Blame view

vl.c 240 KB
1
/*
2
 * QEMU System Emulator
3
 *
bellard authored
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
23
 */
pbrook authored
24
25
26
27
28
29
30
#include "hw/hw.h"
#include "hw/boards.h"
#include "hw/usb.h"
#include "hw/pcmcia.h"
#include "hw/pc.h"
#include "hw/audiodev.h"
#include "hw/isa.h"
aurel32 authored
31
#include "hw/baum.h"
pbrook authored
32
33
34
35
36
37
38
39
#include "net.h"
#include "console.h"
#include "sysemu.h"
#include "gdbstub.h"
#include "qemu-timer.h"
#include "qemu-char.h"
#include "block.h"
#include "audio/audio.h"
40
41
42
43
44
45
#include <unistd.h>
#include <fcntl.h>
#include <signal.h>
#include <time.h>
#include <errno.h>
46
#include <sys/time.h>
47
#include <zlib.h>
48
49
50

#ifndef _WIN32
#include <sys/times.h>
bellard authored
51
#include <sys/wait.h>
52
53
54
#include <termios.h>
#include <sys/poll.h>
#include <sys/mman.h>
bellard authored
55
56
#include <sys/ioctl.h>
#include <sys/socket.h>
bellard authored
57
#include <netinet/in.h>
bellard authored
58
#include <dirent.h>
bellard authored
59
#include <netdb.h>
60
61
#include <sys/select.h>
#include <arpa/inet.h>
bellard authored
62
63
#ifdef _BSD
#include <sys/stat.h>
64
#if !defined(__APPLE__) && !defined(__OpenBSD__)
bellard authored
65
#include <libutil.h>
66
#endif
67
68
69
#ifdef __OpenBSD__
#include <net/if.h>
#endif
70
71
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
#include <freebsd/stdlib.h>
bellard authored
72
#else
bellard authored
73
#ifndef __sun__
bellard authored
74
75
#include <linux/if.h>
#include <linux/if_tun.h>
bellard authored
76
77
#include <pty.h>
#include <malloc.h>
78
#include <linux/rtc.h>
ths authored
79
80
81
82
83
84

/* For the benefit of older linux systems which don't supply it,
   we use a local copy of hpet.h. */
/* #include <linux/hpet.h> */
#include "hpet.h"
85
#include <linux/ppdev.h>
86
#include <linux/parport.h>
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#else
#include <sys/stat.h>
#include <sys/ethernet.h>
#include <sys/sockio.h>
#include <netinet/arp.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h> // must come after ip.h
#include <netinet/udp.h>
#include <netinet/tcp.h>
#include <net/if.h>
#include <syslog.h>
#include <stropts.h>
101
#endif
bellard authored
102
#endif
bellard authored
103
#endif
104
105
106
#include "qemu_socket.h"
107
108
109
110
#if defined(CONFIG_SLIRP)
#include "libslirp.h"
#endif
111
112
113
114
#if defined(__OpenBSD__)
#include <util.h>
#endif
115
116
117
118
#if defined(CONFIG_VDE)
#include <libvdeplug.h>
#endif
119
#ifdef _WIN32
bellard authored
120
#include <malloc.h>
121
#include <sys/timeb.h>
122
#include <mmsystem.h>
123
124
125
126
#define getopt_long_only getopt_long
#define memalign(align, size) malloc(size)
#endif
bellard authored
127
#ifdef CONFIG_SDL
bellard authored
128
#ifdef __APPLE__
129
#include <SDL/SDL.h>
bellard authored
130
#endif
bellard authored
131
#endif /* CONFIG_SDL */
132
133
134
135
136
137
#ifdef CONFIG_COCOA
#undef main
#define main qemu_main
#endif /* CONFIG_COCOA */
138
#include "disas.h"
bellard authored
139
140
#include "exec-all.h"
141
142
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
143
#define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
144
145
146
147
148
#ifdef __sun__
#define SMBD_COMMAND "/usr/sfw/sbin/smbd"
#else
#define SMBD_COMMAND "/usr/sbin/smbd"
#endif
bellard authored
149
150
//#define DEBUG_UNUSED_IOPORT
151
//#define DEBUG_IOPORT
152
153
154
155
#ifdef TARGET_PPC
#define DEFAULT_RAM_SIZE 144
#else
156
#define DEFAULT_RAM_SIZE 128
157
#endif
158
pbrook authored
159
160
161
/* Max number of USB devices that can be specified on the commandline.  */
#define MAX_USB_CMDLINE 8
162
163
/* XXX: use a two level table to limit memory usage */
#define MAX_IOPORTS 65536
164
165
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
166
const char *bios_name = NULL;
167
void *ioport_opaque[MAX_IOPORTS];
bellard authored
168
169
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
170
/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
bellard authored
171
   to store the VM snapshots */
172
173
DriveInfo drives_table[MAX_DRIVES+1];
int nb_drives;
bellard authored
174
175
/* point to the block driver where the snapshots are managed */
BlockDriverState *bs_snapshots;
176
177
int vga_ram_size;
static DisplayState display_state;
178
int nographic;
balrog authored
179
int curses;
180
const char* keyboard_layout = NULL;
181
int64_t ticks_per_sec;
182
ram_addr_t ram_size;
183
int pit_min_timer_count = 0;
184
int nb_nics;
bellard authored
185
NICInfo nd_table[MAX_NICS];
186
int vm_running;
187
188
static int rtc_utc = 1;
static int rtc_date_offset = -1; /* -1 means no change */
189
int cirrus_vga_enabled = 1;
190
int vmsvga_enabled = 0;
191
192
193
#ifdef TARGET_SPARC
int graphic_width = 1024;
int graphic_height = 768;
blueswir1 authored
194
int graphic_depth = 8;
195
#else
196
197
int graphic_width = 800;
int graphic_height = 600;
198
int graphic_depth = 15;
blueswir1 authored
199
#endif
200
int full_screen = 0;
201
int no_frame = 0;
202
int no_quit = 0;
203
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
204
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
205
206
207
#ifdef TARGET_I386
int win2k_install_hack = 0;
#endif
bellard authored
208
int usb_enabled = 0;
bellard authored
209
static VLANState *first_vlan;
bellard authored
210
int smp_cpus = 1;
211
const char *vnc_display;
212
#if defined(TARGET_SPARC)
213
#define MAX_CPUS 16
214
215
#elif defined(TARGET_I386)
#define MAX_CPUS 255
216
#else
217
#define MAX_CPUS 1
218
#endif
bellard authored
219
int acpi_enabled = 1;
220
int fd_bootchk = 1;
bellard authored
221
int no_reboot = 0;
aurel32 authored
222
int no_shutdown = 0;
223
int cursor_hide = 1;
224
int graphic_rotate = 0;
225
int daemonize = 0;
226
227
const char *option_rom[MAX_OPTION_ROMS];
int nb_option_roms;
228
int semihosting_enabled = 0;
229
int autostart = 1;
230
231
232
#ifdef TARGET_ARM
int old_param = 0;
#endif
233
const char *qemu_name;
234
int alt_grab = 0;
235
236
237
238
#ifdef TARGET_SPARC
unsigned int nb_prom_envs = 0;
const char *prom_envs[MAX_PROM_ENVS];
#endif
239
int nb_drives_opt;
240
241
242
243
struct drive_opt {
    const char *file;
    char opt[1024];
} drives_opt[MAX_DRIVES];
244
245
246
static CPUState *cur_cpu;
static CPUState *next_cpu;
247
static int event_pending = 1;
248
/* Conversion factor from emulated instructions to virtual clock ticks.  */
pbrook authored
249
static int icount_time_shift;
250
/* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
pbrook authored
251
252
253
254
255
#define MAX_ICOUNT_SHIFT 10
/* Compensate for varying guest execution speed.  */
static int64_t qemu_icount_bias;
QEMUTimer *icount_rt_timer;
QEMUTimer *icount_vm_timer;
256
257
258
uint8_t qemu_uuid[16];
259
260
#define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
261
/***********************************************************/
262
263
264
/* x86 ISA bus support */

