Blame view

kqemu.c 27.8 KB
bellard authored
1
2
/*
 *  KQEMU support
3
 *
4
 *  Copyright (c) 2005-2008 Fabrice Bellard
bellard authored
5
6
7
8
9
10
11
12
13
14
15
16
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
bellard authored
18
19
20
21
 */
#include "config.h"
#ifdef _WIN32
#include <windows.h>
22
#include <winioctl.h>
bellard authored
23
24
25
#else
#include <sys/types.h>
#include <sys/mman.h>
26
#include <sys/ioctl.h>
bellard authored
27
#endif
28
#ifdef HOST_SOLARIS
29
#include <sys/ioccom.h>
30
#endif
bellard authored
31
32
33
34
35
36
37
38
39
40
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <inttypes.h>

#include "cpu.h"
#include "exec-all.h"
41
#include "qemu-common.h"
bellard authored
42
43
#ifdef CONFIG_KQEMU
bellard authored
44
45

#define DEBUG
46
//#define PROFILE
bellard authored
47
48
49

#ifdef DEBUG
50
51
#  define LOG_INT(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
#  define LOG_INT_STATE(env) log_cpu_state_mask(CPU_LOG_INT, (env), 0)
52
53
54
55
56
#else
#  define LOG_INT(...) do { } while (0)
#  define LOG_INT_STATE(env) do { } while (0)
#endif
bellard authored
57
58
#include <unistd.h>
#include <fcntl.h>
bellard authored
59
#include "kqemu.h"
bellard authored
60
61
62
63
#ifdef _WIN32
#define KQEMU_DEVICE "\\\\.\\kqemu"
#else
bellard authored
64
#define KQEMU_DEVICE "/dev/kqemu"
65
66
#endif
67
68
static void qpi_init(void);
69
70
71
72
73
74
75
76
77
#ifdef _WIN32
#define KQEMU_INVALID_FD INVALID_HANDLE_VALUE
HANDLE kqemu_fd = KQEMU_INVALID_FD;
#define kqemu_closefd(x) CloseHandle(x)
#else
#define KQEMU_INVALID_FD -1
int kqemu_fd = KQEMU_INVALID_FD;
#define kqemu_closefd(x) close(x)
#endif
bellard authored
78
79
80
81
82
/* 0 = not allowed
   1 = user kqemu
   2 = kernel kqemu
*/
83
int kqemu_allowed = 0;
84
uint64_t *pages_to_flush;
bellard authored
85
unsigned int nb_pages_to_flush;
86
uint64_t *ram_pages_to_update;
87
unsigned int nb_ram_pages_to_update;
88
uint64_t *modified_ram_pages;
89
90
unsigned int nb_modified_ram_pages;
uint8_t *modified_ram_pages_table;
91
92
int qpi_io_memory;
uint32_t kqemu_comm_base; /* physical address of the QPI communication page */
93
94
ram_addr_t kqemu_phys_ram_size;
uint8_t *kqemu_phys_ram_base;
bellard authored
95
96
97
98
99
100

#define cpuid(index, eax, ebx, ecx, edx) \
  asm volatile ("cpuid" \
                : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) \
                : "0" (index))
bellard authored
101
102
103
104
105
106
#ifdef __x86_64__
static int is_cpuid_supported(void)
{
    return 1;
}
#else
bellard authored
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
static int is_cpuid_supported(void)
{
    int v0, v1;
    asm volatile ("pushf\n"
                  "popl %0\n"
                  "movl %0, %1\n"
                  "xorl $0x00200000, %0\n"
                  "pushl %0\n"
                  "popf\n"
                  "pushf\n"
                  "popl %0\n"
                  : "=a" (v0), "=d" (v1)
                  :
                  : "cc");
    return (v0 != v1);
}
bellard authored
123
#endif
bellard authored
124
125
126

static void kqemu_update_cpuid(CPUState *env)
{
bellard authored
127
    int critical_features_mask, features, ext_features, ext_features_mask;
bellard authored
128
129
130
131
132
133
    uint32_t eax, ebx, ecx, edx;

