1
2
/*
* KQEMU support
ths
authored
18 years ago
3
*
4
* Copyright ( c ) 2005 - 2008 Fabrice Bellard
5
6
7
8
9
10
11
12
13
14
15
16
*
* This library is free software ; you can redistribute it and / or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation ; either
* version 2 of the License , or ( at your option ) any later version .
*
* This library is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU
* Lesser General Public License for more details .
*
* You should have received a copy of the GNU Lesser General Public
17
* License along with this library ; if not , see < http :// www . gnu . org / licenses /> .
18
19
20
21
*/
# include "config.h"
# ifdef _WIN32
# include < windows . h >
22
# include < winioctl . h >
23
24
25
# else
# include < sys / types . h >
# include < sys / mman . h >
26
# include < sys / ioctl . h >
27
# endif
ths
authored
18 years ago
28
# ifdef HOST_SOLARIS
ths
authored
18 years ago
29
# include < sys / ioccom . h >
ths
authored
18 years ago
30
# endif
31
32
33
34
35
36
37
38
39
40
# include < stdlib . h >
# include < stdio . h >
# include < stdarg . h >
# include < string . h >
# include < errno . h >
# include < unistd . h >
# include < inttypes . h >
# include "cpu.h"
# include "exec-all.h"
41
# include "qemu-common.h"
42
43
# ifdef CONFIG_KQEMU
44
45
# define DEBUG
46
// # define PROFILE
47
48
49
# ifdef DEBUG
50
51
# define LOG_INT (...) qemu_log_mask ( CPU_LOG_INT , ## __VA_ARGS__ )
# define LOG_INT_STATE ( env ) log_cpu_state_mask ( CPU_LOG_INT , ( env ), 0 )
52
53
54
55
56
# else
# define LOG_INT (...) do { } while ( 0 )
# define LOG_INT_STATE ( env ) do { } while ( 0 )
# endif
57
58
# include < unistd . h >
# include < fcntl . h >
59
# include "kqemu.h"
60
61
62
63
# ifdef _WIN32
# define KQEMU_DEVICE " \\\\ . \\ kqemu"
# else
64
# define KQEMU_DEVICE "/dev/kqemu"
65
66
# endif
67
68
static void qpi_init ( void );
69
70
71
72
73
74
75
76
77
# ifdef _WIN32
# define KQEMU_INVALID_FD INVALID_HANDLE_VALUE
HANDLE kqemu_fd = KQEMU_INVALID_FD ;
# define kqemu_closefd ( x ) CloseHandle ( x )
# else
# define KQEMU_INVALID_FD - 1
int kqemu_fd = KQEMU_INVALID_FD ;
# define kqemu_closefd ( x ) close ( x )
# endif
78
79
80
81
82
/* 0 = not allowed
1 = user kqemu
2 = kernel kqemu
*/
83
int kqemu_allowed = 0 ;
84
uint64_t * pages_to_flush ;
85
unsigned int nb_pages_to_flush ;
86
uint64_t * ram_pages_to_update ;
87
unsigned int nb_ram_pages_to_update ;
88
uint64_t * modified_ram_pages ;
89
90
unsigned int nb_modified_ram_pages ;
uint8_t * modified_ram_pages_table ;
91
92
int qpi_io_memory ;
uint32_t kqemu_comm_base ; /* physical address of the QPI communication page */
93
94
ram_addr_t kqemu_phys_ram_size ;
uint8_t * kqemu_phys_ram_base ;
95
96
97
98
99
100
# define cpuid ( index , eax , ebx , ecx , edx ) \
asm volatile ( "cpuid" \
: "=a" ( eax ), "=b" ( ebx ), "=c" ( ecx ), "=d" ( edx ) \
: "0" ( index ))
101
102
103
104
105
106
# ifdef __x86_64__
static int is_cpuid_supported ( void )
{
return 1 ;
}
# else
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
static int is_cpuid_supported ( void )
{
int v0 , v1 ;
asm volatile ( "pushf \n "
"popl %0 \n "
"movl %0, %1 \n "
"xorl $0x00200000, %0 \n "
"pushl %0 \n "
"popf \n "
"pushf \n "
"popl %0 \n "
: "=a" ( v0 ), "=d" ( v1 )
:
: "cc" );
return ( v0 != v1 );
}
123
# endif
124
125
126
static void kqemu_update_cpuid ( CPUState * env )
{
127
int critical_features_mask , features , ext_features , ext_features_mask ;
128
129
130
131
132
133
uint32_t eax , ebx , ecx , edx ;
/* the following features are kept identical on the host and
target cpus because they are important for user code . Strictly
speaking , only SSE really matters because the OS must support
