Blame view

kqemu.c 27.9 KB
bellard authored
1
2
/*
 *  KQEMU support
3
 *
4
 *  Copyright (c) 2005-2008 Fabrice Bellard
bellard authored
5
6
7
8
9
10
11
12
13
14
15
16
17
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
bellard authored
19
20
21
22
 */
#include "config.h"
#ifdef _WIN32
#include <windows.h>
23
#include <winioctl.h>
bellard authored
24
25
26
#else
#include <sys/types.h>
#include <sys/mman.h>
27
#include <sys/ioctl.h>
bellard authored
28
#endif
29
#ifdef HOST_SOLARIS
30
#include <sys/ioccom.h>
31
#endif
bellard authored
32
33
34
35
36
37
38
39
40
41
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <inttypes.h>

#include "cpu.h"
#include "exec-all.h"
42
#include "qemu-common.h"
bellard authored
43
44
#ifdef CONFIG_KQEMU
bellard authored
45
46

#define DEBUG
47
//#define PROFILE
bellard authored
48
49
50

#ifdef DEBUG
51
52
#  define LOG_INT(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
#  define LOG_INT_STATE(env) log_cpu_state_mask(CPU_LOG_INT, (env), 0)
53
54
55
56
57
#else
#  define LOG_INT(...) do { } while (0)
#  define LOG_INT_STATE(env) do { } while (0)
#endif
bellard authored
58
59
#include <unistd.h>
#include <fcntl.h>
bellard authored
60
#include "kqemu.h"
bellard authored
61
62
63
64
#ifdef _WIN32
#define KQEMU_DEVICE "\\\\.\\kqemu"
#else
bellard authored
65
#define KQEMU_DEVICE "/dev/kqemu"
66
67
#endif
68
69
static void qpi_init(void);
70
71
72
73
74
75
76
77
78
#ifdef _WIN32
#define KQEMU_INVALID_FD INVALID_HANDLE_VALUE
HANDLE kqemu_fd = KQEMU_INVALID_FD;
#define kqemu_closefd(x) CloseHandle(x)
#else
#define KQEMU_INVALID_FD -1
int kqemu_fd = KQEMU_INVALID_FD;
#define kqemu_closefd(x) close(x)
#endif
bellard authored
79
80
81
82
83
/* 0 = not allowed
   1 = user kqemu
   2 = kernel kqemu
*/
84
int kqemu_allowed = 0;
85
uint64_t *pages_to_flush;
bellard authored
86
unsigned int nb_pages_to_flush;
87
uint64_t *ram_pages_to_update;
88
unsigned int nb_ram_pages_to_update;
89
uint64_t *modified_ram_pages;
90
91
unsigned int nb_modified_ram_pages;
uint8_t *modified_ram_pages_table;
92
93
int qpi_io_memory;
uint32_t kqemu_comm_base; /* physical address of the QPI communication page */
94
95
ram_addr_t kqemu_phys_ram_size;
uint8_t *kqemu_phys_ram_base;
bellard authored
96
97
98
99
100
101

#define cpuid(index, eax, ebx, ecx, edx) \
  asm volatile ("cpuid" \
                : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) \
                : "0" (index))
bellard authored
102
103
104
105
106
107
#ifdef __x86_64__
static int is_cpuid_supported(void)
{
    return 1;
}
#else
bellard authored
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
static int is_cpuid_supported(void)
{
    int v0, v1;
    asm volatile ("pushf\n"
                  "popl %0\n"
                  "movl %0, %1\n"
                  "xorl $0x00200000, %0\n"
                  "pushl %0\n"
                  "popf\n"
                  "pushf\n"
                  "popl %0\n"
                  : "=a" (v0), "=d" (v1)
                  :
                  : "cc");
    return (v0 != v1);
}
bellard authored
124
#endif
bellard authored
125
126
127

static void kqemu_update_cpuid(CPUState *env)
{
bellard authored
128
    int critical_features_mask, features, ext_features, ext_features_mask;
bellard authored
129
130
131
132
133
134
    uint32_t eax, ebx, ecx, edx;