    /* the following features are kept identical on the host and
       target cpus because they are important for user code. Strictly
       speaking, only SSE really matters because the OS must support
       it if the user code uses it. */
134
135
136
    critical_features_mask =
        CPUID_CMOV | CPUID_CX8 |
        CPUID_FXSR | CPUID_MMX | CPUID_SSE |
bellard authored
137
        CPUID_SSE2 | CPUID_SEP;
bellard authored
138
    ext_features_mask = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR;
bellard authored
139
140
    if (!is_cpuid_supported()) {
        features = 0;
bellard authored
141
        ext_features = 0;
bellard authored
142
143
144
    } else {
        cpuid(1, eax, ebx, ecx, edx);
        features = edx;
bellard authored
145
        ext_features = ecx;
bellard authored
146
    }
bellard authored
147
148
149
150
151
152
#ifdef __x86_64__
    /* NOTE: on x86_64 CPUs, SYSENTER is not supported in
       compatibility mode, so in order to have the best performances
       it is better not to use it */
    features &= ~CPUID_SEP;
#endif
bellard authored
153
154
    env->cpuid_features = (env->cpuid_features & ~critical_features_mask) |
        (features & critical_features_mask);
bellard authored
155
156
    env->cpuid_ext_features = (env->cpuid_ext_features & ~ext_features_mask) |
        (ext_features & ext_features_mask);
bellard authored
157
158
159
160
161
162
163
    /* XXX: we could update more of the target CPUID state so that the
       non accelerated code sees exactly the same CPU features as the
       accelerated code */
}

int kqemu_init(CPUState *env)
{
164
    struct kqemu_init kinit;
bellard authored
165
    int ret, version;
166
167
168
#ifdef _WIN32
    DWORD temp;
#endif
bellard authored
169
170
171
172

    if (!kqemu_allowed)
        return -1;
173
174
175
176
177
#ifdef _WIN32
    kqemu_fd = CreateFile(KQEMU_DEVICE, GENERIC_WRITE | GENERIC_READ,
                          FILE_SHARE_READ | FILE_SHARE_WRITE,
                          NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,
                          NULL);
178
179
180
181
182
    if (kqemu_fd == KQEMU_INVALID_FD) {
        fprintf(stderr, "Could not open '%s' - QEMU acceleration layer not activated: %lu\n",
                KQEMU_DEVICE, GetLastError());
        return -1;
    }
183
#else
bellard authored
184
    kqemu_fd = open(KQEMU_DEVICE, O_RDWR);
185
    if (kqemu_fd == KQEMU_INVALID_FD) {
186
187
        fprintf(stderr, "Could not open '%s' - QEMU acceleration layer not activated: %s\n",
                KQEMU_DEVICE, strerror(errno));
bellard authored
188
189
        return -1;
    }
190
#endif
bellard authored
191
    version = 0;
192
193
194
195
#ifdef _WIN32
    DeviceIoControl(kqemu_fd, KQEMU_GET_VERSION, NULL, 0,
                    &version, sizeof(version), &temp, NULL);
#else
bellard authored
196
    ioctl(kqemu_fd, KQEMU_GET_VERSION, &version);
197
#endif
bellard authored
198
199
200
201
202
203
    if (version != KQEMU_VERSION) {
        fprintf(stderr, "Version mismatch between kqemu module and qemu (%08x %08x) - disabling kqemu use\n",
                version, KQEMU_VERSION);
        goto fail;
    }
204
    pages_to_flush = qemu_vmalloc(KQEMU_MAX_PAGES_TO_FLUSH *
205
                                  sizeof(uint64_t));
bellard authored
206
207
208
    if (!pages_to_flush)
        goto fail;
209
    ram_pages_to_update = qemu_vmalloc(KQEMU_MAX_RAM_PAGES_TO_UPDATE *
210
                                       sizeof(uint64_t));
211
212
213
    if (!ram_pages_to_update)
        goto fail;
214
    modified_ram_pages = qemu_vmalloc(KQEMU_MAX_MODIFIED_RAM_PAGES *
215
                                      sizeof(uint64_t));
216
217
    if (!modified_ram_pages)
        goto fail;
218
219
    modified_ram_pages_table =
        qemu_mallocz(kqemu_phys_ram_size >> TARGET_PAGE_BITS);
220
221
222
    if (!modified_ram_pages_table)
        goto fail;
223
    memset(&kinit, 0, sizeof(kinit)); /* set the paddings to zero */
224
225
    kinit.ram_base = kqemu_phys_ram_base;
    kinit.ram_size = kqemu_phys_ram_size;
226
227
228
229
    kinit.ram_dirty = phys_ram_dirty;
    kinit.pages_to_flush = pages_to_flush;
    kinit.ram_pages_to_update = ram_pages_to_update;
    kinit.modified_ram_pages = modified_ram_pages;
230
#ifdef _WIN32
231
    ret = DeviceIoControl(kqemu_fd, KQEMU_INIT, &kinit, sizeof(kinit),
232
233
                          NULL, 0, &temp, NULL) == TRUE ? 0 : -1;
#else
234
    ret = ioctl(kqemu_fd, KQEMU_INIT, &kinit);
235
#endif
bellard authored
236
237
238
    if (ret < 0) {
        fprintf(stderr, "Error %d while initializing QEMU acceleration layer - disabling it for now\n", ret);
    fail:
239
240
        kqemu_closefd(kqemu_fd);
        kqemu_fd = KQEMU_INVALID_FD;
bellard authored
241
242
243
        return -1;
    }
    kqemu_update_cpuid(env);
244
    env->kqemu_enabled = kqemu_allowed;
bellard authored
245
    nb_pages_to_flush = 0;
246
    nb_ram_pages_to_update = 0;
247
248