it if the user code uses it . */
ths
authored
18 years ago
134
135
136
critical_features_mask =
CPUID_CMOV | CPUID_CX8 |
CPUID_FXSR | CPUID_MMX | CPUID_SSE |
137
CPUID_SSE2 | CPUID_SEP ;
138
ext_features_mask = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR ;
139
140
if ( ! is_cpuid_supported ()) {
features = 0 ;
141
ext_features = 0 ;
142
143
144
} else {
cpuid ( 1 , eax , ebx , ecx , edx );
features = edx ;
145
ext_features = ecx ;
146
}
147
148
149
150
151
152
# ifdef __x86_64__
/* NOTE : on x86_64 CPUs , SYSENTER is not supported in
compatibility mode , so in order to have the best performances
it is better not to use it */
features &= ~ CPUID_SEP ;
# endif
153
154
env -> cpuid_features = ( env -> cpuid_features & ~ critical_features_mask ) |
( features & critical_features_mask );
155
156
env -> cpuid_ext_features = ( env -> cpuid_ext_features & ~ ext_features_mask ) |
( ext_features & ext_features_mask );
157
158
159
160
161
162
163
/* XXX : we could update more of the target CPUID state so that the
non accelerated code sees exactly the same CPU features as the
accelerated code */
}
int kqemu_init ( CPUState * env )
{
164
struct kqemu_init kinit ;
165
int ret , version ;
166
167
168
# ifdef _WIN32
DWORD temp ;
# endif
169
170
171
172
if ( ! kqemu_allowed )
return - 1 ;
173
174
175
176
177
# ifdef _WIN32
kqemu_fd = CreateFile ( KQEMU_DEVICE , GENERIC_WRITE | GENERIC_READ ,
FILE_SHARE_READ | FILE_SHARE_WRITE ,
NULL , OPEN_EXISTING , FILE_ATTRIBUTE_NORMAL ,
NULL );
malc
authored
17 years ago
178
179
180
181
182
if ( kqemu_fd == KQEMU_INVALID_FD ) {
fprintf ( stderr , "Could not open '%s' - QEMU acceleration layer not activated: %lu \n " ,
KQEMU_DEVICE , GetLastError ());
return - 1 ;
}
183
# else
184
kqemu_fd = open ( KQEMU_DEVICE , O_RDWR );
185
if ( kqemu_fd == KQEMU_INVALID_FD ) {
ths
authored
18 years ago
186
187
fprintf ( stderr , "Could not open '%s' - QEMU acceleration layer not activated: %s \n " ,
KQEMU_DEVICE , strerror ( errno ));
188
189
return - 1 ;
}
malc
authored
17 years ago
190
# endif
191
version = 0 ;
192
193
194
195
# ifdef _WIN32
DeviceIoControl ( kqemu_fd , KQEMU_GET_VERSION , NULL , 0 ,
& version , sizeof ( version ), & temp , NULL );
# else
196
ioctl ( kqemu_fd , KQEMU_GET_VERSION , & version );
197
# endif
198
199
200
201
202
203
if ( version != KQEMU_VERSION ) {
fprintf ( stderr , "Version mismatch between kqemu module and qemu (%08x %08x) - disabling kqemu use \n " ,
version , KQEMU_VERSION );
goto fail ;
}
ths
authored
18 years ago
204
pages_to_flush = qemu_vmalloc ( KQEMU_MAX_PAGES_TO_FLUSH *
205
sizeof ( uint64_t ));
206
207
208
if ( ! pages_to_flush )
goto fail ;
ths
authored
18 years ago
209
ram_pages_to_update = qemu_vmalloc ( KQEMU_MAX_RAM_PAGES_TO_UPDATE *
210
sizeof ( uint64_t ));
211
212
213
if ( ! ram_pages_to_update )
goto fail ;
ths
authored
18 years ago
214
modified_ram_pages = qemu_vmalloc ( KQEMU_MAX_MODIFIED_RAM_PAGES *
215
sizeof ( uint64_t ));
216
217
if ( ! modified_ram_pages )
goto fail ;
218
219
modified_ram_pages_table =
qemu_mallocz ( kqemu_phys_ram_size >> TARGET_PAGE_BITS );
220
221
222
if ( ! modified_ram_pages_table )
goto fail ;
223
memset ( & kinit , 0 , sizeof ( kinit )); /* set the paddings to zero */
224
225
kinit . ram_base = kqemu_phys_ram_base ;
kinit . ram_size = kqemu_phys_ram_size ;
226
227
228
229
kinit . ram_dirty = phys_ram_dirty ;
kinit . pages_to_flush = pages_to_flush ;
kinit . ram_pages_to_update = ram_pages_to_update ;
kinit . modified_ram_pages = modified_ram_pages ;
230
# ifdef _WIN32
231
ret = DeviceIoControl ( kqemu_fd , KQEMU_INIT , & kinit , sizeof ( kinit ),
232
233
NULL , 0 , & temp , NULL ) == TRUE ? 0 : - 1 ;