    /* the following features are kept identical on the host and
       target cpus because they are important for user code. Strictly
       speaking, only SSE really matters because the OS must support
       it if the user code uses it. */
135
136
137
    critical_features_mask =
        CPUID_CMOV | CPUID_CX8 |
        CPUID_FXSR | CPUID_MMX | CPUID_SSE |
bellard authored
138
        CPUID_SSE2 | CPUID_SEP;
bellard authored
139
    ext_features_mask = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR;
bellard authored
140
141
    if (!is_cpuid_supported()) {
        features = 0;
bellard authored
142
        ext_features = 0;
bellard authored
143
144
145
    } else {
        cpuid(1, eax, ebx, ecx, edx);
        features = edx;
bellard authored
146
        ext_features = ecx;
bellard authored
147
    }
bellard authored
148
149
150
151
152
153
#ifdef __x86_64__
    /* NOTE: on x86_64 CPUs, SYSENTER is not supported in
       compatibility mode, so in order to have the best performances
       it is better not to use it */
    features &= ~CPUID_SEP;
#endif
bellard authored
154
155
    env->cpuid_features = (env->cpuid_features & ~critical_features_mask) |
        (features & critical_features_mask);
bellard authored
156
157
    env->cpuid_ext_features = (env->cpuid_ext_features & ~ext_features_mask) |
        (ext_features & ext_features_mask);
bellard authored
158
159
160
161
162
163
164
    /* XXX: we could update more of the target CPUID state so that the
       non accelerated code sees exactly the same CPU features as the
       accelerated code */
}

int kqemu_init(CPUState *env)
{
165
    struct kqemu_init kinit;
bellard authored
166
    int ret, version;
167
168
169
#ifdef _WIN32
    DWORD temp;
#endif
bellard authored
170
171
172
173

    if (!kqemu_allowed)
        return -1;
174
175
176
177
178
#ifdef _WIN32
    kqemu_fd = CreateFile(KQEMU_DEVICE, GENERIC_WRITE | GENERIC_READ,
                          FILE_SHARE_READ | FILE_SHARE_WRITE,
                          NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,
                          NULL);
179
180
181
182
183
    if (kqemu_fd == KQEMU_INVALID_FD) {
        fprintf(stderr, "Could not open '%s' - QEMU acceleration layer not activated: %lu\n",
                KQEMU_DEVICE, GetLastError());
        return -1;
    }
184
#else
bellard authored
185
    kqemu_fd = open(KQEMU_DEVICE, O_RDWR);
186
    if (kqemu_fd == KQEMU_INVALID_FD) {
187
188
        fprintf(stderr, "Could not open '%s' - QEMU acceleration layer not activated: %s\n",
                KQEMU_DEVICE, strerror(errno));
bellard authored
189
190
        return -1;
    }
191
#endif
bellard authored
192
    version = 0;
193
194
195
196
#ifdef _WIN32
    DeviceIoControl(kqemu_fd, KQEMU_GET_VERSION, NULL, 0,
                    &version, sizeof(version), &temp, NULL);
#else
bellard authored
197
    ioctl(kqemu_fd, KQEMU_GET_VERSION, &version);
198
#endif
bellard authored
199
200
201
202
203
204
    if (version != KQEMU_VERSION) {
        fprintf(stderr, "Version mismatch between kqemu module and qemu (%08x %08x) - disabling kqemu use\n",
                version, KQEMU_VERSION);
        goto fail;
    }
205
    pages_to_flush = qemu_vmalloc(KQEMU_MAX_PAGES_TO_FLUSH *
206
                                  sizeof(uint64_t));
bellard authored
207
208
209
    if (!pages_to_flush)
        goto fail;
210
    ram_pages_to_update = qemu_vmalloc(KQEMU_MAX_RAM_PAGES_TO_UPDATE *
211
                                       sizeof(uint64_t));
212
213
214
    if (!ram_pages_to_update)
        goto fail;
215
    modified_ram_pages = qemu_vmalloc(KQEMU_MAX_MODIFIED_RAM_PAGES *
216
                                      sizeof(uint64_t));
217
218
    if (!modified_ram_pages)
        goto fail;
219
220
    modified_ram_pages_table =
        qemu_mallocz(kqemu_phys_ram_size >> TARGET_PAGE_BITS);
221
222
223
    if (!modified_ram_pages_table)
        goto fail;
224
    memset(&kinit, 0, sizeof(kinit)); /* set the paddings to zero */
225
226
    kinit.ram_base = kqemu_phys_ram_base;
    kinit.ram_size = kqemu_phys_ram_size;
227
228
229
230
    kinit.ram_dirty = phys_ram_dirty;
    kinit.pages_to_flush = pages_to_flush;
    kinit.ram_pages_to_update = ram_pages_to_update;
    kinit.modified_ram_pages = modified_ram_pages;
231
#ifdef _WIN32
232
    ret = DeviceIoControl(kqemu_fd, KQEMU_INIT, &kinit, sizeof(kinit),
233
234
                          NULL, 0, &temp, NULL) == TRUE ? 0 : -1;
#else
235
    ret = ioctl(kqemu_fd, KQEMU_INIT, &kinit);
236
#endif
bellard authored
237
238
239
    if (ret < 0) {
        fprintf(stderr, "Error %d while initializing QEMU acceleration layer - disabling it for now\n", ret);
    fail:
240
241
        kqemu_closefd(kqemu_fd);
        kqemu_fd = KQEMU_INVALID_FD;
bellard authored
242
243
244
        return -1;
    }
    kqemu_update_cpuid(env);
245
    env->kqemu_enabled = kqemu_allowed;
bellard authored
246
    nb_pages_to_flush = 0;
247
    nb_ram_pages_to_update = 0;
248
249

