static int do_syscall ( CPUState * env ,
struct kqemu_cpu_state * kenv )
{
int selector ;
ths
authored
18 years ago
512
513
selector = ( env -> star >> 32 ) & 0xffff ;
514
# ifdef TARGET_X86_64
515
if ( env -> hflags & HF_LMA_MASK ) {
516
517
int code64 ;
518
519
520
env -> regs [ R_ECX ] = kenv -> next_eip ;
env -> regs [ 11 ] = env -> eflags ;
521
522
code64 = env -> hflags & HF_CS64_MASK ;
523
cpu_x86_set_cpl ( env , 0 );
ths
authored
18 years ago
524
525
cpu_x86_load_seg_cache ( env , R_CS , selector & 0xfffc ,
0 , 0xffffffff ,
526
DESC_G_MASK | DESC_P_MASK |
527
528
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK );
ths
authored
18 years ago
529
cpu_x86_load_seg_cache ( env , R_SS , ( selector + 8 ) & 0xfffc ,
530
531
532
533
534
0 , 0xffffffff ,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_W_MASK | DESC_A_MASK );
env -> eflags &= ~ env -> fmask ;
535
if ( code64 )
536
537
538
env -> eip = env -> lstar ;
else
env -> eip = env -> cstar ;
ths
authored
18 years ago
539
} else
540
541
542
# endif
{
env -> regs [ R_ECX ] = ( uint32_t ) kenv -> next_eip ;
ths
authored
18 years ago
543
544
cpu_x86_set_cpl ( env , 0 );
ths
authored
18 years ago
545
546
cpu_x86_load_seg_cache ( env , R_CS , selector & 0xfffc ,
0 , 0xffffffff ,
547
548
549
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK );
ths
authored
18 years ago
550
cpu_x86_load_seg_cache ( env , R_SS , ( selector + 8 ) & 0xfffc ,
551
552
553
554
555
556
557
558
559
560
0 , 0xffffffff ,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_W_MASK | DESC_A_MASK );
env -> eflags &= ~ ( IF_MASK | RF_MASK | VM_MASK );
env -> eip = ( uint32_t ) env -> star ;
}
return 2 ;
}
561
# ifdef CONFIG_PROFILER
562
563
564
565
566
567
568
569
570
571
572
# define PC_REC_SIZE 1
# define PC_REC_HASH_BITS 16
# define PC_REC_HASH_SIZE ( 1 << PC_REC_HASH_BITS )
typedef struct PCRecord {
unsigned long pc ;
int64_t count ;
struct PCRecord * next ;
} PCRecord ;
573
574
static PCRecord * pc_rec_hash [ PC_REC_HASH_SIZE ];
static int nb_pc_records ;
575
576
static void kqemu_record_pc ( unsigned long pc )
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
{
unsigned long h ;
PCRecord ** pr , * r ;
h = pc / PC_REC_SIZE ;
h = h ^ ( h >> PC_REC_HASH_BITS );
h &= ( PC_REC_HASH_SIZE - 1 );
pr = & pc_rec_hash [ h ];
for (;;) {
r = * pr ;
if ( r == NULL )
break ;
if ( r -> pc == pc ) {
r -> count ++ ;
return ;
}
pr = & r -> next ;
}
r = malloc ( sizeof ( PCRecord ));
r -> count = 1 ;
r -> pc = pc ;
r -> next = NULL ;
* pr = r ;
nb_pc_records ++ ;
}
603
static int pc_rec_cmp ( const void * p1 , const void * p2 )
604
605
606
607
608
609
610
611
612
613
614
{
PCRecord * r1 = * ( PCRecord ** ) p1 ;
PCRecord * r2 = * ( PCRecord ** ) p2 ;
if ( r1 -> count < r2 -> count )
return 1 ;
else if ( r1 -> count == r2 -> count )
return 0 ;
else
return - 1 ;
}