target_phys_addr_t isa_mem_base = 0;
bellard authored
265
PicState2 *isa_pic;
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;

static uint32_t ioport_read(int index, uint32_t address)
{
    static IOPortReadFunc *default_func[3] = {
        default_ioport_readb,
        default_ioport_readw,
        default_ioport_readl
    };
    IOPortReadFunc *func = ioport_read_table[index][address];
    if (!func)
        func = default_func[index];
    return func(ioport_opaque[address], address);
}

static void ioport_write(int index, uint32_t address, uint32_t data)
{
    static IOPortWriteFunc *default_func[3] = {
        default_ioport_writeb,
        default_ioport_writew,
        default_ioport_writel
    };
    IOPortWriteFunc *func = ioport_write_table[index][address];
    if (!func)
        func = default_func[index];
    func(ioport_opaque[address], address, data);
}
296
static uint32_t default_ioport_readb(void *opaque, uint32_t address)
297
298
{
#ifdef DEBUG_UNUSED_IOPORT
ths authored
299
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
300
#endif
bellard authored
301
    return 0xff;
302
303
}
304
static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
305
306
{
#ifdef DEBUG_UNUSED_IOPORT
ths authored
307
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
308
309
310
311
#endif
}

/* default is to make two byte accesses */
312
static uint32_t default_ioport_readw(void *opaque, uint32_t address)
313
314
{
    uint32_t data;
315
    data = ioport_read(0, address);
316
    address = (address + 1) & (MAX_IOPORTS - 1);
317
    data |= ioport_read(0, address) << 8;
318
319
320
    return data;
}
321
static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
322
{
323
    ioport_write(0, address, data & 0xff);
324
    address = (address + 1) & (MAX_IOPORTS - 1);
325
    ioport_write(0, address, (data >> 8) & 0xff);
326
327
}
328
static uint32_t default_ioport_readl(void *opaque, uint32_t address)
329
{
bellard authored
330
#ifdef DEBUG_UNUSED_IOPORT
ths authored
331
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
bellard authored
332
333
#endif
    return 0xffffffff;
334
335
}
336
static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
337
{
bellard authored
338
#ifdef DEBUG_UNUSED_IOPORT
ths authored
339
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
bellard authored
340
#endif
341
342
}
bellard authored
343
/* size is the word size in byte */
344
int register_ioport_read(int start, int length, int size,
345
                         IOPortReadFunc *func, void *opaque)
bellard authored
346
{
bellard authored
347
    int i, bsize;
bellard authored
348
349
    if (size == 1) {
bellard authored
350
        bsize = 0;
351
    } else if (size == 2) {
bellard authored
352
        bsize = 1;
353
    } else if (size == 4) {
bellard authored
354
        bsize = 2;
355
    } else {
356
        hw_error("register_ioport_read: invalid size");
bellard authored
357
        return -1;
358
359
    }
    for(i = start; i < start + length; i += size) {
bellard authored
360
        ioport_read_table[bsize][i] = func;
361
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
362
            hw_error("register_ioport_read: invalid opaque");
363
364
        ioport_opaque[i] = opaque;
    }
bellard authored
365
366
367
    return 0;
}
bellard authored
368
/* size is the word size in byte */
369
int register_ioport_write(int start, int length, int size,
370
                          IOPortWriteFunc *func, void *opaque)
bellard authored
371
{
bellard authored
372
    int i, bsize;
bellard authored
373
374
    if (size == 1) {
bellard authored
375
        bsize = 0;
376
    } else if (size == 2) {
bellard authored
377
        bsize = 1;
378
    } else if (size == 4) {
bellard authored
379
        bsize = 2;
380
    } else {
381
        hw_error("register_ioport_write: invalid size");
bellard authored
382
        return -1;
383
384
    }
    for(i = start; i < start + length; i += size) {
bellard authored
385
        ioport_write_table[bsize][i] = func;
386
387
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
            hw_error("register_ioport_write: invalid opaque");
388
389
        ioport_opaque[i] = opaque;
    }
bellard authored
390
391
392
    return 0;
}
bellard authored
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
void isa_unassign_ioport(int start, int length)
{
    int i;

    for(i = start; i < start + length; i++) {
        ioport_read_table[0][i] = default_ioport_readb;
        ioport_read_table[1][i] = default_ioport_readw;
        ioport_read_table[2][i] = default_ioport_readl;

        ioport_write_table[0][i] = default_ioport_writeb;
        ioport_write_table[1][i] = default_ioport_writew;
        ioport_write_table[2][i] = default_ioport_writel;
    }
}
bellard authored
408
409
/***********************************************************/
410
void cpu_outb(CPUState *env, int addr, int val)
411
{
412
413
414
#ifdef DEBUG_IOPORT
    if (loglevel & CPU_LOG_IOPORT)
        fprintf(logfile, "outb: %04x %02x\n", addr, val);
415
#endif
416
    ioport_write(0, addr, val);
417
418
419
420
#ifdef USE_KQEMU
    if (env)
        env->last_io_time = cpu_get_time_fast();
#endif
421
422
}
423
void cpu_outw(CPUState *env, int addr, int val)
424
{
425
426
427
#ifdef DEBUG_IOPORT
    if (loglevel & CPU_LOG_IOPORT)
        fprintf(logfile, "outw: %04x %04x\n", addr, val);
428
#endif
429
    ioport_write(1, addr, val);
430
431
432
433
#ifdef USE_KQEMU
    if (env)
        env->last_io_time = cpu_get_time_fast();
#endif
434
435
}
436
void cpu_outl(CPUState *env, int addr, int val)
437
{
438
439
440
441
#ifdef DEBUG_IOPORT
    if (loglevel & CPU_LOG_IOPORT)
        fprintf(logfile, "outl: %04x %08x\n", addr, val);
#endif
442
    ioport_write(2, addr, val);
443
444
445
446
#ifdef USE_KQEMU
    if (env)
        env->last_io_time = cpu_get_time_fast();
#endif
447
448
}
449
int cpu_inb(CPUState *env, int addr)
450
{
451
    int val;
452
    val = ioport_read(0, addr);
453
454
455
456
#ifdef DEBUG_IOPORT
    if (loglevel & CPU_LOG_IOPORT)
        fprintf(logfile, "inb : %04x %02x\n", addr, val);
#endif
457
458
459
460
#ifdef USE_KQEMU
    if (env)
        env->last_io_time = cpu_get_time_fast();
#endif
461
    return val;
462
463
}
464
int cpu_inw(CPUState *env, int addr)
465
{
466
    int val;
467
    val = ioport_read(1, addr);
468
469
470
471
#ifdef DEBUG_IOPORT
    if (loglevel & CPU_LOG_IOPORT)
        fprintf(logfile, "inw : %04x %04x\n", addr, val);
#endif
472
473
474
475
#ifdef USE_KQEMU
    if (env)
        env->last_io_time = cpu_get_time_fast();
#endif
476
    return val;
477
478
}
479
int cpu_inl(CPUState *env, int addr)
480
{
481
    int val;
482
    val = ioport_read(2, addr);
483
484
485
486
#ifdef DEBUG_IOPORT
    if (loglevel & CPU_LOG_IOPORT)
        fprintf(logfile, "inl : %04x %08x\n", addr, val);
#endif
487
488
489
490
#ifdef USE_KQEMU
    if (env)
        env->last_io_time = cpu_get_time_fast();
#endif
491
    return val;
492
493
494
495
496
497
}