    qpi_init();
bellard authored
250
251
252
253
254
    return 0;
}

void kqemu_flush_page(CPUState *env, target_ulong addr)
{
255
    LOG_INT("kqemu_flush_page: addr=" TARGET_FMT_lx "\n", addr);
bellard authored
256
257
258
259
260
261
262
263
    if (nb_pages_to_flush >= KQEMU_MAX_PAGES_TO_FLUSH)
        nb_pages_to_flush = KQEMU_FLUSH_ALL;
    else
        pages_to_flush[nb_pages_to_flush++] = addr;
}

void kqemu_flush(CPUState *env, int global)
{
264
    LOG_INT("kqemu_flush:\n");
bellard authored
265
266
267
    nb_pages_to_flush = KQEMU_FLUSH_ALL;
}
268
269
void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr)
{
270
    LOG_INT("kqemu_set_notdirty: addr=%08lx\n", 
271
                (unsigned long)ram_addr);
bellard authored
272
273
274
    /* we only track transitions to dirty state */
    if (phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] != 0xff)
        return;
275
276
277
278
279
280
    if (nb_ram_pages_to_update >= KQEMU_MAX_RAM_PAGES_TO_UPDATE)
        nb_ram_pages_to_update = KQEMU_RAM_PAGES_UPDATE_ALL;
    else
        ram_pages_to_update[nb_ram_pages_to_update++] = ram_addr;
}
281
282
283
284
static void kqemu_reset_modified_ram_pages(void)
{
    int i;
    unsigned long page_index;
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
    for(i = 0; i < nb_modified_ram_pages; i++) {
        page_index = modified_ram_pages[i] >> TARGET_PAGE_BITS;
        modified_ram_pages_table[page_index] = 0;
    }
    nb_modified_ram_pages = 0;
}

void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr)
{
    unsigned long page_index;
    int ret;
#ifdef _WIN32
    DWORD temp;
#endif

    page_index = ram_addr >> TARGET_PAGE_BITS;
    if (!modified_ram_pages_table[page_index]) {
#if 0
        printf("%d: modify_page=%08lx\n", nb_modified_ram_pages, ram_addr);
#endif
        modified_ram_pages_table[page_index] = 1;
        modified_ram_pages[nb_modified_ram_pages++] = ram_addr;
        if (nb_modified_ram_pages >= KQEMU_MAX_MODIFIED_RAM_PAGES) {
            /* flush */
#ifdef _WIN32
311
312
            ret = DeviceIoControl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES,
                                  &nb_modified_ram_pages,
313
314
315
                                  sizeof(nb_modified_ram_pages),
                                  NULL, 0, &temp, NULL);
#else
316
            ret = ioctl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES,
317
318
319
320
321
322
323
                        &nb_modified_ram_pages);
#endif
            kqemu_reset_modified_ram_pages();
        }
    }
}
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
void kqemu_set_phys_mem(uint64_t start_addr, ram_addr_t size, 
                        ram_addr_t phys_offset)
{
    struct kqemu_phys_mem kphys_mem1, *kphys_mem = &kphys_mem1;
    uint64_t end;
    int ret, io_index;

    end = (start_addr + size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
    start_addr &= TARGET_PAGE_MASK;
    kphys_mem->phys_addr = start_addr;
    kphys_mem->size = end - start_addr;
    kphys_mem->ram_addr = phys_offset & TARGET_PAGE_MASK;
    io_index = phys_offset & ~TARGET_PAGE_MASK;
    switch(io_index) {
    case IO_MEM_RAM:
        kphys_mem->io_index = KQEMU_IO_MEM_RAM;
        break;
    case IO_MEM_ROM:
        kphys_mem->io_index = KQEMU_IO_MEM_ROM;
        break;
    default:
        if (qpi_io_memory == io_index) {
            kphys_mem->io_index = KQEMU_IO_MEM_COMM;
        } else {
            kphys_mem->io_index = KQEMU_IO_MEM_UNASSIGNED;
        }
        break;
    }
#ifdef _WIN32
    {
        DWORD temp;
        ret = DeviceIoControl(kqemu_fd, KQEMU_SET_PHYS_MEM, 
                              kphys_mem, sizeof(*kphys_mem),
                              NULL, 0, &temp, NULL) == TRUE ? 0 : -1;
    }
#else
    ret = ioctl(kqemu_fd, KQEMU_SET_PHYS_MEM, kphys_mem);
#endif
    if (ret < 0) {
        fprintf(stderr, "kqemu: KQEMU_SET_PHYS_PAGE error=%d: start_addr=0x%016" PRIx64 " size=0x%08lx phys_offset=0x%08lx\n",
                ret, start_addr, 
                (unsigned long)size, (unsigned long)phys_offset);
    }
}
bellard authored
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
struct fpstate {
    uint16_t fpuc;
    uint16_t dummy1;
    uint16_t fpus;
    uint16_t dummy2;
    uint16_t fptag;
    uint16_t dummy3;