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
static void kqemu_record_flush ( void )
{
PCRecord * r , * r_next ;
int h ;
for ( h = 0 ; h < PC_REC_HASH_SIZE ; h ++ ) {
for ( r = pc_rec_hash [ h ]; r != NULL ; r = r_next ) {
r_next = r -> next ;
free ( r );
}
pc_rec_hash [ h ] = NULL ;
}
nb_pc_records = 0 ;
}
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
void kqemu_record_dump ( void )
{
PCRecord ** pr , * r ;
int i , h ;
FILE * f ;
int64_t total , sum ;
pr = malloc ( sizeof ( PCRecord * ) * nb_pc_records );
i = 0 ;
total = 0 ;
for ( h = 0 ; h < PC_REC_HASH_SIZE ; h ++ ) {
for ( r = pc_rec_hash [ h ]; r != NULL ; r = r -> next ) {
pr [ i ++ ] = r ;
total += r -> count ;
}
}
qsort ( pr , nb_pc_records , sizeof ( PCRecord * ), pc_rec_cmp );
ths
authored
18 years ago
647
648
649
650
651
652
f = fopen ( "/tmp/kqemu.stats" , "w" );
if ( ! f ) {
perror ( "/tmp/kqemu.stats" );
exit ( 1 );
}
653
fprintf ( f , "total: %" PRId64 " \n " , total );
654
655
656
657
sum = 0 ;
for ( i = 0 ; i < nb_pc_records ; i ++ ) {
r = pr [ i ];
sum += r -> count ;
ths
authored
18 years ago
658
659
660
fprintf ( f , "%08lx: %" PRId64 " %0.2f%% %0.2f%% \n " ,
r -> pc ,
r -> count ,
661
662
663
664
665
( double ) r -> count / ( double ) total * 100 . 0 ,
( double ) sum / ( double ) total * 100 . 0 );
}
fclose ( f );
free ( pr );
666
667
kqemu_record_flush ();
668
669
670
}
# endif
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
static inline void kqemu_load_seg ( struct kqemu_segment_cache * ksc ,
const SegmentCache * sc )
{
ksc -> selector = sc -> selector ;
ksc -> flags = sc -> flags ;
ksc -> limit = sc -> limit ;
ksc -> base = sc -> base ;
}
static inline void kqemu_save_seg ( SegmentCache * sc ,
const struct kqemu_segment_cache * ksc )
{
sc -> selector = ksc -> selector ;
sc -> flags = ksc -> flags ;
sc -> limit = ksc -> limit ;
sc -> base = ksc -> base ;
}
689
690
691
int kqemu_cpu_exec ( CPUState * env )
{
struct kqemu_cpu_state kcpu_state , * kenv = & kcpu_state ;
692
693
694
695
int ret , cpl , i ;
# ifdef CONFIG_PROFILER
int64_t ti ;
# endif
696
697
698
# ifdef _WIN32
DWORD temp ;
# endif
699
700
701
702
# ifdef CONFIG_PROFILER
ti = profile_getclock ();
# endif
703
704
LOG_INT ( "kqemu: cpu_exec: enter \n " );
LOG_INT_STATE ( env );
705
706
for ( i = 0 ; i < CPU_NB_REGS ; i ++ )
kenv -> regs [ i ] = env -> regs [ i ];
707
708
kenv -> eip = env -> eip ;
kenv -> eflags = env -> eflags ;
709
710
711
712
713
714
for ( i = 0 ; i < 6 ; i ++ )
kqemu_load_seg ( & kenv -> segs [ i ], & env -> segs [ i ]);
kqemu_load_seg ( & kenv -> ldt , & env -> ldt );
kqemu_load_seg ( & kenv -> tr , & env -> tr );
kqemu_load_seg ( & kenv -> gdt , & env -> gdt );
kqemu_load_seg ( & kenv -> idt , & env -> idt );
715
716
717
718
719
kenv -> cr0 = env -> cr [ 0 ];
kenv -> cr2 = env -> cr [ 2 ];
kenv -> cr3 = env -> cr [ 3 ];