/***********************************************************/
void hw_error(const char *fmt, ...)
{
    va_list ap;
bellard authored
498
    CPUState *env;
499
500
501
502
503

    va_start(ap, fmt);
    fprintf(stderr, "qemu: hardware error: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
bellard authored
504
505
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
506
#ifdef TARGET_I386
bellard authored
507
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
508
#else
bellard authored
509
        cpu_dump_state(env, stderr, fprintf, 0);
510
#endif
bellard authored
511
    }
512
513
514
515
    va_end(ap);
    abort();
}
516
/***********************************************************/
bellard authored
517
518
519
520
/* keyboard/mouse */

static QEMUPutKBDEvent *qemu_put_kbd_event;
static void *qemu_put_kbd_event_opaque;
521
522
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
bellard authored
523
524
525
526
527
528
529

void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
{
    qemu_put_kbd_event_opaque = opaque;
    qemu_put_kbd_event = func;
}
530
531
532
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
                                                void *opaque, int absolute,
                                                const char *name)
bellard authored
533
{
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
    QEMUPutMouseEntry *s, *cursor;

    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
    if (!s)
        return NULL;

    s->qemu_put_mouse_event = func;
    s->qemu_put_mouse_event_opaque = opaque;
    s->qemu_put_mouse_event_absolute = absolute;
    s->qemu_put_mouse_event_name = qemu_strdup(name);
    s->next = NULL;

    if (!qemu_put_mouse_event_head) {
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
        return s;
    }

    cursor = qemu_put_mouse_event_head;
    while (cursor->next != NULL)
        cursor = cursor->next;

    cursor->next = s;
    qemu_put_mouse_event_current = s;

    return s;
}

void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
{
    QEMUPutMouseEntry *prev = NULL, *cursor;

    if (!qemu_put_mouse_event_head || entry == NULL)
        return;

    cursor = qemu_put_mouse_event_head;
    while (cursor != NULL && cursor != entry) {
        prev = cursor;
        cursor = cursor->next;
    }

    if (cursor == NULL) // does not exist or list empty
        return;
    else if (prev == NULL) { // entry is head
        qemu_put_mouse_event_head = cursor->next;
        if (qemu_put_mouse_event_current == entry)
            qemu_put_mouse_event_current = cursor->next;
        qemu_free(entry->qemu_put_mouse_event_name);
        qemu_free(entry);
        return;
    }

    prev->next = entry->next;

    if (qemu_put_mouse_event_current == entry)
        qemu_put_mouse_event_current = prev;

    qemu_free(entry->qemu_put_mouse_event_name);
    qemu_free(entry);
bellard authored
592
593
594
595
596
597
598
599
600
601
602
}

void kbd_put_keycode(int keycode)
{
    if (qemu_put_kbd_event) {
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
    }
}

void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
{
603
604
    QEMUPutMouseEvent *mouse_event;
    void *mouse_event_opaque;
605
    int width;
606
607
608
609
610
611
612
613
614
615
616

    if (!qemu_put_mouse_event_current) {
        return;
    }

    mouse_event =
        qemu_put_mouse_event_current->qemu_put_mouse_event;
    mouse_event_opaque =
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;

    if (mouse_event) {
617
618
619
620
        if (graphic_rotate) {
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
                width = 0x7fff;
            else
621
                width = graphic_width - 1;
622
623
624
625
626
            mouse_event(mouse_event_opaque,
                                 width - dy, dx, dz, buttons_state);
        } else
            mouse_event(mouse_event_opaque,
                                 dx, dy, dz, buttons_state);
bellard authored
627
628
629
    }
}
630
631
int kbd_mouse_is_absolute(void)
{
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
    if (!qemu_put_mouse_event_current)
        return 0;

    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
}

void do_info_mice(void)
{
    QEMUPutMouseEntry *cursor;
    int index = 0;

    if (!qemu_put_mouse_event_head) {
        term_printf("No mouse devices connected\n");
        return;
    }

    term_printf("Mouse devices available:\n");
    cursor = qemu_put_mouse_event_head;
    while (cursor != NULL) {
        term_printf("%c Mouse #%d: %s\n",
                    (cursor == qemu_put_mouse_event_current ? '*' : ' '),
                    index, cursor->qemu_put_mouse_event_name);
        index++;
        cursor = cursor->next;
    }
}

void do_mouse_set(int index)
{
    QEMUPutMouseEntry *cursor;
    int i = 0;

    if (!qemu_put_mouse_event_head) {
        term_printf("No mouse devices connected\n");
        return;
    }

    cursor = qemu_put_mouse_event_head;
    while (cursor != NULL && index != i) {
        i++;
        cursor = cursor->next;
    }

    if (cursor != NULL)
        qemu_put_mouse_event_current = cursor;
    else
        term_printf("Mouse at given index not found\n");
679
680
}
681
682
/* compute with 96 bit intermediate result: (a*b)/c */
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
683
{
684
685
686
687
688
689
690
    union {
        uint64_t ll;
        struct {
#ifdef WORDS_BIGENDIAN
            uint32_t high, low;
#else
            uint32_t low, high;
691
#endif
692
693
694
        } l;
    } u, res;
    uint64_t rl, rh;
695
696
697
698
699
700
701
702
    u.ll = a;
    rl = (uint64_t)u.l.low * (uint64_t)b;
    rh = (uint64_t)u.l.high * (uint64_t)b;
    rh += (rl >> 32);
    res.l.high = rh / c;
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
    return res.ll;
703
704
}
705
706
/***********************************************************/
/* real time host monotonic timer */
707
708
#define QEMU_TIMER_BASE 1000000000LL
709
710
#ifdef WIN32
711
712
static int64_t clock_freq;
bellard authored
713
714
static void init_get_clock(void)
bellard authored
715
{
716
717
    LARGE_INTEGER freq;
    int ret;
718
719
720
721
722
723
    ret = QueryPerformanceFrequency(&freq);
    if (ret == 0) {
        fprintf(stderr, "Could not calibrate ticks\n");
        exit(1);
    }
    clock_freq = freq.QuadPart;
bellard authored
724
725
}
726
static int64_t get_clock(void)
727
{
728
729
730
    LARGE_INTEGER ti;
    QueryPerformanceCounter(&ti);
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
731
732
}
733
#else
bellard authored
734
735
736
737
static int use_rt_clock;