    qpi_init();
bellard authored
249
250
251
252
253
    return 0;
}

void kqemu_flush_page(CPUState *env, target_ulong addr)
{
254
    LOG_INT("kqemu_flush_page: addr=" TARGET_FMT_lx "\n", addr);
bellard authored
255
256
257
258
259
260
261
262
    if (nb_pages_to_flush >= KQEMU_MAX_PAGES_TO_FLUSH)
        nb_pages_to_flush = KQEMU_FLUSH_ALL;
    else
        pages_to_flush[nb_pages_to_flush++] = addr;
}

void kqemu_flush(CPUState *env, int global)
{
263
    LOG_INT("kqemu_flush:\n");
bellard authored
264
265
266
    nb_pages_to_flush = KQEMU_FLUSH_ALL;
}
267
268
void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr)
{
269
    LOG_INT("kqemu_set_notdirty: addr=%08lx\n", 
270
                (unsigned long)ram_addr);
bellard authored
271
272
273
    /* we only track transitions to dirty state */
    if (phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] != 0xff)
        return;
274
275
276
277
278
279
    if (nb_ram_pages_to_update >= KQEMU_MAX_RAM_PAGES_TO_UPDATE)
        nb_ram_pages_to_update = KQEMU_RAM_PAGES_UPDATE_ALL;
    else
        ram_pages_to_update[nb_ram_pages_to_update++] = ram_addr;
}
280
281
282
283
static void kqemu_reset_modified_ram_pages(void)
{
    int i;
    unsigned long page_index;
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    for(i = 0; i < nb_modified_ram_pages; i++) {
        page_index = modified_ram_pages[i] >> TARGET_PAGE_BITS;
        modified_ram_pages_table[page_index] = 0;
    }
    nb_modified_ram_pages = 0;
}

void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr)
{
    unsigned long page_index;
    int ret;
#ifdef _WIN32
    DWORD temp;
#endif

    page_index = ram_addr >> TARGET_PAGE_BITS;
    if (!modified_ram_pages_table[page_index]) {
#if 0
        printf("%d: modify_page=%08lx\n", nb_modified_ram_pages, ram_addr);
#endif
        modified_ram_pages_table[page_index] = 1;
        modified_ram_pages[nb_modified_ram_pages++] = ram_addr;
        if (nb_modified_ram_pages >= KQEMU_MAX_MODIFIED_RAM_PAGES) {
            /* flush */
#ifdef _WIN32
310
311
            ret = DeviceIoControl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES,
                                  &nb_modified_ram_pages,
312
313
314
                                  sizeof(nb_modified_ram_pages),
                                  NULL, 0, &temp, NULL);
#else
315
            ret = ioctl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES,
316
317
318
319
320
321
322
                        &nb_modified_ram_pages);
#endif
            kqemu_reset_modified_ram_pages();
        }
    }
}
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
void kqemu_set_phys_mem(uint64_t start_addr, ram_addr_t size, 
                        ram_addr_t phys_offset)
{
    struct kqemu_phys_mem kphys_mem1, *kphys_mem = &kphys_mem1;
    uint64_t end;
    int ret, io_index;

    end = (start_addr + size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
    start_addr &= TARGET_PAGE_MASK;
    kphys_mem->phys_addr = start_addr;
    kphys_mem->size = end - start_addr;
    kphys_mem->ram_addr = phys_offset & TARGET_PAGE_MASK;
    io_index = phys_offset & ~TARGET_PAGE_MASK;
    switch(io_index) {
    case IO_MEM_RAM:
        kphys_mem->io_index = KQEMU_IO_MEM_RAM;
        break;
    case IO_MEM_ROM:
        kphys_mem->io_index = KQEMU_IO_MEM_ROM;
        break;
    default:
        if (qpi_io_memory == io_index) {
            kphys_mem->io_index = KQEMU_IO_MEM_COMM;
        } else {
            kphys_mem->io_index = KQEMU_IO_MEM_UNASSIGNED;
        }
        break;
    }
#ifdef _WIN32
    {
        DWORD temp;
        ret = DeviceIoControl(kqemu_fd, KQEMU_SET_PHYS_MEM, 
                              kphys_mem, sizeof(*kphys_mem),
                              NULL, 0, &temp, NULL) == TRUE ? 0 : -1;
    }
#else
    ret = ioctl(kqemu_fd, KQEMU_SET_PHYS_MEM, kphys_mem);
#endif
    if (ret < 0) {
        fprintf(stderr, "kqemu: KQEMU_SET_PHYS_PAGE error=%d: start_addr=0x%016" PRIx64 " size=0x%08lx phys_offset=0x%08lx\n",
                ret, start_addr, 
                (unsigned long)size, (unsigned long)phys_offset);
    }
}
bellard authored
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
struct fpstate {
    uint16_t fpuc;
    uint16_t dummy1;
    uint16_t fpus;
    uint16_t dummy2;
    uint16_t fptag;
    uint16_t dummy3;