    uint32_t fpip;
    uint32_t fpcs;
    uint32_t fpoo;
    uint32_t fpos;
    uint8_t fpregs1[8 * 10];
};

struct fpxstate {
    uint16_t fpuc;
    uint16_t fpus;
    uint16_t fptag;
    uint16_t fop;
    uint32_t fpuip;
    uint16_t cs_sel;
    uint16_t dummy0;
    uint32_t fpudp;
    uint16_t ds_sel;
    uint16_t dummy1;
    uint32_t mxcsr;
    uint32_t mxcsr_mask;
    uint8_t fpregs1[8 * 16];
bellard authored
398
399
    uint8_t xmm_regs[16 * 16];
    uint8_t dummy2[96];
bellard authored
400
401
402
403
404
405
406
407
};

static struct fpxstate fpx1 __attribute__((aligned(16)));

static void restore_native_fp_frstor(CPUState *env)
{
    int fptag, i, j;
    struct fpstate fp1, *fp = &fp1;
408
bellard authored
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
    fp->fpuc = env->fpuc;
    fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
    fptag = 0;
    for (i=7; i>=0; i--) {
	fptag <<= 2;
	if (env->fptags[i]) {
            fptag |= 3;
        } else {
            /* the FPU automatically computes it */
        }
    }
    fp->fptag = fptag;
    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&fp->fpregs1[i * 10], &env->fpregs[j].d, 10);
        j = (j + 1) & 7;
    }
    asm volatile ("frstor %0" : "=m" (*fp));
}
428
bellard authored
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
static void save_native_fp_fsave(CPUState *env)
{
    int fptag, i, j;
    uint16_t fpuc;
    struct fpstate fp1, *fp = &fp1;

    asm volatile ("fsave %0" : : "m" (*fp));
    env->fpuc = fp->fpuc;
    env->fpstt = (fp->fpus >> 11) & 7;
    env->fpus = fp->fpus & ~0x3800;
    fptag = fp->fptag;
    for(i = 0;i < 8; i++) {
        env->fptags[i] = ((fptag & 3) == 3);
        fptag >>= 2;
    }
    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 10], 10);
        j = (j + 1) & 7;
    }
    /* we must restore the default rounding state */
    fpuc = 0x037f | (env->fpuc & (3 << 10));
    asm volatile("fldcw %0" : : "m" (fpuc));
}

static void restore_native_fp_fxrstor(CPUState *env)
{
    struct fpxstate *fp = &fpx1;
    int i, j, fptag;

    fp->fpuc = env->fpuc;
    fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
    fptag = 0;
    for(i = 0; i < 8; i++)
        fptag |= (env->fptags[i] << i);
    fp->fptag = fptag ^ 0xff;

    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&fp->fpregs1[i * 16], &env->fpregs[j].d, 10);
        j = (j + 1) & 7;
    }
    if (env->cpuid_features & CPUID_SSE) {
        fp->mxcsr = env->mxcsr;
        /* XXX: check if DAZ is not available */
        fp->mxcsr_mask = 0xffff;
bellard authored
475
        memcpy(fp->xmm_regs, env->xmm_regs, CPU_NB_REGS * 16);
bellard authored
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
    }
    asm volatile ("fxrstor %0" : "=m" (*fp));
}

static void save_native_fp_fxsave(CPUState *env)
{
    struct fpxstate *fp = &fpx1;
    int fptag, i, j;
    uint16_t fpuc;

    asm volatile ("fxsave %0" : : "m" (*fp));
    env->fpuc = fp->fpuc;
    env->fpstt = (fp->fpus >> 11) & 7;
    env->fpus = fp->fpus & ~0x3800;
    fptag = fp->fptag ^ 0xff;
    for(i = 0;i < 8; i++) {
        env->fptags[i] = (fptag >> i) & 1;
    }
    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 16], 10);
        j = (j + 1) & 7;
    }
    if (env->cpuid_features & CPUID_SSE) {
        env->mxcsr = fp->mxcsr;
bellard authored
501
        memcpy(env->xmm_regs, fp->xmm_regs, CPU_NB_REGS * 16);
bellard authored
502
503
504
505
506
507
508
509
    }