static void init_get_clock(void)
bellard authored
738
{
739
740
741
742
743
744
745
746
747
    use_rt_clock = 0;
#if defined(__linux__)
    {
        struct timespec ts;
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
            use_rt_clock = 1;
        }
    }
#endif
bellard authored
748
749
}
750
static int64_t get_clock(void)
751
{
752
753
754
755
756
#if defined(__linux__)
    if (use_rt_clock) {
        struct timespec ts;
        clock_gettime(CLOCK_MONOTONIC, &ts);
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
757
    } else
758
#endif
759
760
761
762
763
764
765
    {
        /* XXX: using gettimeofday leads to problems if the date
           changes, so it should be avoided. */
        struct timeval tv;
        gettimeofday(&tv, NULL);
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
    }
766
}
767
768
#endif
pbrook authored
769
770
771
772
773
774
775
776
777
778
779
780
781
782
/* Return the virtual CPU time, based on the instruction counter.  */
static int64_t cpu_get_icount(void)
{
    int64_t icount;
    CPUState *env = cpu_single_env;;
    icount = qemu_icount;
    if (env) {
        if (!can_do_io(env))
            fprintf(stderr, "Bad clock read\n");
        icount -= (env->icount_decr.u16.low + env->icount_extra);
    }
    return qemu_icount_bias + (icount << icount_time_shift);
}
783
784
785
/***********************************************************/
/* guest cycle counter */
786
static int64_t cpu_ticks_prev;
787
static int64_t cpu_ticks_offset;
788
static int64_t cpu_clock_offset;
789
static int cpu_ticks_enabled;
790
791
792
/* return the host CPU cycle counter and handle stop/restart */
int64_t cpu_get_ticks(void)
793
{
pbrook authored
794
795
796
    if (use_icount) {
        return cpu_get_icount();
    }
797
798
799
    if (!cpu_ticks_enabled) {
        return cpu_ticks_offset;
    } else {
800
801
802
803
804
805
806
807
808
        int64_t ticks;
        ticks = cpu_get_real_ticks();
        if (cpu_ticks_prev > ticks) {
            /* Note: non increasing ticks may happen if the host uses
               software suspend */
            cpu_ticks_offset += cpu_ticks_prev - ticks;
        }
        cpu_ticks_prev = ticks;
        return ticks + cpu_ticks_offset;
809
    }
810
811
}
812
813
814
815
816
817
818
819
820
821
822
823
/* return the host CPU monotonic timer and handle stop/restart */
static int64_t cpu_get_clock(void)
{
    int64_t ti;
    if (!cpu_ticks_enabled) {
        return cpu_clock_offset;
    } else {
        ti = get_clock();
        return ti + cpu_clock_offset;
    }
}
824
825
826
/* enable cpu_get_ticks() */
void cpu_enable_ticks(void)
{
827
828
    if (!cpu_ticks_enabled) {
        cpu_ticks_offset -= cpu_get_real_ticks();
829
        cpu_clock_offset -= get_clock();
830
831
        cpu_ticks_enabled = 1;
    }
832
833
834
835
836
837
}

/* disable cpu_get_ticks() : the clock is stopped. You must not call
   cpu_get_ticks() after that.  */
void cpu_disable_ticks(void)
{
838
839
    if (cpu_ticks_enabled) {
        cpu_ticks_offset = cpu_get_ticks();
840
        cpu_clock_offset = cpu_get_clock();
841
842
        cpu_ticks_enabled = 0;
    }
843
844
}
845
846
/***********************************************************/
/* timers */
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
#define QEMU_TIMER_REALTIME 0
#define QEMU_TIMER_VIRTUAL  1

struct QEMUClock {
    int type;
    /* XXX: add frequency */
};

struct QEMUTimer {
    QEMUClock *clock;
    int64_t expire_time;
    QEMUTimerCB *cb;
    void *opaque;
    struct QEMUTimer *next;
};
864
865
struct qemu_alarm_timer {
    char const *name;
866
    unsigned int flags;
867
868
869

    int (*start)(struct qemu_alarm_timer *t);
    void (*stop)(struct qemu_alarm_timer *t);
870
    void (*rearm)(struct qemu_alarm_timer *t);
871
872
873
    void *priv;
};
874
#define ALARM_FLAG_DYNTICKS  0x1
875
#define ALARM_FLAG_EXPIRED   0x2
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
{
    return t->flags & ALARM_FLAG_DYNTICKS;
}

static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
{
    if (!alarm_has_dynticks(t))
        return;

    t->rearm(t);
}

/* TODO: MIN_TIMER_REARM_US should be optimized */
#define MIN_TIMER_REARM_US 250
893
static struct qemu_alarm_timer *alarm_timer;
894
bellard authored
895
#ifdef _WIN32
896
897
898
899
900
901
902
903
904

struct qemu_alarm_win32 {
    MMRESULT timerId;
    HANDLE host_alarm;
    unsigned int period;
} alarm_win32_data = {0, NULL, -1};

static int win32_start_timer(struct qemu_alarm_timer *t);
static void win32_stop_timer(struct qemu_alarm_timer *t);
905
static void win32_rearm_timer(struct qemu_alarm_timer *t);
906
bellard authored
907
#else
908
909
910
911

static int unix_start_timer(struct qemu_alarm_timer *t);
static void unix_stop_timer(struct qemu_alarm_timer *t);
912
913
#ifdef __linux__
914
915
916
917
static int dynticks_start_timer(struct qemu_alarm_timer *t);
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
918
919
920
static int hpet_start_timer(struct qemu_alarm_timer *t);
static void hpet_stop_timer(struct qemu_alarm_timer *t);
921
922
923
static int rtc_start_timer(struct qemu_alarm_timer *t);
static void rtc_stop_timer(struct qemu_alarm_timer *t);
924
#endif /* __linux__ */
925
926
927
#endif /* _WIN32 */
pbrook authored
928
/* Correlation between real and virtual time is always going to be
929
   fairly approximate, so ignore small variation.
pbrook authored
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
   When the guest is idle real and virtual time will be aligned in
   the IO wait loop.  */
#define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)

static void icount_adjust(void)
{
    int64_t cur_time;
    int64_t cur_icount;
    int64_t delta;
    static int64_t last_delta;
    /* If the VM is not running, then do nothing.  */
    if (!vm_running)
        return;

    cur_time = cpu_get_clock();
    cur_icount = qemu_get_clock(vm_clock);
    delta = cur_icount - cur_time;
    /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
    if (delta > 0
        && last_delta + ICOUNT_WOBBLE < delta * 2
        && icount_time_shift > 0) {
        /* The guest is getting too far ahead.  Slow time down.  */
        icount_time_shift--;
    }
    if (delta < 0
        && last_delta - ICOUNT_WOBBLE > delta * 2
        && icount_time_shift < MAX_ICOUNT_SHIFT) {
        /* The guest is getting too far behind.  Speed time up.  */
        icount_time_shift++;
    }
    last_delta = delta;
    qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
}

static void icount_adjust_rt(void * opaque)
{
    qemu_mod_timer(icount_rt_timer,
                   qemu_get_clock(rt_clock) + 1000);
    icount_adjust();
}

static void icount_adjust_vm(void * opaque)
{
    qemu_mod_timer(icount_vm_timer,
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
    icount_adjust();
}

static void init_icount_adjust(void)
{
    /* Have both realtime and virtual time triggers for speed adjustment.
       The realtime trigger catches emulated time passing too slowly,
       the virtual time trigger catches emulated time passing too fast.
       Realtime triggers occur even when idle, so use them less frequently
       than VM triggers.  */
    icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
    qemu_mod_timer(icount_rt_timer,
                   qemu_get_clock(rt_clock) + 1000);
    icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
    qemu_mod_timer(icount_vm_timer,
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
}
993
static struct qemu_alarm_timer alarm_timers[] = {
994
#ifndef _WIN32
995
#ifdef __linux__
996
997
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
998
    /* HPET - if available - is preferred */
999
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1000
    /* ...otherwise try RTC */
1001
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1002
#endif
1003
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1004
#else
1005
1006
1007
1008
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
    {"win32", 0, win32_start_timer,
     win32_stop_timer, NULL, &alarm_win32_data},
1009
1010
1011
1012
#endif
    {NULL, }
};
1013
static void show_available_alarms(void)
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
{
    int i;

    printf("Available alarm timers, in order of precedence:\n");
    for (i = 0; alarm_timers[i].name; i++)
        printf("%s\n", alarm_timers[i].name);
}

static void configure_alarms(char const *opt)
{
    int i;
    int cur = 0;
    int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
    char *arg;
    char *name;
pbrook authored
1029
    struct qemu_alarm_timer tmp;
1030
1031
    if (!strcmp(opt, "?")) {
1032
1033
1034
1035
1036
1037
1038
1039
1040
        show_available_alarms();
        exit(0);
    }

    arg = strdup(opt);

    /* Reorder the array */
    name = strtok(arg, ",");
    while (name) {
1041
        for (i = 0; i < count && alarm_timers[i].name; i++) {
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
            if (!strcmp(alarm_timers[i].name, name))
                break;
        }

        if (i == count) {
            fprintf(stderr, "Unknown clock %s\n", name);
            goto next;
        }

        if (i < cur)
            /* Ignore */
            goto next;