# else
234
ret = ioctl ( kqemu_fd , KQEMU_INIT , & kinit );
235
# endif
236
237
238
if ( ret < 0 ) {
fprintf ( stderr , "Error %d while initializing QEMU acceleration layer - disabling it for now \n " , ret );
fail :
239
240
kqemu_closefd ( kqemu_fd );
kqemu_fd = KQEMU_INVALID_FD ;
241
242
243
return - 1 ;
}
kqemu_update_cpuid ( env );
244
env -> kqemu_enabled = kqemu_allowed ;
245
nb_pages_to_flush = 0 ;
246
nb_ram_pages_to_update = 0 ;
247
248
qpi_init ();
249
250
251
252
253
return 0 ;
}
void kqemu_flush_page ( CPUState * env , target_ulong addr )
{
254
LOG_INT ( "kqemu_flush_page: addr=" TARGET_FMT_lx " \n " , addr );
255
256
257
258
259
260
261
262
if ( nb_pages_to_flush >= KQEMU_MAX_PAGES_TO_FLUSH )
nb_pages_to_flush = KQEMU_FLUSH_ALL ;
else
pages_to_flush [ nb_pages_to_flush ++ ] = addr ;
}
void kqemu_flush ( CPUState * env , int global )
{
263
LOG_INT ( "kqemu_flush: \n " );
264
265
266
nb_pages_to_flush = KQEMU_FLUSH_ALL ;
}
267
268
void kqemu_set_notdirty ( CPUState * env , ram_addr_t ram_addr )
{
269
LOG_INT ( "kqemu_set_notdirty: addr=%08lx \n " ,
270
( unsigned long ) ram_addr );
271
272
273
/* we only track transitions to dirty state */
if ( phys_ram_dirty [ ram_addr >> TARGET_PAGE_BITS ] != 0xff )
return ;
274
275
276
277
278
279
if ( nb_ram_pages_to_update >= KQEMU_MAX_RAM_PAGES_TO_UPDATE )
nb_ram_pages_to_update = KQEMU_RAM_PAGES_UPDATE_ALL ;
else
ram_pages_to_update [ nb_ram_pages_to_update ++ ] = ram_addr ;
}
280
281
282
283
static void kqemu_reset_modified_ram_pages ( void )
{
int i ;
unsigned long page_index ;
ths
authored
18 years ago
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
for ( i = 0 ; i < nb_modified_ram_pages ; i ++ ) {
page_index = modified_ram_pages [ i ] >> TARGET_PAGE_BITS ;
modified_ram_pages_table [ page_index ] = 0 ;
}
nb_modified_ram_pages = 0 ;
}
void kqemu_modify_page ( CPUState * env , ram_addr_t ram_addr )
{
unsigned long page_index ;
int ret ;
# ifdef _WIN32
DWORD temp ;
# endif
page_index = ram_addr >> TARGET_PAGE_BITS ;
if ( ! modified_ram_pages_table [ page_index ]) {
# if 0
printf ( "%d: modify_page=%08lx \n " , nb_modified_ram_pages , ram_addr );
# endif
modified_ram_pages_table [ page_index ] = 1 ;
modified_ram_pages [ nb_modified_ram_pages ++ ] = ram_addr ;
if ( nb_modified_ram_pages >= KQEMU_MAX_MODIFIED_RAM_PAGES ) {
/* flush */
# ifdef _WIN32
ths
authored
18 years ago
310
311
ret = DeviceIoControl ( kqemu_fd , KQEMU_MODIFY_RAM_PAGES ,
& nb_modified_ram_pages ,
312
313
314
sizeof ( nb_modified_ram_pages ),
NULL , 0 , & temp , NULL );
# else
ths
authored
18 years ago
315
ret = ioctl ( kqemu_fd , KQEMU_MODIFY_RAM_PAGES ,
316
317
318
319
320
321
322
& nb_modified_ram_pages );
# endif
kqemu_reset_modified_ram_pages ();
}
}
}
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
void kqemu_set_phys_mem ( uint64_t start_addr , ram_addr_t size ,
ram_addr_t phys_offset )
{
struct kqemu_phys_mem kphys_mem1 , * kphys_mem = & kphys_mem1 ;
uint64_t end ;
int ret , io_index ;
end = ( start_addr + size + TARGET_PAGE_SIZE - 1 ) & TARGET_PAGE_MASK ;
start_addr &= TARGET_PAGE_MASK ;
kphys_mem -> phys_addr = start_addr ;
kphys_mem -> size = end - start_addr ;
kphys_mem -> ram_addr = phys_offset & TARGET_PAGE_MASK ;
io_index = phys_offset & ~ TARGET_PAGE_MASK ;
switch ( io_index ) {
case IO_MEM_RAM :
kphys_mem -> io_index = KQEMU_IO_MEM_RAM ;
break ;
case IO_MEM_ROM :
kphys_mem -> io_index = KQEMU_IO_MEM_ROM ;
break ;
default :
if ( qpi_io_memory == io_index ) {
kphys_mem -> io_index = KQEMU_IO_MEM_COMM ;
} else {
kphys_mem -> io_index = KQEMU_IO_MEM_UNASSIGNED ;
}
break ;
}
# ifdef _WIN32
{
DWORD temp ;
ret = DeviceIoControl ( kqemu_fd , KQEMU_SET_PHYS_MEM ,