    uint32_t fpip;
    uint32_t fpcs;
    uint32_t fpoo;
    uint32_t fpos;
    uint8_t fpregs1[8 * 10];
};

struct fpxstate {
    uint16_t fpuc;
    uint16_t fpus;
    uint16_t fptag;
    uint16_t fop;
    uint32_t fpuip;
    uint16_t cs_sel;
    uint16_t dummy0;
    uint32_t fpudp;
    uint16_t ds_sel;
    uint16_t dummy1;
    uint32_t mxcsr;
    uint32_t mxcsr_mask;
    uint8_t fpregs1[8 * 16];
bellard authored
397
398
    uint8_t xmm_regs[16 * 16];
    uint8_t dummy2[96];
bellard authored
399
400
401
402
403
404
405
406
};

static struct fpxstate fpx1 __attribute__((aligned(16)));

static void restore_native_fp_frstor(CPUState *env)
{
    int fptag, i, j;
    struct fpstate fp1, *fp = &fp1;
407
bellard authored
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
    fp->fpuc = env->fpuc;
    fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
    fptag = 0;
    for (i=7; i>=0; i--) {
	fptag <<= 2;
	if (env->fptags[i]) {
            fptag |= 3;
        } else {
            /* the FPU automatically computes it */
        }
    }
    fp->fptag = fptag;
    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&fp->fpregs1[i * 10], &env->fpregs[j].d, 10);
        j = (j + 1) & 7;
    }
    asm volatile ("frstor %0" : "=m" (*fp));
}
427
bellard authored
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
static void save_native_fp_fsave(CPUState *env)
{
    int fptag, i, j;
    uint16_t fpuc;
    struct fpstate fp1, *fp = &fp1;

    asm volatile ("fsave %0" : : "m" (*fp));
    env->fpuc = fp->fpuc;
    env->fpstt = (fp->fpus >> 11) & 7;
    env->fpus = fp->fpus & ~0x3800;
    fptag = fp->fptag;
    for(i = 0;i < 8; i++) {
        env->fptags[i] = ((fptag & 3) == 3);
        fptag >>= 2;
    }
    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 10], 10);
        j = (j + 1) & 7;
    }
    /* we must restore the default rounding state */
    fpuc = 0x037f | (env->fpuc & (3 << 10));
    asm volatile("fldcw %0" : : "m" (fpuc));
}

static void restore_native_fp_fxrstor(CPUState *env)
{
    struct fpxstate *fp = &fpx1;
    int i, j, fptag;

    fp->fpuc = env->fpuc;
    fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
    fptag = 0;
    for(i = 0; i < 8; i++)
        fptag |= (env->fptags[i] << i);
    fp->fptag = fptag ^ 0xff;

    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&fp->fpregs1[i * 16], &env->fpregs[j].d, 10);
        j = (j + 1) & 7;
    }
    if (env->cpuid_features & CPUID_SSE) {
        fp->mxcsr = env->mxcsr;
        /* XXX: check if DAZ is not available */
        fp->mxcsr_mask = 0xffff;
bellard authored
474
        memcpy(fp->xmm_regs, env->xmm_regs, CPU_NB_REGS * 16);
bellard authored
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
    }
    asm volatile ("fxrstor %0" : "=m" (*fp));
}

static void save_native_fp_fxsave(CPUState *env)
{
    struct fpxstate *fp = &fpx1;
    int fptag, i, j;
    uint16_t fpuc;

    asm volatile ("fxsave %0" : : "m" (*fp));
    env->fpuc = fp->fpuc;
    env->fpstt = (fp->fpus >> 11) & 7;
    env->fpus = fp->fpus & ~0x3800;
    fptag = fp->fptag ^ 0xff;
    for(i = 0;i < 8; i++) {
        env->fptags[i] = (fptag >> i) & 1;
    }
    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 16], 10);
        j = (j + 1) & 7;
    }
    if (env->cpuid_features & CPUID_SSE) {
        env->mxcsr = fp->mxcsr;
bellard authored
500
        memcpy(env->xmm_regs, fp->xmm_regs, CPU_NB_REGS * 16);
bellard authored
501
502
503
504
505
506
507
508
    }