	/* Swap */
        tmp = alarm_timers[i];
        alarm_timers[i] = alarm_timers[cur];
        alarm_timers[cur] = tmp;

        cur++;
next:
        name = strtok(NULL, ",");
    }

    free(arg);

    if (cur) {
pbrook authored
1068
        /* Disable remaining timers */
1069
1070
        for (i = cur; i < count; i++)
            alarm_timers[i].name = NULL;
1071
1072
1073
    } else {
        show_available_alarms();
        exit(1);
1074
1075
1076
    }
}
1077
1078
1079
1080
1081
QEMUClock *rt_clock;
QEMUClock *vm_clock;

static QEMUTimer *active_timers[2];
1082
static QEMUClock *qemu_new_clock(int type)
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
{
    QEMUClock *clock;
    clock = qemu_mallocz(sizeof(QEMUClock));
    if (!clock)
        return NULL;
    clock->type = type;
    return clock;
}

QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
{
    QEMUTimer *ts;

    ts = qemu_mallocz(sizeof(QEMUTimer));
    ts->clock = clock;
    ts->cb = cb;
    ts->opaque = opaque;
    return ts;
}

void qemu_free_timer(QEMUTimer *ts)
{
    qemu_free(ts);
}

/* stop a timer, but do not dealloc it */
void qemu_del_timer(QEMUTimer *ts)
{
    QEMUTimer **pt, *t;

    /* NOTE: this code must be signal safe because
       qemu_timer_expired() can be called from a signal. */
    pt = &active_timers[ts->clock->type];
    for(;;) {
        t = *pt;
        if (!t)
            break;
        if (t == ts) {
            *pt = t->next;
            break;
        }
        pt = &t->next;
    }
}

/* modify the current timer so that it will be fired when current_time
   >= expire_time. The corresponding callback will be called. */
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
{
    QEMUTimer **pt, *t;

    qemu_del_timer(ts);

    /* add the timer in the sorted list */
    /* NOTE: this code must be signal safe because
       qemu_timer_expired() can be called from a signal. */
    pt = &active_timers[ts->clock->type];
    for(;;) {
        t = *pt;
        if (!t)
            break;
1144
        if (t->expire_time > expire_time)
1145
1146
1147
1148
1149
1150
            break;
        pt = &t->next;
    }
    ts->expire_time = expire_time;
    ts->next = *pt;
    *pt = ts;
1151
1152

    /* Rearm if necessary  */
pbrook authored
1153
1154
1155
1156
1157
1158
1159
1160
1161
    if (pt == &active_timers[ts->clock->type]) {
        if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
            qemu_rearm_alarm_timer(alarm_timer);
        }
        /* Interrupt execution to force deadline recalculation.  */
        if (use_icount && cpu_single_env) {
            cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
        }
    }
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
}

int qemu_timer_pending(QEMUTimer *ts)
{
    QEMUTimer *t;
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
        if (t == ts)
            return 1;
    }
    return 0;
}

static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
{
    if (!timer_head)
        return 0;
    return (timer_head->expire_time <= current_time);
}

static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
{
    QEMUTimer *ts;
1184
1185
1186
    for(;;) {
        ts = *ptimer_head;
1187
        if (!ts || ts->expire_time > current_time)
1188
1189
1190
1191
            break;
        /* remove timer from the list before calling the callback */
        *ptimer_head = ts->next;
        ts->next = NULL;
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
        /* run the callback (the timer list can be modified) */
        ts->cb(ts->opaque);
    }
}

int64_t qemu_get_clock(QEMUClock *clock)
{
    switch(clock->type) {
    case QEMU_TIMER_REALTIME:
1202
        return get_clock() / 1000000;
1203
1204
    default:
    case QEMU_TIMER_VIRTUAL:
pbrook authored
1205
1206
1207
1208
1209
        if (use_icount) {
            return cpu_get_icount();
        } else {
            return cpu_get_clock();
        }
1210
1211
1212
    }
}
1213
1214
1215
1216
1217
1218
1219
1220
static void init_timers(void)
{
    init_get_clock();
    ticks_per_sec = QEMU_TIMER_BASE;
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
}
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
/* save a timer */
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
{
    uint64_t expire_time;

    if (qemu_timer_pending(ts)) {
        expire_time = ts->expire_time;
    } else {
        expire_time = -1;
    }
    qemu_put_be64(f, expire_time);
}

void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
{
    uint64_t expire_time;

    expire_time = qemu_get_be64(f);
    if (expire_time != -1) {
        qemu_mod_timer(ts, expire_time);
    } else {
        qemu_del_timer(ts);
    }
}

static void timer_save(QEMUFile *f, void *opaque)
{
    if (cpu_ticks_enabled) {
        hw_error("cannot save state if virtual timers are running");
    }
1251
1252
1253
    qemu_put_be64(f, cpu_ticks_offset);
    qemu_put_be64(f, ticks_per_sec);
    qemu_put_be64(f, cpu_clock_offset);
1254
1255
1256
1257
}

static int timer_load(QEMUFile *f, void *opaque, int version_id)
{
1258
    if (version_id != 1 && version_id != 2)
1259
1260
1261
1262
        return -EINVAL;
    if (cpu_ticks_enabled) {
        return -EINVAL;
    }
1263
1264
    cpu_ticks_offset=qemu_get_be64(f);
    ticks_per_sec=qemu_get_be64(f);
1265
    if (version_id == 2) {
1266
        cpu_clock_offset=qemu_get_be64(f);
1267
    }
1268
1269
1270
    return 0;
}
1271
#ifdef _WIN32
1272
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1273
1274
                                 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
#else
1275
static void host_alarm_handler(int host_signum)
1276
#endif
1277
{
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
#if 0
#define DISP_FREQ 1000
    {
        static int64_t delta_min = INT64_MAX;
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
        static int count;
        ti = qemu_get_clock(vm_clock);
        if (last_clock != 0) {
            delta = ti - last_clock;
            if (delta < delta_min)
                delta_min = delta;
            if (delta > delta_max)
                delta_max = delta;
            delta_cum += delta;
            if (++count == DISP_FREQ) {
bellard authored
1293
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
                       muldiv64(delta_min, 1000000, ticks_per_sec),
                       muldiv64(delta_max, 1000000, ticks_per_sec),
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
                count = 0;
                delta_min = INT64_MAX;
                delta_max = 0;
                delta_cum = 0;
            }
        }
        last_clock = ti;
    }
#endif
1307
    if (alarm_has_dynticks(alarm_timer) ||
pbrook authored
1308
1309
1310
        (!use_icount &&
            qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
                               qemu_get_clock(vm_clock))) ||
1311
1312
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
                           qemu_get_clock(rt_clock))) {
1313
#ifdef _WIN32
1314
1315
        struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
        SetEvent(data->host_alarm);
1316
#endif
1317
1318
        CPUState *env = next_cpu;
1319
1320
        alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1321
1322
1323
        if (env) {
            /* stop the currently executing cpu because a timer occured */
            cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1324
#ifdef USE_KQEMU
1325
1326
1327
            if (env->kqemu_enabled) {
                kqemu_cpu_interrupt(env);
            }
1328
#endif
1329
        }
1330
        event_pending = 1;
1331
1332
1333
    }
}
pbrook authored
1334
static int64_t qemu_next_deadline(void)
1335
{
pbrook authored
1336
    int64_t delta;
1337
1338

    if (active_timers[QEMU_TIMER_VIRTUAL]) {
pbrook authored
1339
1340
1341
1342
1343
        delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
                     qemu_get_clock(vm_clock);
    } else {
        /* To avoid problems with overflow limit this to 2^32.  */
        delta = INT32_MAX;
1344
1345
    }
pbrook authored
1346
1347
    if (delta < 0)
        delta = 0;
1348
pbrook authored
1349
1350
1351
    return delta;
}
1352
#if defined(__linux__) || defined(_WIN32)
pbrook authored
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
static uint64_t qemu_next_deadline_dyntick(void)
{
    int64_t delta;
    int64_t rtdelta;

    if (use_icount)
        delta = INT32_MAX;
    else
        delta = (qemu_next_deadline() + 999) / 1000;

    if (active_timers[QEMU_TIMER_REALTIME]) {
        rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
                 qemu_get_clock(rt_clock))*1000;
        if (rtdelta < delta)
            delta = rtdelta;
    }

    if (delta < MIN_TIMER_REARM_US)
        delta = MIN_TIMER_REARM_US;

    return delta;
1374
}
1375
#endif
1376
1377
1378
#ifndef _WIN32
bellard authored
1379
1380
#if defined(__linux__)
1381
1382
#define RTC_FREQ 1024
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
static void enable_sigio_timer(int fd)
{
    struct sigaction act;