kphys_mem , sizeof ( * kphys_mem ),
NULL , 0 , & temp , NULL ) == TRUE ? 0 : - 1 ;
}
# else
ret = ioctl ( kqemu_fd , KQEMU_SET_PHYS_MEM , kphys_mem );
# endif
if ( ret < 0 ) {
fprintf ( stderr , "kqemu: KQEMU_SET_PHYS_PAGE error=%d: start_addr=0x%016" PRIx64 " size=0x%08lx phys_offset=0x%08lx \n " ,
ret , start_addr ,
( unsigned long ) size , ( unsigned long ) phys_offset );
}
}
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
struct fpstate {
uint16_t fpuc ;
uint16_t dummy1 ;
uint16_t fpus ;
uint16_t dummy2 ;
uint16_t fptag ;
uint16_t dummy3 ;
uint32_t fpip ;
uint32_t fpcs ;
uint32_t fpoo ;
uint32_t fpos ;
uint8_t fpregs1 [ 8 * 10 ];
};
struct fpxstate {
uint16_t fpuc ;
uint16_t fpus ;
uint16_t fptag ;
uint16_t fop ;
uint32_t fpuip ;
uint16_t cs_sel ;
uint16_t dummy0 ;
uint32_t fpudp ;
uint16_t ds_sel ;
uint16_t dummy1 ;
uint32_t mxcsr ;
uint32_t mxcsr_mask ;
uint8_t fpregs1 [ 8 * 16 ];
397
398
uint8_t xmm_regs [ 16 * 16 ];
uint8_t dummy2 [ 96 ];
399
400
401
402
403
404
405
406
};
static struct fpxstate fpx1 __attribute__ (( aligned ( 16 )));
static void restore_native_fp_frstor ( CPUState * env )
{
int fptag , i , j ;
struct fpstate fp1 , * fp = & fp1 ;
ths
authored
18 years ago
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
fp -> fpuc = env -> fpuc ;
fp -> fpus = ( env -> fpus & ~ 0x3800 ) | ( env -> fpstt & 0x7 ) << 11 ;
fptag = 0 ;
for ( i = 7 ; i >= 0 ; i -- ) {
fptag <<= 2 ;
if ( env -> fptags [ i ]) {
fptag |= 3 ;
} else {
/* the FPU automatically computes it */
}
}
fp -> fptag = fptag ;
j = env -> fpstt ;
for ( i = 0 ; i < 8 ; i ++ ) {
memcpy ( & fp -> fpregs1 [ i * 10 ], & env -> fpregs [ j ]. d , 10 );
j = ( j + 1 ) & 7 ;
}
asm volatile ( "frstor %0" : "=m" ( * fp ));
}
ths
authored
18 years ago
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
static void save_native_fp_fsave ( CPUState * env )
{
int fptag , i , j ;
uint16_t fpuc ;
struct fpstate fp1 , * fp = & fp1 ;
asm volatile ( "fsave %0" : : "m" ( * fp ));
env -> fpuc = fp -> fpuc ;
env -> fpstt = ( fp -> fpus >> 11 ) & 7 ;
env -> fpus = fp -> fpus & ~ 0x3800 ;
fptag = fp -> fptag ;
for ( i = 0 ; i < 8 ; i ++ ) {
env -> fptags [ i ] = (( fptag & 3 ) == 3 );
fptag >>= 2 ;
}
j = env -> fpstt ;
for ( i = 0 ; i < 8 ; i ++ ) {
memcpy ( & env -> fpregs [ j ]. d , & fp -> fpregs1 [ i * 10 ], 10 );
j = ( j + 1 ) & 7 ;
}
/* we must restore the default rounding state */
fpuc = 0x037f | ( env -> fpuc & ( 3 << 10 ));
asm volatile ( "fldcw %0" : : "m" ( fpuc ));
}
static void restore_native_fp_fxrstor ( CPUState * env )
{
struct fpxstate * fp = & fpx1 ;
int i , j , fptag ;
fp -> fpuc = env -> fpuc ;
fp -> fpus = ( env -> fpus & ~ 0x3800 ) | ( env -> fpstt & 0x7 ) << 11 ;
fptag = 0 ;
for ( i = 0 ; i < 8 ; i ++ )
fptag |= ( env -> fptags [ i ] << i );
fp -> fptag = fptag ^ 0xff ;
j = env -> fpstt ;
for ( i = 0 ; i < 8 ; i ++ ) {
memcpy ( & fp -> fpregs1 [ i * 16 ], & env -> fpregs [ j ]. d , 10 );
j = ( j + 1 ) & 7 ;
}
if ( env -> cpuid_features & CPUID_SSE ) {
fp -> mxcsr = env -> mxcsr ;
/* XXX: check if DAZ is not available */
fp -> mxcsr_mask = 0xffff ;
474
memcpy ( fp -> xmm_regs , env -> xmm_regs , CPU_NB_REGS * 16 );
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
}
asm volatile ( "fxrstor %0" : "=m" ( * fp ));
}
static void save_native_fp_fxsave ( CPUState * env )
{
struct fpxstate * fp = & fpx1 ;
int fptag , i , j ;
uint16_t fpuc ;
asm volatile ( "fxsave %0" : : "m" ( * fp ));
env -> fpuc = fp -> fpuc ;
env -> fpstt = ( fp -> fpus >> 11 ) & 7 ;
env -> fpus = fp -> fpus & ~ 0x3800 ;
fptag = fp -> fptag ^ 0xff ;
for ( i = 0 ; i < 8 ; i ++ ) {
env -> fptags [ i ] = ( fptag >> i ) & 1 ;
}
j = env -> fpstt ;
for ( i = 0 ; i < 8 ; i ++ ) {