    /* we must restore the default rounding state */
    asm volatile ("fninit");
    fpuc = 0x037f | (env->fpuc & (3 << 10));
    asm volatile("fldcw %0" : : "m" (fpuc));
}
bellard authored
509
510
511
512
static int do_syscall(CPUState *env,
                      struct kqemu_cpu_state *kenv)
{
    int selector;
513
bellard authored
514
    selector = (env->star >> 32) & 0xffff;
515
#ifdef TARGET_X86_64
bellard authored
516
    if (env->hflags & HF_LMA_MASK) {
517
518
        int code64;
bellard authored
519
520
521
        env->regs[R_ECX] = kenv->next_eip;
        env->regs[11] = env->eflags;
522
523
        code64 = env->hflags & HF_CS64_MASK;
bellard authored
524
        cpu_x86_set_cpl(env, 0);
525
526
        cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
                               0, 0xffffffff,
bellard authored
527
                               DESC_G_MASK | DESC_P_MASK |
bellard authored
528
529
                               DESC_S_MASK |
                               DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK);
530
        cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
bellard authored
531
532
533
534
535
                               0, 0xffffffff,
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_W_MASK | DESC_A_MASK);
        env->eflags &= ~env->fmask;
536
        if (code64)
bellard authored
537
538
539
            env->eip = env->lstar;
        else
            env->eip = env->cstar;
540
    } else
bellard authored
541
542
543
#endif
    {
        env->regs[R_ECX] = (uint32_t)kenv->next_eip;
544
bellard authored
545
        cpu_x86_set_cpl(env, 0);
546
547
        cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
                           0, 0xffffffff,
bellard authored
548
549
550
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
551
        cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
bellard authored
552
553
554
555
556
557
558
559
560
561
                               0, 0xffffffff,
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_W_MASK | DESC_A_MASK);
        env->eflags &= ~(IF_MASK | RF_MASK | VM_MASK);
        env->eip = (uint32_t)env->star;
    }
    return 2;
}
562
#ifdef CONFIG_PROFILER
563
564
565
566
567
568
569
570
571
572
573

#define PC_REC_SIZE 1
#define PC_REC_HASH_BITS 16
#define PC_REC_HASH_SIZE (1 << PC_REC_HASH_BITS)

typedef struct PCRecord {
    unsigned long pc;
    int64_t count;
    struct PCRecord *next;
} PCRecord;
574
575
static PCRecord *pc_rec_hash[PC_REC_HASH_SIZE];
static int nb_pc_records;
576
577
static void kqemu_record_pc(unsigned long pc)
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
{
    unsigned long h;
    PCRecord **pr, *r;

    h = pc / PC_REC_SIZE;
    h = h ^ (h >> PC_REC_HASH_BITS);
    h &= (PC_REC_HASH_SIZE - 1);
    pr = &pc_rec_hash[h];
    for(;;) {
        r = *pr;
        if (r == NULL)
            break;
        if (r->pc == pc) {
            r->count++;
            return;
        }
        pr = &r->next;
    }
    r = malloc(sizeof(PCRecord));
    r->count = 1;
    r->pc = pc;
    r->next = NULL;
    *pr = r;
    nb_pc_records++;
}
604
static int pc_rec_cmp(const void *p1, const void *p2)
605
606
607
608
609
610
611
612
613
614
615
{
    PCRecord *r1 = *(PCRecord **)p1;
    PCRecord *r2 = *(PCRecord **)p2;
    if (r1->count < r2->count)
        return 1;
    else if (r1->count == r2->count)
        return 0;
    else
        return -1;
}
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
static void kqemu_record_flush(void)
{
    PCRecord *r, *r_next;
    int h;

    for(h = 0; h < PC_REC_HASH_SIZE; h++) {
        for(r = pc_rec_hash[h]; r != NULL; r = r_next) {
            r_next = r->next;
            free(r);
        }
        pc_rec_hash[h] = NULL;
    }
    nb_pc_records = 0;
}
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
void kqemu_record_dump(void)
{
    PCRecord **pr, *r;
    int i, h;
    FILE *f;
    int64_t total, sum;