    /* timer signal */
    sigfillset(&act.sa_mask);
    act.sa_flags = 0;
    act.sa_handler = host_alarm_handler;

    sigaction(SIGIO, &act, NULL);
    fcntl(fd, F_SETFL, O_ASYNC);
    fcntl(fd, F_SETOWN, getpid());
}
bellard authored
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
static int hpet_start_timer(struct qemu_alarm_timer *t)
{
    struct hpet_info info;
    int r, fd;

    fd = open("/dev/hpet", O_RDONLY);
    if (fd < 0)
        return -1;

    /* Set frequency */
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
    if (r < 0) {
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
                "error, but for better emulation accuracy type:\n"
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
        goto fail;
    }

    /* Check capabilities */
    r = ioctl(fd, HPET_INFO, &info);
    if (r < 0)
        goto fail;

    /* Enable periodic mode */
    r = ioctl(fd, HPET_EPI, 0);
    if (info.hi_flags && (r < 0))
        goto fail;

    /* Enable interrupt */
    r = ioctl(fd, HPET_IE_ON, 0);
    if (r < 0)
        goto fail;

    enable_sigio_timer(fd);
1431
    t->priv = (void *)(long)fd;
1432
1433
1434
1435
1436
1437
1438
1439
1440

    return 0;
fail:
    close(fd);
    return -1;
}

static void hpet_stop_timer(struct qemu_alarm_timer *t)
{
1441
    int fd = (long)t->priv;
1442
1443
1444
1445

    close(fd);
}
1446
static int rtc_start_timer(struct qemu_alarm_timer *t)
1447
{
1448
    int rtc_fd;
1449
    unsigned long current_rtc_freq = 0;
1450
1451
    TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1452
1453
    if (rtc_fd < 0)
        return -1;
1454
1455
1456
    ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
    if (current_rtc_freq != RTC_FREQ &&
        ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
        goto fail;
    }
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
    fail:
        close(rtc_fd);
        return -1;
    }
1467
1468
1469

    enable_sigio_timer(rtc_fd);
1470
    t->priv = (void *)(long)rtc_fd;
1471
1472
1473
1474
    return 0;
}
1475
static void rtc_stop_timer(struct qemu_alarm_timer *t)
bellard authored
1476
{
1477
    int rtc_fd = (long)t->priv;
1478
1479

    close(rtc_fd);
bellard authored
1480
1481
}
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
static int dynticks_start_timer(struct qemu_alarm_timer *t)
{
    struct sigevent ev;
    timer_t host_timer;
    struct sigaction act;

    sigfillset(&act.sa_mask);
    act.sa_flags = 0;
    act.sa_handler = host_alarm_handler;

    sigaction(SIGALRM, &act, NULL);

    ev.sigev_value.sival_int = 0;
    ev.sigev_notify = SIGEV_SIGNAL;
    ev.sigev_signo = SIGALRM;

    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
        perror("timer_create");

        /* disable dynticks */
        fprintf(stderr, "Dynamic Ticks disabled\n");

        return -1;
    }

    t->priv = (void *)host_timer;

    return 0;
}

static void dynticks_stop_timer(struct qemu_alarm_timer *t)
{
    timer_t host_timer = (timer_t)t->priv;

    timer_delete(host_timer);
}

static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
{
    timer_t host_timer = (timer_t)t->priv;
    struct itimerspec timeout;
    int64_t nearest_delta_us = INT64_MAX;
    int64_t current_us;

    if (!active_timers[QEMU_TIMER_REALTIME] &&
                !active_timers[QEMU_TIMER_VIRTUAL])
1528
        return;
1529
pbrook authored
1530
    nearest_delta_us = qemu_next_deadline_dyntick();
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552

    /* check whether a timer is already running */
    if (timer_gettime(host_timer, &timeout)) {
        perror("gettime");
        fprintf(stderr, "Internal timer error: aborting\n");
        exit(1);
    }
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
    if (current_us && current_us <= nearest_delta_us)
        return;

    timeout.it_interval.tv_sec = 0;
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
        perror("settime");
        fprintf(stderr, "Internal timer error: aborting\n");
        exit(1);
    }
}
1553
#endif /* defined(__linux__) */
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
static int unix_start_timer(struct qemu_alarm_timer *t)
{
    struct sigaction act;
    struct itimerval itv;
    int err;

    /* timer signal */
    sigfillset(&act.sa_mask);
    act.sa_flags = 0;
    act.sa_handler = host_alarm_handler;

    sigaction(SIGALRM, &act, NULL);

    itv.it_interval.tv_sec = 0;
    /* for i386 kernel 2.6 to get 1 ms */
    itv.it_interval.tv_usec = 999;
    itv.it_value.tv_sec = 0;
    itv.it_value.tv_usec = 10 * 1000;

    err = setitimer(ITIMER_REAL, &itv, NULL);
    if (err)
        return -1;

    return 0;
}

static void unix_stop_timer(struct qemu_alarm_timer *t)
{
    struct itimerval itv;

    memset(&itv, 0, sizeof(itv));
    setitimer(ITIMER_REAL, &itv, NULL);
}
bellard authored
1589
#endif /* !defined(_WIN32) */
1590
1591
1592
1593
1594
1595
1596
#ifdef _WIN32

static int win32_start_timer(struct qemu_alarm_timer *t)
{
    TIMECAPS tc;
    struct qemu_alarm_win32 *data = t->priv;
1597
    UINT flags;
1598
1599
1600
1601

    data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
    if (!data->host_alarm) {
        perror("Failed CreateEvent");
1602
        return -1;
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
    }

    memset(&tc, 0, sizeof(tc));
    timeGetDevCaps(&tc, sizeof(tc));

    if (data->period < tc.wPeriodMin)
        data->period = tc.wPeriodMin;

    timeBeginPeriod(data->period);
1613
1614
1615
1616
1617
1618
    flags = TIME_CALLBACK_FUNCTION;
    if (alarm_has_dynticks(t))
        flags |= TIME_ONESHOT;
    else
        flags |= TIME_PERIODIC;
1619
1620
1621
1622
    data->timerId = timeSetEvent(1,         // interval (ms)
                        data->period,       // resolution
                        host_alarm_handler, // function
                        (DWORD)t,           // parameter
1623
                        flags);
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647

    if (!data->timerId) {
        perror("Failed to initialize win32 alarm timer");

        timeEndPeriod(data->period);
        CloseHandle(data->host_alarm);
        return -1;
    }

    qemu_add_wait_object(data->host_alarm, NULL, NULL);

    return 0;
}

static void win32_stop_timer(struct qemu_alarm_timer *t)
{
    struct qemu_alarm_win32 *data = t->priv;

    timeKillEvent(data->timerId);
    timeEndPeriod(data->period);