memcpy ( & env -> fpregs [ j ]. d , & fp -> fpregs1 [ i * 16 ], 10 );
j = ( j + 1 ) & 7 ;
}
if ( env -> cpuid_features & CPUID_SSE ) {
env -> mxcsr = fp -> mxcsr ;
500
memcpy ( env -> xmm_regs , fp -> xmm_regs , CPU_NB_REGS * 16 );
501
502
503
504
505
506
507
508
}
/* we must restore the default rounding state */
asm volatile ( "fninit" );
fpuc = 0x037f | ( env -> fpuc & ( 3 << 10 ));
asm volatile ( "fldcw %0" : : "m" ( fpuc ));
}
509
510
511
512
static int do_syscall ( CPUState * env ,
struct kqemu_cpu_state * kenv )
{
int selector ;
ths
authored
18 years ago
513
514
selector = ( env -> star >> 32 ) & 0xffff ;
515
# ifdef TARGET_X86_64
516
if ( env -> hflags & HF_LMA_MASK ) {
517
518
int code64 ;
519
520
521
env -> regs [ R_ECX ] = kenv -> next_eip ;
env -> regs [ 11 ] = env -> eflags ;
522
523
code64 = env -> hflags & HF_CS64_MASK ;
524
cpu_x86_set_cpl ( env , 0 );
ths
authored
18 years ago
525
526
cpu_x86_load_seg_cache ( env , R_CS , selector & 0xfffc ,
0 , 0xffffffff ,
527
DESC_G_MASK | DESC_P_MASK |
528
529
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK );
ths
authored
18 years ago
530
cpu_x86_load_seg_cache ( env , R_SS , ( selector + 8 ) & 0xfffc ,
531
532
533
534
535
0 , 0xffffffff ,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_W_MASK | DESC_A_MASK );
env -> eflags &= ~ env -> fmask ;
536
if ( code64 )
537
538
539
env -> eip = env -> lstar ;
else
env -> eip = env -> cstar ;
ths
authored
18 years ago
540
} else
541
542
543
# endif
{
env -> regs [ R_ECX ] = ( uint32_t ) kenv -> next_eip ;
ths
authored
18 years ago
544
545
cpu_x86_set_cpl ( env , 0 );
ths
authored
18 years ago
546
547
cpu_x86_load_seg_cache ( env , R_CS , selector & 0xfffc ,
0 , 0xffffffff ,
548
549
550
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK );
ths
authored
18 years ago
551
cpu_x86_load_seg_cache ( env , R_SS , ( selector + 8 ) & 0xfffc ,
552
553
554
555
556
557
558
559
560
561
0 , 0xffffffff ,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_W_MASK | DESC_A_MASK );
env -> eflags &= ~ ( IF_MASK | RF_MASK | VM_MASK );
env -> eip = ( uint32_t ) env -> star ;
}
return 2 ;
}
562
# ifdef CONFIG_PROFILER
563
564
565
566
567
568
569
570
571
572
573
# define PC_REC_SIZE 1
# define PC_REC_HASH_BITS 16
# define PC_REC_HASH_SIZE ( 1 << PC_REC_HASH_BITS )
typedef struct PCRecord {
unsigned long pc ;
int64_t count ;
struct PCRecord * next ;
} PCRecord ;
574
575
static PCRecord * pc_rec_hash [ PC_REC_HASH_SIZE ];
static int nb_pc_records ;
576
577
static void kqemu_record_pc ( unsigned long pc )
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
{
unsigned long h ;
PCRecord ** pr , * r ;
h = pc / PC_REC_SIZE ;
h = h ^ ( h >> PC_REC_HASH_BITS );
h &= ( PC_REC_HASH_SIZE - 1 );
pr = & pc_rec_hash [ h ];
for (;;) {
r = * pr ;
if ( r == NULL )
break ;
if ( r -> pc == pc ) {
r -> count ++ ;
return ;
}
pr = & r -> next ;
}
r = malloc ( sizeof ( PCRecord ));
r -> count = 1 ;
r -> pc = pc ;
r -> next = NULL ;
* pr = r ;
nb_pc_records ++ ;
}
604
static int pc_rec_cmp ( const void * p1 , const void * p2 )
605
606
607
608
609
610
611
612
613
614
615
{
PCRecord * r1 = * ( PCRecord ** ) p1 ;
PCRecord * r2 = * ( PCRecord ** ) p2 ;
if ( r1 -> count < r2 -> count )
return 1 ;
else if ( r1 -> count == r2 -> count )
return 0 ;
else
return - 1 ;
}
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
static void kqemu_record_flush ( void )
{
PCRecord * r , * r_next ;
int h ;
for ( h = 0 ; h < PC_REC_HASH_SIZE ; h ++ ) {
for ( r = pc_rec_hash [ h ]; r != NULL ; r = r_next ) {
r_next = r -> next ;
free ( r );
}
pc_rec_hash [ h ] = NULL ;
}
nb_pc_records = 0 ;
}
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
void kqemu_record_dump ( void )