    /* we must restore the default rounding state */
    asm volatile ("fninit");
    fpuc = 0x037f | (env->fpuc & (3 << 10));
    asm volatile("fldcw %0" : : "m" (fpuc));
}
bellard authored
510
511
512
513
static int do_syscall(CPUState *env,
                      struct kqemu_cpu_state *kenv)
{
    int selector;
514
bellard authored
515
    selector = (env->star >> 32) & 0xffff;
516
#ifdef TARGET_X86_64
bellard authored
517
    if (env->hflags & HF_LMA_MASK) {
518
519
        int code64;
bellard authored
520
521
522
        env->regs[R_ECX] = kenv->next_eip;
        env->regs[11] = env->eflags;
523
524
        code64 = env->hflags & HF_CS64_MASK;
bellard authored
525
        cpu_x86_set_cpl(env, 0);
526
527
        cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
                               0, 0xffffffff,
bellard authored
528
                               DESC_G_MASK | DESC_P_MASK |
bellard authored
529
530
                               DESC_S_MASK |
                               DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK);
531
        cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
bellard authored
532
533
534
535
536
                               0, 0xffffffff,
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_W_MASK | DESC_A_MASK);
        env->eflags &= ~env->fmask;
537
        if (code64)
bellard authored
538
539
540
            env->eip = env->lstar;
        else
            env->eip = env->cstar;
541
    } else
bellard authored
542
543
544
#endif
    {
        env->regs[R_ECX] = (uint32_t)kenv->next_eip;
545
bellard authored
546
        cpu_x86_set_cpl(env, 0);
547
548
        cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
                           0, 0xffffffff,
bellard authored
549
550
551
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
552
        cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
bellard authored
553
554
555
556
557
558
559
560
561
562
                               0, 0xffffffff,
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_W_MASK | DESC_A_MASK);
        env->eflags &= ~(IF_MASK | RF_MASK | VM_MASK);
        env->eip = (uint32_t)env->star;
    }
    return 2;
}
563
#ifdef CONFIG_PROFILER
564
565
566
567
568
569
570
571
572
573
574

#define PC_REC_SIZE 1
#define PC_REC_HASH_BITS 16
#define PC_REC_HASH_SIZE (1 << PC_REC_HASH_BITS)

typedef struct PCRecord {
    unsigned long pc;
    int64_t count;
    struct PCRecord *next;
} PCRecord;
575
576
static PCRecord *pc_rec_hash[PC_REC_HASH_SIZE];
static int nb_pc_records;
577
578
static void kqemu_record_pc(unsigned long pc)
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
{
    unsigned long h;
    PCRecord **pr, *r;

    h = pc / PC_REC_SIZE;
    h = h ^ (h >> PC_REC_HASH_BITS);
    h &= (PC_REC_HASH_SIZE - 1);
    pr = &pc_rec_hash[h];
    for(;;) {
        r = *pr;
        if (r == NULL)
            break;
        if (r->pc == pc) {
            r->count++;
            return;
        }
        pr = &r->next;
    }
    r = malloc(sizeof(PCRecord));
    r->count = 1;
    r->pc = pc;
    r->next = NULL;
    *pr = r;
    nb_pc_records++;
}
605
static int pc_rec_cmp(const void *p1, const void *p2)
606
607
608
609
610
611
612
613
614
615
616
{
    PCRecord *r1 = *(PCRecord **)p1;
    PCRecord *r2 = *(PCRecord **)p2;
    if (r1->count < r2->count)
        return 1;
    else if (r1->count == r2->count)
        return 0;
    else
        return -1;
}
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
static void kqemu_record_flush(void)
{
    PCRecord *r, *r_next;
    int h;

    for(h = 0; h < PC_REC_HASH_SIZE; h++) {
        for(r = pc_rec_hash[h]; r != NULL; r = r_next) {
            r_next = r->next;
            free(r);
        }
        pc_rec_hash[h] = NULL;
    }
    nb_pc_records = 0;
}
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
void kqemu_record_dump(void)
{
    PCRecord **pr, *r;
    int i, h;
    FILE *f;
    int64_t total, sum;