    pr = malloc(sizeof(PCRecord *) * nb_pc_records);
    i = 0;
    total = 0;
    for(h = 0; h < PC_REC_HASH_SIZE; h++) {
        for(r = pc_rec_hash[h]; r != NULL; r = r->next) {
            pr[i++] = r;
            total += r->count;
        }
    }
    qsort(pr, nb_pc_records, sizeof(PCRecord *), pc_rec_cmp);
648
649
650
651
652
653
    f = fopen("/tmp/kqemu.stats", "w");
    if (!f) {
        perror("/tmp/kqemu.stats");
        exit(1);
    }
bellard authored
654
    fprintf(f, "total: %" PRId64 "\n", total);
655
656
657
658
    sum = 0;
    for(i = 0; i < nb_pc_records; i++) {
        r = pr[i];
        sum += r->count;
659
660
661
        fprintf(f, "%08lx: %" PRId64 " %0.2f%% %0.2f%%\n",
                r->pc,
                r->count,
662
663
664
665
666
                (double)r->count / (double)total * 100.0,
                (double)sum / (double)total * 100.0);
    }
    fclose(f);
    free(pr);
667
668

    kqemu_record_flush();
669
670
671
}
#endif
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
static inline void kqemu_load_seg(struct kqemu_segment_cache *ksc,
                                  const SegmentCache *sc)
{
    ksc->selector = sc->selector;
    ksc->flags = sc->flags;
    ksc->limit = sc->limit;
    ksc->base = sc->base;
}

static inline void kqemu_save_seg(SegmentCache *sc,
                                  const struct kqemu_segment_cache *ksc)
{
    sc->selector = ksc->selector;
    sc->flags = ksc->flags;
    sc->limit = ksc->limit;
    sc->base = ksc->base;
}
bellard authored
690
691
692
int kqemu_cpu_exec(CPUState *env)
{
    struct kqemu_cpu_state kcpu_state, *kenv = &kcpu_state;
693
694
695
696
    int ret, cpl, i;
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif
697
698
699
#ifdef _WIN32
    DWORD temp;
#endif
bellard authored
700
701
702
703
#ifdef CONFIG_PROFILER
    ti = profile_getclock();
#endif
704
705
    LOG_INT("kqemu: cpu_exec: enter\n");
    LOG_INT_STATE(env);
706
707
    for(i = 0; i < CPU_NB_REGS; i++)
        kenv->regs[i] = env->regs[i];
bellard authored
708
709
    kenv->eip = env->eip;
    kenv->eflags = env->eflags;
710
711
712
713
714
715
    for(i = 0; i < 6; i++)
        kqemu_load_seg(&kenv->segs[i], &env->segs[i]);
    kqemu_load_seg(&kenv->ldt, &env->ldt);
    kqemu_load_seg(&kenv->tr, &env->tr);
    kqemu_load_seg(&kenv->gdt, &env->gdt);
    kqemu_load_seg(&kenv->idt, &env->idt);
bellard authored
716
717
718
719
720
    kenv->cr0 = env->cr[0];
    kenv->cr2 = env->cr[2];
    kenv->cr3 = env->cr[3];
    kenv->cr4 = env->cr[4];
    kenv->a20_mask = env->a20_mask;
bellard authored
721
    kenv->efer = env->efer;
722
723
724
725
726
    kenv->tsc_offset = 0;
    kenv->star = env->star;
    kenv->sysenter_cs = env->sysenter_cs;
    kenv->sysenter_esp = env->sysenter_esp;
    kenv->sysenter_eip = env->sysenter_eip;
727
#ifdef TARGET_X86_64
728
729
730
731
732
    kenv->lstar = env->lstar;
    kenv->cstar = env->cstar;
    kenv->fmask = env->fmask;
    kenv->kernelgsbase = env->kernelgsbase;
#endif
bellard authored
733
734
735
736
737
738
739
740
741
742
    if (env->dr[7] & 0xff) {
        kenv->dr7 = env->dr[7];
        kenv->dr0 = env->dr[0];
        kenv->dr1 = env->dr[1];
        kenv->dr2 = env->dr[2];
        kenv->dr3 = env->dr[3];
    } else {
        kenv->dr7 = 0;
    }
    kenv->dr6 = env->dr[6];
743
744
    cpl = (env->hflags & HF_CPL_MASK);
    kenv->cpl = cpl;
bellard authored
745
    kenv->nb_pages_to_flush = nb_pages_to_flush;
746
    kenv->user_only = (env->kqemu_enabled == 1);
747
748
    kenv->nb_ram_pages_to_update = nb_ram_pages_to_update;
    nb_ram_pages_to_update = 0;
749
    kenv->nb_modified_ram_pages = nb_modified_ram_pages;
750
751
752
753
754
755
756
    kqemu_reset_modified_ram_pages();