{
PCRecord ** pr , * r ;
int i , h ;
FILE * f ;
int64_t total , sum ;
pr = malloc ( sizeof ( PCRecord * ) * nb_pc_records );
i = 0 ;
total = 0 ;
for ( h = 0 ; h < PC_REC_HASH_SIZE ; h ++ ) {
for ( r = pc_rec_hash [ h ]; r != NULL ; r = r -> next ) {
pr [ i ++ ] = r ;
total += r -> count ;
}
}
qsort ( pr , nb_pc_records , sizeof ( PCRecord * ), pc_rec_cmp );
ths
authored
18 years ago
648
649
650
651
652
653
f = fopen ( "/tmp/kqemu.stats" , "w" );
if ( ! f ) {
perror ( "/tmp/kqemu.stats" );
exit ( 1 );
}
654
fprintf ( f , "total: %" PRId64 " \n " , total );
655
656
657
658
sum = 0 ;
for ( i = 0 ; i < nb_pc_records ; i ++ ) {
r = pr [ i ];
sum += r -> count ;
ths
authored
18 years ago
659
660
661
fprintf ( f , "%08lx: %" PRId64 " %0.2f%% %0.2f%% \n " ,
r -> pc ,
r -> count ,
662
663
664
665
666
( double ) r -> count / ( double ) total * 100 . 0 ,
( double ) sum / ( double ) total * 100 . 0 );
}
fclose ( f );
free ( pr );
667
668
kqemu_record_flush ();
669
670
671
}
# endif
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
static inline void kqemu_load_seg ( struct kqemu_segment_cache * ksc ,
const SegmentCache * sc )
{
ksc -> selector = sc -> selector ;
ksc -> flags = sc -> flags ;
ksc -> limit = sc -> limit ;
ksc -> base = sc -> base ;
}
static inline void kqemu_save_seg ( SegmentCache * sc ,
const struct kqemu_segment_cache * ksc )
{
sc -> selector = ksc -> selector ;
sc -> flags = ksc -> flags ;
sc -> limit = ksc -> limit ;
sc -> base = ksc -> base ;
}
690
691
692
int kqemu_cpu_exec ( CPUState * env )
{
struct kqemu_cpu_state kcpu_state , * kenv = & kcpu_state ;
693
694
695
696
int ret , cpl , i ;
# ifdef CONFIG_PROFILER
int64_t ti ;
# endif
697
698
699
# ifdef _WIN32
DWORD temp ;
# endif
700
701
702
703
# ifdef CONFIG_PROFILER
ti = profile_getclock ();
# endif
704
705
LOG_INT ( "kqemu: cpu_exec: enter \n " );
LOG_INT_STATE ( env );
706
707
for ( i = 0 ; i < CPU_NB_REGS ; i ++ )
kenv -> regs [ i ] = env -> regs [ i ];
708
709
kenv -> eip = env -> eip ;
kenv -> eflags = env -> eflags ;
710
711
712
713
714
715
for ( i = 0 ; i < 6 ; i ++ )
kqemu_load_seg ( & kenv -> segs [ i ], & env -> segs [ i ]);
kqemu_load_seg ( & kenv -> ldt , & env -> ldt );
kqemu_load_seg ( & kenv -> tr , & env -> tr );
kqemu_load_seg ( & kenv -> gdt , & env -> gdt );
kqemu_load_seg ( & kenv -> idt , & env -> idt );
716
717
718
719
720
kenv -> cr0 = env -> cr [ 0 ];
kenv -> cr2 = env -> cr [ 2 ];
kenv -> cr3 = env -> cr [ 3 ];
kenv -> cr4 = env -> cr [ 4 ];
kenv -> a20_mask = env -> a20_mask ;
721
kenv -> efer = env -> efer ;
722
723
724
725
726
kenv -> tsc_offset = 0 ;
kenv -> star = env -> star ;
kenv -> sysenter_cs = env -> sysenter_cs ;
kenv -> sysenter_esp = env -> sysenter_esp ;
kenv -> sysenter_eip = env -> sysenter_eip ;
727
# ifdef TARGET_X86_64
728
729
730
731
732
kenv -> lstar = env -> lstar ;
kenv -> cstar = env -> cstar ;
kenv -> fmask = env -> fmask ;
kenv -> kernelgsbase = env -> kernelgsbase ;
# endif
733
734
735
736
737
738
739
740
741
742
if ( env -> dr [ 7 ] & 0xff ) {
kenv -> dr7 = env -> dr [ 7 ];
kenv -> dr0 = env -> dr [ 0 ];
kenv -> dr1 = env -> dr [ 1 ];
kenv -> dr2 = env -> dr [ 2 ];
kenv -> dr3 = env -> dr [ 3 ];
} else {
kenv -> dr7 = 0 ;
}
kenv -> dr6 = env -> dr [ 6 ];
743
744
cpl = ( env -> hflags & HF_CPL_MASK );
kenv -> cpl = cpl ;
745
kenv -> nb_pages_to_flush = nb_pages_to_flush ;
746
kenv -> user_only = ( env -> kqemu_enabled == 1 );
747
748
kenv -> nb_ram_pages_to_update = nb_ram_pages_to_update ;
nb_ram_pages_to_update = 0 ;
749
kenv -> nb_modified_ram_pages = nb_modified_ram_pages ;
750
751
752
753
754
755
756
kqemu_reset_modified_ram_pages ();
if ( env -> cpuid_features & CPUID_FXSR )