    pr = malloc(sizeof(PCRecord *) * nb_pc_records);
    i = 0;
    total = 0;
    for(h = 0; h < PC_REC_HASH_SIZE; h++) {
        for(r = pc_rec_hash[h]; r != NULL; r = r->next) {
            pr[i++] = r;
            total += r->count;
        }
    }
    qsort(pr, nb_pc_records, sizeof(PCRecord *), pc_rec_cmp);
649
650
651
652
653
654
    f = fopen("/tmp/kqemu.stats", "w");
    if (!f) {
        perror("/tmp/kqemu.stats");
        exit(1);
    }
bellard authored
655
    fprintf(f, "total: %" PRId64 "\n", total);
656
657
658
659
    sum = 0;
    for(i = 0; i < nb_pc_records; i++) {
        r = pr[i];
        sum += r->count;
660
661
662
        fprintf(f, "%08lx: %" PRId64 " %0.2f%% %0.2f%%\n",
                r->pc,
                r->count,
663
664
665
666
667
                (double)r->count / (double)total * 100.0,
                (double)sum / (double)total * 100.0);
    }
    fclose(f);
    free(pr);
668
669

    kqemu_record_flush();
670
671
672
}
#endif
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
static inline void kqemu_load_seg(struct kqemu_segment_cache *ksc,
                                  const SegmentCache *sc)
{
    ksc->selector = sc->selector;
    ksc->flags = sc->flags;
    ksc->limit = sc->limit;
    ksc->base = sc->base;
}

static inline void kqemu_save_seg(SegmentCache *sc,
                                  const struct kqemu_segment_cache *ksc)
{
    sc->selector = ksc->selector;
    sc->flags = ksc->flags;
    sc->limit = ksc->limit;
    sc->base = ksc->base;
}
bellard authored
691
692
693
int kqemu_cpu_exec(CPUState *env)
{
    struct kqemu_cpu_state kcpu_state, *kenv = &kcpu_state;
694
695
696
697
    int ret, cpl, i;
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif
698
699
700
#ifdef _WIN32
    DWORD temp;
#endif
bellard authored
701
702
703
704
#ifdef CONFIG_PROFILER
    ti = profile_getclock();
#endif
705
706
    LOG_INT("kqemu: cpu_exec: enter\n");
    LOG_INT_STATE(env);
707
708
    for(i = 0; i < CPU_NB_REGS; i++)
        kenv->regs[i] = env->regs[i];
bellard authored
709
710
    kenv->eip = env->eip;
    kenv->eflags = env->eflags;
711
712
713
714
715
716
    for(i = 0; i < 6; i++)
        kqemu_load_seg(&kenv->segs[i], &env->segs[i]);
    kqemu_load_seg(&kenv->ldt, &env->ldt);
    kqemu_load_seg(&kenv->tr, &env->tr);
    kqemu_load_seg(&kenv->gdt, &env->gdt);
    kqemu_load_seg(&kenv->idt, &env->idt);
bellard authored
717
718
719
720
721
    kenv->cr0 = env->cr[0];
    kenv->cr2 = env->cr[2];
    kenv->cr3 = env->cr[3];
    kenv->cr4 = env->cr[4];
    kenv->a20_mask = env->a20_mask;
bellard authored
722
    kenv->efer = env->efer;
723
724
725
726
727
    kenv->tsc_offset = 0;
    kenv->star = env->star;
    kenv->sysenter_cs = env->sysenter_cs;
    kenv->sysenter_esp = env->sysenter_esp;
    kenv->sysenter_eip = env->sysenter_eip;
728
#ifdef TARGET_X86_64
729
730
731
732
733
    kenv->lstar = env->lstar;
    kenv->cstar = env->cstar;
    kenv->fmask = env->fmask;
    kenv->kernelgsbase = env->kernelgsbase;
#endif
bellard authored
734
735
736
737
738
739
740
741
742
743
    if (env->dr[7] & 0xff) {
        kenv->dr7 = env->dr[7];
        kenv->dr0 = env->dr[0];
        kenv->dr1 = env->dr[1];
        kenv->dr2 = env->dr[2];
        kenv->dr3 = env->dr[3];
    } else {
        kenv->dr7 = 0;
    }
    kenv->dr6 = env->dr[6];
744
745
    cpl = (env->hflags & HF_CPL_MASK);
    kenv->cpl = cpl;
bellard authored
746
    kenv->nb_pages_to_flush = nb_pages_to_flush;
747
    kenv->user_only = (env->kqemu_enabled == 1);
748
749
    kenv->nb_ram_pages_to_update = nb_ram_pages_to_update;
    nb_ram_pages_to_update = 0;
750
    kenv->nb_modified_ram_pages = nb_modified_ram_pages;
751
752
753
754
755
756
757
    kqemu_reset_modified_ram_pages();