kenv -> cr4 = env -> cr [ 4 ];
kenv -> a20_mask = env -> a20_mask ;
720
kenv -> efer = env -> efer ;
721
722
723
724
725
kenv -> tsc_offset = 0 ;
kenv -> star = env -> star ;
kenv -> sysenter_cs = env -> sysenter_cs ;
kenv -> sysenter_esp = env -> sysenter_esp ;
kenv -> sysenter_eip = env -> sysenter_eip ;
726
# ifdef TARGET_X86_64
727
728
729
730
731
kenv -> lstar = env -> lstar ;
kenv -> cstar = env -> cstar ;
kenv -> fmask = env -> fmask ;
kenv -> kernelgsbase = env -> kernelgsbase ;
# endif
732
733
734
735
736
737
738
739
740
741
if ( env -> dr [ 7 ] & 0xff ) {
kenv -> dr7 = env -> dr [ 7 ];
kenv -> dr0 = env -> dr [ 0 ];
kenv -> dr1 = env -> dr [ 1 ];
kenv -> dr2 = env -> dr [ 2 ];
kenv -> dr3 = env -> dr [ 3 ];
} else {
kenv -> dr7 = 0 ;
}
kenv -> dr6 = env -> dr [ 6 ];
742
743
cpl = ( env -> hflags & HF_CPL_MASK );
kenv -> cpl = cpl ;
744
kenv -> nb_pages_to_flush = nb_pages_to_flush ;
745
kenv -> user_only = ( env -> kqemu_enabled == 1 );
746
747
kenv -> nb_ram_pages_to_update = nb_ram_pages_to_update ;
nb_ram_pages_to_update = 0 ;
748
kenv -> nb_modified_ram_pages = nb_modified_ram_pages ;
749
750
751
752
753
754
755
kqemu_reset_modified_ram_pages ();
if ( env -> cpuid_features & CPUID_FXSR )
restore_native_fp_fxrstor ( env );
else
restore_native_fp_frstor ( env );
756
757
# ifdef _WIN32
758
759
760
761
762
763
764
765
if ( DeviceIoControl ( kqemu_fd , KQEMU_EXEC ,
kenv , sizeof ( struct kqemu_cpu_state ),
kenv , sizeof ( struct kqemu_cpu_state ),
& temp , NULL )) {
ret = kenv -> retval ;
} else {
ret = - 1 ;
}
766
767
768
769
# else
ioctl ( kqemu_fd , KQEMU_EXEC , kenv );
ret = kenv -> retval ;
# endif
770
771
772
773
if ( env -> cpuid_features & CPUID_FXSR )
save_native_fp_fxsave ( env );
else
save_native_fp_fsave ( env );
774
775
776
for ( i = 0 ; i < CPU_NB_REGS ; i ++ )
env -> regs [ i ] = kenv -> regs [ i ];
777
778
env -> eip = kenv -> eip ;
env -> eflags = kenv -> eflags ;
779
780
for ( i = 0 ; i < 6 ; i ++ )
kqemu_save_seg ( & env -> segs [ i ], & kenv -> segs [ i ]);
781
cpu_x86_set_cpl ( env , kenv -> cpl );
782
kqemu_save_seg ( & env -> ldt , & kenv -> ldt );
783
784
785
env -> cr [ 0 ] = kenv -> cr0 ;
env -> cr [ 4 ] = kenv -> cr4 ;
env -> cr [ 3 ] = kenv -> cr3 ;
786
787
env -> cr [ 2 ] = kenv -> cr2 ;
env -> dr [ 6 ] = kenv -> dr6 ;
788
# ifdef TARGET_X86_64
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
env -> kernelgsbase = kenv -> kernelgsbase ;
# endif
/* flush pages as indicated by kqemu */
if ( kenv -> nb_pages_to_flush >= KQEMU_FLUSH_ALL ) {
tlb_flush ( env , 1 );
} else {
for ( i = 0 ; i < kenv -> nb_pages_to_flush ; i ++ ) {
tlb_flush_page ( env , pages_to_flush [ i ]);
}
}
nb_pages_to_flush = 0 ;
# ifdef CONFIG_PROFILER
kqemu_time += profile_getclock () - ti ;
kqemu_exec_count ++ ;
# endif
806
807
808
809
810
if ( kenv -> nb_ram_pages_to_update > 0 ) {
cpu_tlb_update_dirty ( env );