restore_native_fp_fxrstor ( env );
else
restore_native_fp_frstor ( env );
757
758
# ifdef _WIN32
759
760
761
762
763
764
765
766
if ( DeviceIoControl ( kqemu_fd , KQEMU_EXEC ,
kenv , sizeof ( struct kqemu_cpu_state ),
kenv , sizeof ( struct kqemu_cpu_state ),
& temp , NULL )) {
ret = kenv -> retval ;
} else {
ret = - 1 ;
}
767
768
769
770
# else
ioctl ( kqemu_fd , KQEMU_EXEC , kenv );
ret = kenv -> retval ;
# endif
771
772
773
774
if ( env -> cpuid_features & CPUID_FXSR )
save_native_fp_fxsave ( env );
else
save_native_fp_fsave ( env );
775
776
777
for ( i = 0 ; i < CPU_NB_REGS ; i ++ )
env -> regs [ i ] = kenv -> regs [ i ];
778
779
env -> eip = kenv -> eip ;
env -> eflags = kenv -> eflags ;
780
781
for ( i = 0 ; i < 6 ; i ++ )
kqemu_save_seg ( & env -> segs [ i ], & kenv -> segs [ i ]);
782
cpu_x86_set_cpl ( env , kenv -> cpl );
783
kqemu_save_seg ( & env -> ldt , & kenv -> ldt );
784
785
786
env -> cr [ 0 ] = kenv -> cr0 ;
env -> cr [ 4 ] = kenv -> cr4 ;
env -> cr [ 3 ] = kenv -> cr3 ;
787
788
env -> cr [ 2 ] = kenv -> cr2 ;
env -> dr [ 6 ] = kenv -> dr6 ;
789
# ifdef TARGET_X86_64
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
env -> kernelgsbase = kenv -> kernelgsbase ;
# endif
/* flush pages as indicated by kqemu */
if ( kenv -> nb_pages_to_flush >= KQEMU_FLUSH_ALL ) {
tlb_flush ( env , 1 );
} else {
for ( i = 0 ; i < kenv -> nb_pages_to_flush ; i ++ ) {
tlb_flush_page ( env , pages_to_flush [ i ]);
}
}
nb_pages_to_flush = 0 ;
# ifdef CONFIG_PROFILER
kqemu_time += profile_getclock () - ti ;
kqemu_exec_count ++ ;
# endif
807
808
809
810
811
if ( kenv -> nb_ram_pages_to_update > 0 ) {
cpu_tlb_update_dirty ( env );
}
812
813
814
815
816
817
818
819
if ( kenv -> nb_modified_ram_pages > 0 ) {
for ( i = 0 ; i < kenv -> nb_modified_ram_pages ; i ++ ) {
unsigned long addr ;
addr = modified_ram_pages [ i ];
tb_invalidate_phys_page_range ( addr , addr + TARGET_PAGE_SIZE , 0 );
}
}
820
821
822
823
/* restore the hidden flags */
{
unsigned int new_hflags ;
# ifdef TARGET_X86_64
ths
authored
18 years ago
824
if (( env -> hflags & HF_LMA_MASK ) &&
825
826
827
828
829
830
831
832
833
834
835
( env -> segs [ R_CS ]. flags & DESC_L_MASK )) {
/* long mode */
new_hflags = HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK ;
} else
# endif
{
/* legacy / compatibility case */
new_hflags = ( env -> segs [ R_CS ]. flags & DESC_B_MASK )
>> ( DESC_B_SHIFT - HF_CS32_SHIFT );
new_hflags |= ( env -> segs [ R_SS ]. flags & DESC_B_MASK )
>> ( DESC_B_SHIFT - HF_SS32_SHIFT );
ths
authored
18 years ago
836
if ( ! ( env -> cr [ 0 ] & CR0_PE_MASK ) ||
837
838
839
840
841
842
843
844
845
( env -> eflags & VM_MASK ) ||
! ( env -> hflags & HF_CS32_MASK )) {
/* XXX : try to avoid this test . The problem comes from the
fact that is real mode or vm86 mode we only modify the
' base ' and ' selector ' fields of the segment cache to go
faster . A solution may be to force addseg to one in
translate - i386 . c . */
new_hflags |= HF_ADDSEG_MASK ;
} else {
ths
authored
18 years ago
846
new_hflags |= (( env -> segs [ R_DS ]. base |
847
env -> segs [ R_ES ]. base |
ths
authored
18 years ago
848
env -> segs [ R_SS ]. base ) != 0 ) <<
849
850
851
HF_ADDSEG_SHIFT ;
}
}
ths
authored
18 years ago
852
env -> hflags = ( env -> hflags &
853
854
855
~ ( HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK )) |
new_hflags ;
}
856
857
858
859
860
861
862
/* update FPU flags */
env -> hflags = ( env -> hflags & ~ ( HF_MP_MASK | HF_EM_MASK | HF_TS_MASK )) |
(( env -> cr [ 0 ] << ( HF_MP_SHIFT - 1 )) & ( HF_MP_MASK | HF_EM_MASK | HF_TS_MASK ));
if ( env -> cr [ 4 ] & CR4_OSFXSR_MASK )
env -> hflags |= HF_OSFXSR_MASK ;
else
env -> hflags &= ~ HF_OSFXSR_MASK ;