    if (env->cpuid_features & CPUID_FXSR)
        restore_native_fp_fxrstor(env);
    else
        restore_native_fp_frstor(env);
bellard authored
758
759
#ifdef _WIN32
760
761
762
763
764
765
766
767
    if (DeviceIoControl(kqemu_fd, KQEMU_EXEC,
                        kenv, sizeof(struct kqemu_cpu_state),
                        kenv, sizeof(struct kqemu_cpu_state),
                        &temp, NULL)) {
        ret = kenv->retval;
    } else {
        ret = -1;
    }
768
769
770
771
#else
    ioctl(kqemu_fd, KQEMU_EXEC, kenv);
    ret = kenv->retval;
#endif
772
773
774
775
    if (env->cpuid_features & CPUID_FXSR)
        save_native_fp_fxsave(env);
    else
        save_native_fp_fsave(env);
bellard authored
776
777
778
    for(i = 0; i < CPU_NB_REGS; i++)
        env->regs[i] = kenv->regs[i];
bellard authored
779
780
    env->eip = kenv->eip;
    env->eflags = kenv->eflags;
781
782
    for(i = 0; i < 6; i++)
        kqemu_save_seg(&env->segs[i], &kenv->segs[i]);
783
    cpu_x86_set_cpl(env, kenv->cpl);
784
    kqemu_save_seg(&env->ldt, &kenv->ldt);
785
786
787
    env->cr[0] = kenv->cr0;
    env->cr[4] = kenv->cr4;
    env->cr[3] = kenv->cr3;
bellard authored
788
789
    env->cr[2] = kenv->cr2;
    env->dr[6] = kenv->dr6;
790
#ifdef TARGET_X86_64
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
    env->kernelgsbase = kenv->kernelgsbase;
#endif

    /* flush pages as indicated by kqemu */
    if (kenv->nb_pages_to_flush >= KQEMU_FLUSH_ALL) {
        tlb_flush(env, 1);
    } else {
        for(i = 0; i < kenv->nb_pages_to_flush; i++) {
            tlb_flush_page(env, pages_to_flush[i]);
        }
    }
    nb_pages_to_flush = 0;