    CloseHandle(data->host_alarm);
}
1648
1649
1650
1651
1652
1653
1654
static void win32_rearm_timer(struct qemu_alarm_timer *t)
{
    struct qemu_alarm_win32 *data = t->priv;
    uint64_t nearest_delta_us;

    if (!active_timers[QEMU_TIMER_REALTIME] &&
                !active_timers[QEMU_TIMER_VIRTUAL])
1655
        return;
1656
pbrook authored
1657
    nearest_delta_us = qemu_next_deadline_dyntick();
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
    nearest_delta_us /= 1000;

    timeKillEvent(data->timerId);

    data->timerId = timeSetEvent(1,
                        data->period,
                        host_alarm_handler,
                        (DWORD)t,
                        TIME_ONESHOT | TIME_PERIODIC);

    if (!data->timerId) {
        perror("Failed to re-arm win32 alarm timer");

        timeEndPeriod(data->period);
        CloseHandle(data->host_alarm);
        exit(1);
    }
}
1677
1678
#endif /* _WIN32 */
1679
static void init_timer_alarm(void)
1680
{
1681
1682
1683
1684
1685
1686
1687
1688
1689
    struct qemu_alarm_timer *t;
    int i, err = -1;

    for (i = 0; alarm_timers[i].name; i++) {
        t = &alarm_timers[i];

        err = t->start(t);
        if (!err)
            break;
1690
    }
1691
1692
1693
1694
1695
    if (err) {
        fprintf(stderr, "Unable to find any suitable alarm timer.\n");
        fprintf(stderr, "Terminating\n");
        exit(1);
1696
    }
1697
1698

    alarm_timer = t;
1699
1700
}
1701
static void quit_timers(void)
bellard authored
1702
{
1703
1704
    alarm_timer->stop(alarm_timer);
    alarm_timer = NULL;
bellard authored
1705
1706
}
1707
/***********************************************************/
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
/* host time/date access */
void qemu_get_timedate(struct tm *tm, int offset)
{
    time_t ti;
    struct tm *ret;

    time(&ti);
    ti += offset;
    if (rtc_date_offset == -1) {
        if (rtc_utc)
            ret = gmtime(&ti);
        else
            ret = localtime(&ti);
    } else {
        ti -= rtc_date_offset;
        ret = gmtime(&ti);
    }

    memcpy(tm, ret, sizeof(struct tm));
}

int qemu_timedate_diff(struct tm *tm)
{
    time_t seconds;

    if (rtc_date_offset == -1)
        if (rtc_utc)
            seconds = mktimegm(tm);
        else
            seconds = mktime(tm);
    else
        seconds = mktimegm(tm) + rtc_date_offset;

    return seconds - time(NULL);
}

/***********************************************************/
bellard authored
1745
/* character device */
1746
1747
1748
1749
1750
1751
1752
1753
static void qemu_chr_event(CharDriverState *s, int event)
{
    if (!s->chr_event)
        return;
    s->chr_event(s->handler_opaque, event);
}
1754
1755
1756
static void qemu_chr_reset_bh(void *opaque)
{
    CharDriverState *s = opaque;
1757
    qemu_chr_event(s, CHR_EVENT_RESET);
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
    qemu_bh_delete(s->bh);
    s->bh = NULL;
}

void qemu_chr_reset(CharDriverState *s)
{
    if (s->bh == NULL) {
	s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
	qemu_bh_schedule(s->bh);
    }
}
bellard authored
1770
1771
1772
1773
int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
{
    return s->chr_write(s, buf, len);
}
1774
1775
int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
bellard authored
1776
{
1777
1778
1779
    if (!s->chr_ioctl)
        return -ENOTSUP;
    return s->chr_ioctl(s, cmd, arg);
bellard authored
1780
1781
}
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
int qemu_chr_can_read(CharDriverState *s)
{
    if (!s->chr_can_read)
        return 0;
    return s->chr_can_read(s->handler_opaque);
}

void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
{
    s->chr_read(s->handler_opaque, buf, len);
}
1794
1795
1796
1797
1798
void qemu_chr_accept_input(CharDriverState *s)
{
    if (s->chr_accept_input)
        s->chr_accept_input(s);
}
1799
bellard authored
1800
void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1801
{
bellard authored
1802
1803
1804
1805
    char buf[4096];
    va_list ap;
    va_start(ap, fmt);
    vsnprintf(buf, sizeof(buf), fmt, ap);
1806
    qemu_chr_write(s, (uint8_t *)buf, strlen(buf));
bellard authored
1807
    va_end(ap);
1808
1809
}
bellard authored
1810
1811
1812
1813
1814
1815
void qemu_chr_send_event(CharDriverState *s, int event)
{
    if (s->chr_send_event)
        s->chr_send_event(s, event);
}
1816
1817
void qemu_chr_add_handlers(CharDriverState *s,
                           IOCanRWHandler *fd_can_read,
1818
1819
1820
                           IOReadHandler *fd_read,
                           IOEventHandler *fd_event,
                           void *opaque)
bellard authored
1821
{
1822
1823
1824
1825
1826
1827
    s->chr_can_read = fd_can_read;
    s->chr_read = fd_read;
    s->chr_event = fd_event;
    s->handler_opaque = opaque;
    if (s->chr_update_read_handler)
        s->chr_update_read_handler(s);
bellard authored
1828
}
1829
bellard authored
1830
static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1831
{
bellard authored
1832
1833
1834
    return len;
}
1835
static CharDriverState *qemu_chr_open_null(void)
bellard authored
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
{
    CharDriverState *chr;

    chr = qemu_mallocz(sizeof(CharDriverState));
    if (!chr)
        return NULL;
    chr->chr_write = null_chr_write;
    return chr;
}
1846
1847
1848
/* MUX driver for serial I/O splitting */
static int term_timestamps;
static int64_t term_timestamps_start;
1849
#define MAX_MUX 4
1850
1851
#define MUX_BUFFER_SIZE 32	/* Must be a power of 2.  */
#define MUX_BUFFER_MASK (MUX_BUFFER_SIZE - 1)
1852
1853
1854
1855
1856
1857
typedef struct {
    IOCanRWHandler *chr_can_read[MAX_MUX];
    IOReadHandler *chr_read[MAX_MUX];
    IOEventHandler *chr_event[MAX_MUX];
    void *ext_opaque[MAX_MUX];
    CharDriverState *drv;
1858
1859
1860
    unsigned char buffer[MUX_BUFFER_SIZE];
    int prod;
    int cons;
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
    int mux_cnt;
    int term_got_escape;
    int max_size;
} MuxDriver;


static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
{
    MuxDriver *d = chr->opaque;
    int ret;
    if (!term_timestamps) {
        ret = d->drv->chr_write(d->drv, buf, len);
    } else {
        int i;

        ret = 0;
        for(i = 0; i < len; i++) {
            ret += d->drv->chr_write(d->drv, buf+i, 1);
            if (buf[i] == '\n') {
                char buf1[64];
                int64_t ti;
                int secs;

                ti = get_clock();
                if (term_timestamps_start == -1)
                    term_timestamps_start = ti;
                ti -= term_timestamps_start;
                secs = ti / 1000000000;
                snprintf(buf1, sizeof(buf1),
                         "[%02d:%02d:%02d.%03d] ",
                         secs / 3600,
                         (secs / 60) % 60,
                         secs % 60,
                         (int)((ti / 1000000) % 1000));
1895
                d->drv->chr_write(d->drv, (uint8_t *)buf1, strlen(buf1));
1896
1897
1898
1899
1900
1901
            }
        }
    }
    return ret;
}
1902
static const char * const mux_help[] = {
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
    "% h    print this help\n\r",
    "% x    exit emulator\n\r",
    "% s    save disk data back to file (if -snapshot)\n\r",
    "% t    toggle console timestamps\n\r"
    "% b    send break (magic sysrq)\n\r",
    "% c    switch between console and monitor\n\r",
    "% %  sends %\n\r",
    NULL
};