}
811
812
813
814
815
816
817
818
if ( kenv -> nb_modified_ram_pages > 0 ) {
for ( i = 0 ; i < kenv -> nb_modified_ram_pages ; i ++ ) {
unsigned long addr ;
addr = modified_ram_pages [ i ];
tb_invalidate_phys_page_range ( addr , addr + TARGET_PAGE_SIZE , 0 );
}
}
819
820
821
822
/* restore the hidden flags */
{
unsigned int new_hflags ;
# ifdef TARGET_X86_64
ths
authored
18 years ago
823
if (( env -> hflags & HF_LMA_MASK ) &&
824
825
826
827
828
829
830
831
832
833
834
( env -> segs [ R_CS ]. flags & DESC_L_MASK )) {
/* long mode */
new_hflags = HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK ;
} else
# endif
{
/* legacy / compatibility case */
new_hflags = ( env -> segs [ R_CS ]. flags & DESC_B_MASK )
>> ( DESC_B_SHIFT - HF_CS32_SHIFT );
new_hflags |= ( env -> segs [ R_SS ]. flags & DESC_B_MASK )
>> ( DESC_B_SHIFT - HF_SS32_SHIFT );
ths
authored
18 years ago
835
if ( ! ( env -> cr [ 0 ] & CR0_PE_MASK ) ||
836
837
838
839
840
841
842
843
844
( env -> eflags & VM_MASK ) ||
! ( env -> hflags & HF_CS32_MASK )) {
/* XXX : try to avoid this test . The problem comes from the
fact that is real mode or vm86 mode we only modify the
' base ' and ' selector ' fields of the segment cache to go
faster . A solution may be to force addseg to one in
translate - i386 . c . */
new_hflags |= HF_ADDSEG_MASK ;
} else {
ths
authored
18 years ago
845
new_hflags |= (( env -> segs [ R_DS ]. base |
846
env -> segs [ R_ES ]. base |
ths
authored
18 years ago
847
env -> segs [ R_SS ]. base ) != 0 ) <<
848
849
850
HF_ADDSEG_SHIFT ;
}
}
ths
authored
18 years ago
851
env -> hflags = ( env -> hflags &
852
853
854
~ ( HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK )) |
new_hflags ;
}
855
856
857
858
859
860
861
/* update FPU flags */
env -> hflags = ( env -> hflags & ~ ( HF_MP_MASK | HF_EM_MASK | HF_TS_MASK )) |
(( env -> cr [ 0 ] << ( HF_MP_SHIFT - 1 )) & ( HF_MP_MASK | HF_EM_MASK | HF_TS_MASK ));
if ( env -> cr [ 4 ] & CR4_OSFXSR_MASK )
env -> hflags |= HF_OSFXSR_MASK ;
else
env -> hflags &= ~ HF_OSFXSR_MASK ;
ths
authored
18 years ago
862
863
LOG_INT ( "kqemu: kqemu_cpu_exec: ret=0x%x \n " , ret );
864
865
866
if ( ret == KQEMU_RET_SYSCALL ) {
/* syscall instruction */
return do_syscall ( env , kenv );
ths
authored
18 years ago
867
} else
868
869
870
871
872
if (( ret & 0xff00 ) == KQEMU_RET_INT ) {
env -> exception_index = ret & 0xff ;
env -> error_code = 0 ;
env -> exception_is_int = 1 ;
env -> exception_next_eip = kenv -> next_eip ;
873
874
875
# ifdef CONFIG_PROFILER
kqemu_ret_int_count ++ ;
# endif
876
877
LOG_INT ( "kqemu: interrupt v=%02x: \n " , env -> exception_index );
LOG_INT_STATE ( env );
878
879
880
881
882
883
return 1 ;
} else if (( ret & 0xff00 ) == KQEMU_RET_EXCEPTION ) {
env -> exception_index = ret & 0xff ;
env -> error_code = kenv -> error_code ;
env -> exception_is_int = 0 ;