#ifdef CONFIG_PROFILER
    kqemu_time += profile_getclock() - ti;
    kqemu_exec_count++;
#endif
bellard authored
808
809
810
811
812
    if (kenv->nb_ram_pages_to_update > 0) {
        cpu_tlb_update_dirty(env);
    }
813
814
815
816
817
818
819
820
    if (kenv->nb_modified_ram_pages > 0) {
        for(i = 0; i < kenv->nb_modified_ram_pages; i++) {
            unsigned long addr;
            addr = modified_ram_pages[i];
            tb_invalidate_phys_page_range(addr, addr + TARGET_PAGE_SIZE, 0);
        }
    }
821
822
823
824
    /* restore the hidden flags */
    {
        unsigned int new_hflags;
#ifdef TARGET_X86_64
825
        if ((env->hflags & HF_LMA_MASK) &&
826
827
828
829
830
831
832
833
834
835
836
            (env->segs[R_CS].flags & DESC_L_MASK)) {
            /* long mode */
            new_hflags = HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
        } else
#endif
        {
            /* legacy / compatibility case */
            new_hflags = (env->segs[R_CS].flags & DESC_B_MASK)
                >> (DESC_B_SHIFT - HF_CS32_SHIFT);
            new_hflags |= (env->segs[R_SS].flags & DESC_B_MASK)
                >> (DESC_B_SHIFT - HF_SS32_SHIFT);
837
            if (!(env->cr[0] & CR0_PE_MASK) ||
838
839
840
841
842
843
844
845
846
                   (env->eflags & VM_MASK) ||
                   !(env->hflags & HF_CS32_MASK)) {
                /* XXX: try to avoid this test. The problem comes from the
                   fact that is real mode or vm86 mode we only modify the
                   'base' and 'selector' fields of the segment cache to go
                   faster. A solution may be to force addseg to one in
                   translate-i386.c. */
                new_hflags |= HF_ADDSEG_MASK;
            } else {
847
                new_hflags |= ((env->segs[R_DS].base |
848
                                env->segs[R_ES].base |
849
                                env->segs[R_SS].base) != 0) <<
850
851
852
                    HF_ADDSEG_SHIFT;
            }
        }
853
        env->hflags = (env->hflags &
854
855
856
           ~(HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)) |
            new_hflags;
    }
857
858
859
860
861
862
863
    /* update FPU flags */
    env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
        ((env->cr[0] << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
    if (env->cr[4] & CR4_OSFXSR_MASK)
        env->hflags |= HF_OSFXSR_MASK;
    else
        env->hflags &= ~HF_OSFXSR_MASK;
864
865
    LOG_INT("kqemu: kqemu_cpu_exec: ret=0x%x\n", ret);
bellard authored
866
867
868
    if (ret == KQEMU_RET_SYSCALL) {
        /* syscall instruction */
        return do_syscall(env, kenv);
869
    } else
bellard authored
870
871
872
873
874
    if ((ret & 0xff00) == KQEMU_RET_INT) {
        env->exception_index = ret & 0xff;
        env->error_code = 0;
        env->exception_is_int = 1;
        env->exception_next_eip = kenv->next_eip;
875
876
877
#ifdef CONFIG_PROFILER
        kqemu_ret_int_count++;
#endif
878
879
        LOG_INT("kqemu: interrupt v=%02x:\n", env->exception_index);
        LOG_INT_STATE(env);
bellard authored
880
881
882
883
884
885
        return 1;
    } else if ((ret & 0xff00) == KQEMU_RET_EXCEPTION) {
        env->exception_index = ret & 0xff;
        env->error_code = kenv->error_code;
        env->exception_is_int = 0;
        env->exception_next_eip = 0;
886
887
888
#ifdef CONFIG_PROFILER
        kqemu_ret_excp_count++;
#endif
889
        LOG_INT("kqemu: exception v=%02x e=%04x:\n",
bellard authored
890
                    env->exception_index, env->error_code);
891
        LOG_INT_STATE(env);
bellard authored
892
893
        return 1;
    } else if (ret == KQEMU_RET_INTR) {
894
895
896
#ifdef CONFIG_PROFILER
        kqemu_ret_intr_count++;
#endif
897
        LOG_INT_STATE(env);
bellard authored
898
        return 0;
899
    } else if (ret == KQEMU_RET_SOFTMMU) {
900
901
902
903
904
#ifdef CONFIG_PROFILER
        {
            unsigned long pc = env->eip + env->segs[R_CS].base;
            kqemu_record_pc(pc);
        }
905
#endif
906
        LOG_INT_STATE(env);
bellard authored
907
908
909
910
911
912
913
914
915
        return 2;
    } else {
        cpu_dump_state(env, stderr, fprintf, 0);
        fprintf(stderr, "Unsupported return value: 0x%x\n", ret);
        exit(1);
    }
    return 0;
}
916
917
void kqemu_cpu_interrupt(CPUState *env)
{
918
#if defined(_WIN32)
919
    /* cancelling the I/O request causes KQEMU to finish executing the
920
921
922
923
924
       current block and successfully returning. */
    CancelIo(kqemu_fd);
#endif
}
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
/* 
   QEMU paravirtualization interface. The current interface only
   allows to modify the IF and IOPL flags when running in
   kqemu.

   At this point it is not very satisfactory. I leave it for reference
   as it adds little complexity.
*/

#define QPI_COMM_PAGE_PHYS_ADDR 0xff000000

static uint32_t qpi_mem_readb(void *opaque, target_phys_addr_t addr)
{
    return 0;
}

static uint32_t qpi_mem_readw(void *opaque, target_phys_addr_t addr)
{
    return 0;
}

static void qpi_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
}

static void qpi_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
}

static uint32_t qpi_mem_readl(void *opaque, target_phys_addr_t addr)
{
    CPUState *env;

    env = cpu_single_env;
    if (!env)
        return 0;
    return env->eflags & (IF_MASK | IOPL_MASK);
}

/* Note: after writing to this address, the guest code must make sure
   it is exiting the current TB. pushf/popf can be used for that
   purpose. */
static void qpi_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
    CPUState *env;

    env = cpu_single_env;
    if (!env)
        return;
    env->eflags = (env->eflags & ~(IF_MASK | IOPL_MASK)) | 
        (val & (IF_MASK | IOPL_MASK));
}

static CPUReadMemoryFunc *qpi_mem_read[3] = {
    qpi_mem_readb,
    qpi_mem_readw,
    qpi_mem_readl,
};

static CPUWriteMemoryFunc *qpi_mem_write[3] = {
    qpi_mem_writeb,
    qpi_mem_writew,
    qpi_mem_writel,
};

static void qpi_init(void)
{
    kqemu_comm_base = 0xff000000 | 1;
993
    qpi_io_memory = cpu_register_io_memory(
994
995
996
997
998
                                           qpi_mem_read, 
                                           qpi_mem_write, NULL);
    cpu_register_physical_memory(kqemu_comm_base & ~0xfff, 
                                 0x1000, qpi_io_memory);
}
bellard authored
999
#endif