    if (env->cpuid_features & CPUID_FXSR)
        restore_native_fp_fxrstor(env);
    else
        restore_native_fp_frstor(env);
bellard authored
757
758
#ifdef _WIN32
759
760
761
762
763
764
765
766
    if (DeviceIoControl(kqemu_fd, KQEMU_EXEC,
                        kenv, sizeof(struct kqemu_cpu_state),
                        kenv, sizeof(struct kqemu_cpu_state),
                        &temp, NULL)) {
        ret = kenv->retval;
    } else {
        ret = -1;
    }
767
768
769
770
#else
    ioctl(kqemu_fd, KQEMU_EXEC, kenv);
    ret = kenv->retval;
#endif
771
772
773
774
    if (env->cpuid_features & CPUID_FXSR)
        save_native_fp_fxsave(env);
    else
        save_native_fp_fsave(env);
bellard authored
775
776
777
    for(i = 0; i < CPU_NB_REGS; i++)
        env->regs[i] = kenv->regs[i];
bellard authored
778
779
    env->eip = kenv->eip;
    env->eflags = kenv->eflags;
780
781
    for(i = 0; i < 6; i++)
        kqemu_save_seg(&env->segs[i], &kenv->segs[i]);
782
    cpu_x86_set_cpl(env, kenv->cpl);
783
    kqemu_save_seg(&env->ldt, &kenv->ldt);
784
785
786
    env->cr[0] = kenv->cr0;
    env->cr[4] = kenv->cr4;
    env->cr[3] = kenv->cr3;
bellard authored
787
788
    env->cr[2] = kenv->cr2;
    env->dr[6] = kenv->dr6;
789
#ifdef TARGET_X86_64
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
    env->kernelgsbase = kenv->kernelgsbase;
#endif

    /* flush pages as indicated by kqemu */
    if (kenv->nb_pages_to_flush >= KQEMU_FLUSH_ALL) {
        tlb_flush(env, 1);
    } else {
        for(i = 0; i < kenv->nb_pages_to_flush; i++) {
            tlb_flush_page(env, pages_to_flush[i]);
        }
    }
    nb_pages_to_flush = 0;