ths
authored
18 years ago
863
864
LOG_INT ( "kqemu: kqemu_cpu_exec: ret=0x%x \n " , ret );
865
866
867
if ( ret == KQEMU_RET_SYSCALL ) {
/* syscall instruction */
return do_syscall ( env , kenv );
ths
authored
18 years ago
868
} else
869
870
871
872
873
if (( ret & 0xff00 ) == KQEMU_RET_INT ) {
env -> exception_index = ret & 0xff ;
env -> error_code = 0 ;
env -> exception_is_int = 1 ;
env -> exception_next_eip = kenv -> next_eip ;
874
875
876
# ifdef CONFIG_PROFILER
kqemu_ret_int_count ++ ;
# endif
877
878
LOG_INT ( "kqemu: interrupt v=%02x: \n " , env -> exception_index );
LOG_INT_STATE ( env );
879
880
881
882
883
884
return 1 ;
} else if (( ret & 0xff00 ) == KQEMU_RET_EXCEPTION ) {
env -> exception_index = ret & 0xff ;
env -> error_code = kenv -> error_code ;
env -> exception_is_int = 0 ;
env -> exception_next_eip = 0 ;
885
886
887
# ifdef CONFIG_PROFILER
kqemu_ret_excp_count ++ ;
# endif
888
LOG_INT ( "kqemu: exception v=%02x e=%04x: \n " ,
889
env -> exception_index , env -> error_code );
890
LOG_INT_STATE ( env );
891
892
return 1 ;
} else if ( ret == KQEMU_RET_INTR ) {
893
894
895
# ifdef CONFIG_PROFILER
kqemu_ret_intr_count ++ ;
# endif
896
LOG_INT_STATE ( env );
897
return 0 ;
ths
authored
18 years ago
898
} else if ( ret == KQEMU_RET_SOFTMMU ) {
899
900
901
902
903
# ifdef CONFIG_PROFILER
{
unsigned long pc = env -> eip + env -> segs [ R_CS ]. base ;
kqemu_record_pc ( pc );
}
904
# endif
905
LOG_INT_STATE ( env );
906
907
908
909
910
911
912
913
914
return 2 ;
} else {
cpu_dump_state ( env , stderr , fprintf , 0 );
fprintf ( stderr , "Unsupported return value: 0x%x \n " , ret );
exit ( 1 );
}
return 0 ;
}
915
916
void kqemu_cpu_interrupt ( CPUState * env )
{
917
# if defined ( _WIN32 )
ths
authored
18 years ago
918
/* cancelling the I / O request causes KQEMU to finish executing the
919
920
921
922
923
current block and successfully returning . */
CancelIo ( kqemu_fd );
# endif
}
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
/*
QEMU paravirtualization interface . The current interface only
allows to modify the IF and IOPL flags when running in
kqemu .
At this point it is not very satisfactory . I leave it for reference
as it adds little complexity .
*/
# define QPI_COMM_PAGE_PHYS_ADDR 0xff000000
static uint32_t qpi_mem_readb ( void * opaque , target_phys_addr_t addr )
{
return 0 ;
}
static uint32_t qpi_mem_readw ( void * opaque , target_phys_addr_t addr )
{
return 0 ;
}
static void qpi_mem_writeb ( void * opaque , target_phys_addr_t addr , uint32_t val )
{
}
static void qpi_mem_writew ( void * opaque , target_phys_addr_t addr , uint32_t val )
{
}
static uint32_t qpi_mem_readl ( void * opaque , target_phys_addr_t addr )
{
CPUState * env ;
env = cpu_single_env ;
if ( ! env )
return 0 ;
return env -> eflags & ( IF_MASK | IOPL_MASK );
}
/* Note : after writing to this address , the guest code must make sure
it is exiting the current TB . pushf / popf can be used for that
purpose . */
static void qpi_mem_writel ( void * opaque , target_phys_addr_t addr , uint32_t val )
{
CPUState * env ;
env = cpu_single_env ;
if ( ! env )
return ;
env -> eflags = ( env -> eflags & ~ ( IF_MASK | IOPL_MASK )) |
( val & ( IF_MASK | IOPL_MASK ));
}
static CPUReadMemoryFunc * qpi_mem_read [ 3 ] = {
qpi_mem_readb ,
qpi_mem_readw ,
qpi_mem_readl ,
};
static CPUWriteMemoryFunc * qpi_mem_write [ 3 ] = {
qpi_mem_writeb ,
qpi_mem_writew ,
qpi_mem_writel ,
};
static void qpi_init ( void )
{
kqemu_comm_base = 0xff000000 | 1 ;
992
qpi_io_memory = cpu_register_io_memory (
993
994
995
996
997
qpi_mem_read ,
qpi_mem_write , NULL );
cpu_register_physical_memory ( kqemu_comm_base & ~ 0xfff ,
0x1000 , qpi_io_memory );
}
998
# endif