env -> exception_next_eip = 0 ;
884
885
886
# ifdef CONFIG_PROFILER
kqemu_ret_excp_count ++ ;
# endif
887
LOG_INT ( "kqemu: exception v=%02x e=%04x: \n " ,
888
env -> exception_index , env -> error_code );
889
LOG_INT_STATE ( env );
890
891
return 1 ;
} else if ( ret == KQEMU_RET_INTR ) {
892
893
894
# ifdef CONFIG_PROFILER
kqemu_ret_intr_count ++ ;
# endif
895
LOG_INT_STATE ( env );
896
return 0 ;
ths
authored
18 years ago
897
} else if ( ret == KQEMU_RET_SOFTMMU ) {
898
899
900
901
902
# ifdef CONFIG_PROFILER
{
unsigned long pc = env -> eip + env -> segs [ R_CS ]. base ;
kqemu_record_pc ( pc );
}
903
# endif
904
LOG_INT_STATE ( env );
905
906
907
908
909
910
911
912
913
return 2 ;
} else {
cpu_dump_state ( env , stderr , fprintf , 0 );
fprintf ( stderr , "Unsupported return value: 0x%x \n " , ret );
exit ( 1 );
}
return 0 ;
}
914
915
void kqemu_cpu_interrupt ( CPUState * env )
{
916
# if defined ( _WIN32 )
ths
authored
18 years ago
917
/* cancelling the I / O request causes KQEMU to finish executing the
918
919
920
921
922
current block and successfully returning . */
CancelIo ( kqemu_fd );
# endif
}
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
/*
QEMU paravirtualization interface . The current interface only
allows to modify the IF and IOPL flags when running in
kqemu .
At this point it is not very satisfactory . I leave it for reference
as it adds little complexity .
*/
# define QPI_COMM_PAGE_PHYS_ADDR 0xff000000
static uint32_t qpi_mem_readb ( void * opaque , target_phys_addr_t addr )
{
return 0 ;
}
static uint32_t qpi_mem_readw ( void * opaque , target_phys_addr_t addr )
{
return 0 ;
}
static void qpi_mem_writeb ( void * opaque , target_phys_addr_t addr , uint32_t val )
{
}
static void qpi_mem_writew ( void * opaque , target_phys_addr_t addr , uint32_t val )
{
}
static uint32_t qpi_mem_readl ( void * opaque , target_phys_addr_t addr )
{
CPUState * env ;
env = cpu_single_env ;
if ( ! env )
return 0 ;
return env -> eflags & ( IF_MASK | IOPL_MASK );
}
/* Note : after writing to this address , the guest code must make sure
it is exiting the current TB . pushf / popf can be used for that
purpose . */
static void qpi_mem_writel ( void * opaque , target_phys_addr_t addr , uint32_t val )
{
CPUState * env ;
env = cpu_single_env ;
if ( ! env )
return ;
env -> eflags = ( env -> eflags & ~ ( IF_MASK | IOPL_MASK )) |
( val & ( IF_MASK | IOPL_MASK ));
}
static CPUReadMemoryFunc * qpi_mem_read [ 3 ] = {
qpi_mem_readb ,
qpi_mem_readw ,
qpi_mem_readl ,
};
static CPUWriteMemoryFunc * qpi_mem_write [ 3 ] = {
qpi_mem_writeb ,
qpi_mem_writew ,
qpi_mem_writel ,
};
static void qpi_init ( void )
{
kqemu_comm_base = 0xff000000 | 1 ;
qpi_io_memory = cpu_register_io_memory ( 0 ,
qpi_mem_read ,
qpi_mem_write , NULL );
cpu_register_physical_memory ( kqemu_comm_base & ~ 0xfff ,
0x1000 , qpi_io_memory );
}
997
# endif