#ifdef CONFIG_PROFILER
    kqemu_time += profile_getclock() - ti;
    kqemu_exec_count++;
#endif
bellard authored
807
808
809
810
811
    if (kenv->nb_ram_pages_to_update > 0) {
        cpu_tlb_update_dirty(env);
    }
812
813
814
815
816
817
818
819
    if (kenv->nb_modified_ram_pages > 0) {
        for(i = 0; i < kenv->nb_modified_ram_pages; i++) {
            unsigned long addr;
            addr = modified_ram_pages[i];
            tb_invalidate_phys_page_range(addr, addr + TARGET_PAGE_SIZE, 0);
        }
    }
820
821
822
823
    /* restore the hidden flags */
    {
        unsigned int new_hflags;
#ifdef TARGET_X86_64
824
        if ((env->hflags & HF_LMA_MASK) &&
825
826
827
828
829
830
831
832
833
834
835
            (env->segs[R_CS].flags & DESC_L_MASK)) {
            /* long mode */
            new_hflags = HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
        } else
#endif
        {
            /* legacy / compatibility case */
            new_hflags = (env->segs[R_CS].flags & DESC_B_MASK)
                >> (DESC_B_SHIFT - HF_CS32_SHIFT);
            new_hflags |= (env->segs[R_SS].flags & DESC_B_MASK)
                >> (DESC_B_SHIFT - HF_SS32_SHIFT);
836
            if (!(env->cr[0] & CR0_PE_MASK) ||
837
838
839
840
841
842
843
844
845
                   (env->eflags & VM_MASK) ||
                   !(env->hflags & HF_CS32_MASK)) {
                /* XXX: try to avoid this test. The problem comes from the
                   fact that is real mode or vm86 mode we only modify the
                   'base' and 'selector' fields of the segment cache to go
                   faster. A solution may be to force addseg to one in
                   translate-i386.c. */
                new_hflags |= HF_ADDSEG_MASK;
            } else {
846
                new_hflags |= ((env->segs[R_DS].base |
847
                                env->segs[R_ES].base |
848
                                env->segs[R_SS].base) != 0) <<
849
850
851
                    HF_ADDSEG_SHIFT;
            }
        }
852
        env->hflags = (env->hflags &
853
854
855
           ~(HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)) |
            new_hflags;
    }
856
857
858
859
860
861
862
    /* update FPU flags */
    env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
        ((env->cr[0] << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
    if (env->cr[4] & CR4_OSFXSR_MASK)
        env->hflags |= HF_OSFXSR_MASK;
    else
        env->hflags &= ~HF_OSFXSR_MASK;
863
864
    LOG_INT("kqemu: kqemu_cpu_exec: ret=0x%x\n", ret);
bellard authored
865
866
867
    if (ret == KQEMU_RET_SYSCALL) {
        /* syscall instruction */
        return do_syscall(env, kenv);
868
    } else
bellard authored
869
870
871
872
873
    if ((ret & 0xff00) == KQEMU_RET_INT) {
        env->exception_index = ret & 0xff;
        env->error_code = 0;
        env->exception_is_int = 1;
        env->exception_next_eip = kenv->next_eip;
874
875
876
#ifdef CONFIG_PROFILER
        kqemu_ret_int_count++;
#endif
877
878
        LOG_INT("kqemu: interrupt v=%02x:\n", env->exception_index);
        LOG_INT_STATE(env);
bellard authored
879
880
881
882
883
884
        return 1;
    } else if ((ret & 0xff00) == KQEMU_RET_EXCEPTION) {
        env->exception_index = ret & 0xff;
        env->error_code = kenv->error_code;
        env->exception_is_int = 0;
        env->exception_next_eip = 0;
885
886
887
#ifdef CONFIG_PROFILER
        kqemu_ret_excp_count++;
#endif
888
        LOG_INT("kqemu: exception v=%02x e=%04x:\n",
bellard authored
889
                    env->exception_index, env->error_code);
890
        LOG_INT_STATE(env);
bellard authored
891
892
        return 1;
    } else if (ret == KQEMU_RET_INTR) {
893
894
895
#ifdef CONFIG_PROFILER
        kqemu_ret_intr_count++;
#endif
896
        LOG_INT_STATE(env);
bellard authored
897
        return 0;
898
    } else if (ret == KQEMU_RET_SOFTMMU) {
899
900
901
902
903
#ifdef CONFIG_PROFILER
        {
            unsigned long pc = env->eip + env->segs[R_CS].base;
            kqemu_record_pc(pc);
        }
904
#endif
905
        LOG_INT_STATE(env);
bellard authored
906
907
908
909
910
911
912
913
914
        return 2;
    } else {
        cpu_dump_state(env, stderr, fprintf, 0);
        fprintf(stderr, "Unsupported return value: 0x%x\n", ret);
        exit(1);
    }
    return 0;
}
915
916
void kqemu_cpu_interrupt(CPUState *env)
{
917
#if defined(_WIN32)
918
    /* cancelling the I/O request causes KQEMU to finish executing the
919
920
921
922
923
       current block and successfully returning. */
    CancelIo(kqemu_fd);
#endif
}
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
/* 
   QEMU paravirtualization interface. The current interface only
   allows to modify the IF and IOPL flags when running in
   kqemu.

   At this point it is not very satisfactory. I leave it for reference
   as it adds little complexity.
*/

#define QPI_COMM_PAGE_PHYS_ADDR 0xff000000

static uint32_t qpi_mem_readb(void *opaque, target_phys_addr_t addr)
{
    return 0;
}

static uint32_t qpi_mem_readw(void *opaque, target_phys_addr_t addr)
{
    return 0;
}

static void qpi_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
}

static void qpi_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
}

static uint32_t qpi_mem_readl(void *opaque, target_phys_addr_t addr)
{
    CPUState *env;

    env = cpu_single_env;
    if (!env)
        return 0;
    return env->eflags & (IF_MASK | IOPL_MASK);
}

/* Note: after writing to this address, the guest code must make sure
   it is exiting the current TB. pushf/popf can be used for that
   purpose. */
static void qpi_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
    CPUState *env;

    env = cpu_single_env;
    if (!env)
        return;
    env->eflags = (env->eflags & ~(IF_MASK | IOPL_MASK)) | 
        (val & (IF_MASK | IOPL_MASK));
}

static CPUReadMemoryFunc *qpi_mem_read[3] = {
    qpi_mem_readb,
    qpi_mem_readw,
    qpi_mem_readl,
};

static CPUWriteMemoryFunc *qpi_mem_write[3] = {
    qpi_mem_writeb,
    qpi_mem_writew,
    qpi_mem_writel,
};

static void qpi_init(void)
{
    kqemu_comm_base = 0xff000000 | 1;
992
    qpi_io_memory = cpu_register_io_memory(
993
994
995
996
997
                                           qpi_mem_read, 
                                           qpi_mem_write, NULL);
    cpu_register_physical_memory(kqemu_comm_base & ~0xfff, 
                                 0x1000, qpi_io_memory);
}
bellard authored
998
#endif