static int term_escape_char = 0x01; /* ctrl-a is used for escape */
static void mux_print_help(CharDriverState *chr)
{
    int i, j;
    char ebuf[15] = "Escape-Char";
    char cbuf[50] = "\n\r";

    if (term_escape_char > 0 && term_escape_char < 26) {
1921
1922
        snprintf(cbuf, sizeof(cbuf), "\n\r");
        snprintf(ebuf, sizeof(ebuf), "C-%c", term_escape_char - 1 + 'a');
1923
    } else {
1924
1925
1926
        snprintf(cbuf, sizeof(cbuf),
                 "\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r",
                 term_escape_char);
1927
    }
1928
    chr->chr_write(chr, (uint8_t *)cbuf, strlen(cbuf));
1929
1930
1931
    for (i = 0; mux_help[i] != NULL; i++) {
        for (j=0; mux_help[i][j] != '\0'; j++) {
            if (mux_help[i][j] == '%')
1932
                chr->chr_write(chr, (uint8_t *)ebuf, strlen(ebuf));
1933
            else
1934
                chr->chr_write(chr, (uint8_t *)&mux_help[i][j], 1);
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
        }
    }
}

static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
{
    if (d->term_got_escape) {
        d->term_got_escape = 0;
        if (ch == term_escape_char)
            goto send_char;
        switch(ch) {
        case '?':
        case 'h':
            mux_print_help(chr);
            break;
        case 'x':
            {
1952
                 const char *term =  "QEMU: Terminated\n\r";
1953
                 chr->chr_write(chr,(uint8_t *)term,strlen(term));
1954
1955
1956
1957
1958
1959
                 exit(0);
                 break;
            }
        case 's':
            {
                int i;
1960
1961
                for (i = 0; i < nb_drives; i++) {
                        bdrv_commit(drives_table[i].bdrv);
1962
1963
1964
1965
                }
            }
            break;
        case 'b':
1966
            qemu_chr_event(chr, CHR_EVENT_BREAK);
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
            break;
        case 'c':
            /* Switch to the next registered device */
            chr->focus++;
            if (chr->focus >= d->mux_cnt)
                chr->focus = 0;
            break;
       case 't':
           term_timestamps = !term_timestamps;
           term_timestamps_start = -1;
           break;
        }
    } else if (ch == term_escape_char) {
        d->term_got_escape = 1;
    } else {
    send_char:
        return 1;
    }
    return 0;
}
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
static void mux_chr_accept_input(CharDriverState *chr)
{
    int m = chr->focus;
    MuxDriver *d = chr->opaque;

    while (d->prod != d->cons &&
           d->chr_can_read[m] &&
           d->chr_can_read[m](d->ext_opaque[m])) {
        d->chr_read[m](d->ext_opaque[m],
                       &d->buffer[d->cons++ & MUX_BUFFER_MASK], 1);
    }
}
2001
2002
2003
2004
static int mux_chr_can_read(void *opaque)
{
    CharDriverState *chr = opaque;
    MuxDriver *d = chr->opaque;
2005
2006
2007

    if ((d->prod - d->cons) < MUX_BUFFER_SIZE)
        return 1;
2008
    if (d->chr_can_read[chr->focus])
2009
        return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
2010
2011
2012
2013
2014
2015
2016
    return 0;
}

static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
{
    CharDriverState *chr = opaque;
    MuxDriver *d = chr->opaque;
2017
    int m = chr->focus;
2018
    int i;
2019
2020
2021

    mux_chr_accept_input (opaque);
2022
    for(i = 0; i < size; i++)
2023
2024
2025
2026
2027
2028
2029
2030
        if (mux_proc_byte(chr, d, buf[i])) {
            if (d->prod == d->cons &&
                d->chr_can_read[m] &&
                d->chr_can_read[m](d->ext_opaque[m]))
                d->chr_read[m](d->ext_opaque[m], &buf[i], 1);
            else
                d->buffer[d->prod++ & MUX_BUFFER_MASK] = buf[i];
        }
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
}

static void mux_chr_event(void *opaque, int event)
{
    CharDriverState *chr = opaque;
    MuxDriver *d = chr->opaque;
    int i;

    /* Send the event to all registered listeners */
    for (i = 0; i < d->mux_cnt; i++)
        if (d->chr_event[i])
            d->chr_event[i](d->ext_opaque[i], event);
}

static void mux_chr_update_read_handler(CharDriverState *chr)
{
    MuxDriver *d = chr->opaque;

    if (d->mux_cnt >= MAX_MUX) {
        fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
        return;
    }
    d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
    d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
    d->chr_read[d->mux_cnt] = chr->chr_read;
    d->chr_event[d->mux_cnt] = chr->chr_event;
    /* Fix up the real driver with mux routines */
    if (d->mux_cnt == 0) {
        qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
                              mux_chr_event, chr);
    }
    chr->focus = d->mux_cnt;
    d->mux_cnt++;
}
2066
static CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
{
    CharDriverState *chr;
    MuxDriver *d;

    chr = qemu_mallocz(sizeof(CharDriverState));
    if (!chr)
        return NULL;
    d = qemu_mallocz(sizeof(MuxDriver));
    if (!d) {
        free(chr);
        return NULL;
    }

    chr->opaque = d;
    d->drv = drv;
    chr->focus = -1;
    chr->chr_write = mux_chr_write;
    chr->chr_update_read_handler = mux_chr_update_read_handler;
2085
    chr->chr_accept_input = mux_chr_accept_input;
2086
2087
2088
2089
    return chr;
}
bellard authored
2090
#ifdef _WIN32
bellard authored
2091
bellard authored
2092
2093
2094
2095
static void socket_cleanup(void)
{
    WSACleanup();
}
bellard authored
2096
bellard authored
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
static int socket_init(void)
{
    WSADATA Data;
    int ret, err;

    ret = WSAStartup(MAKEWORD(2,2), &Data);
    if (ret != 0) {
        err = WSAGetLastError();
        fprintf(stderr, "WSAStartup: %d\n", err);
        return -1;
    }
    atexit(socket_cleanup);
    return 0;
}

static int send_all(int fd, const uint8_t *buf, int len1)
{
    int ret, len;
2115
bellard authored
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
    len = len1;
    while (len > 0) {
        ret = send(fd, buf, len, 0);
        if (ret < 0) {
            int errno;
            errno = WSAGetLastError();
            if (errno != WSAEWOULDBLOCK) {
                return -1;
            }
        } else if (ret == 0) {
            break;
        } else {
            buf += ret;
            len -= ret;
        }
    }
    return len1 - len;
}

#else
bellard authored
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
static int unix_write(int fd, const uint8_t *buf, int len1)
{
    int ret, len;

    len = len1;
    while (len > 0) {
        ret = write(fd, buf, len);
        if (ret < 0) {
            if (errno != EINTR && errno != EAGAIN)
                return -1;
        } else if (ret == 0) {
            break;
        } else {
            buf += ret;
            len -= ret;
        }
    }
    return len1 - len;
}
bellard authored
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
static inline int send_all(int fd, const uint8_t *buf, int len1)
{
    return unix_write(fd, buf, len1);
}
#endif /* !_WIN32 */

#ifndef _WIN32

typedef struct {
    int fd_in, fd_out;
    int max_size;
} FDCharDriver;
2170
2171
#define STDIO_MAX_CLIENTS 1
static int stdio_nb_clients = 0;
bellard authored
2172
bellard authored
2173
2174
2175
static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
{
    FDCharDriver *s = chr->opaque;
bellard authored
2176
    return unix_write(s->fd_out, buf, len);
bellard authored
2177
2178
}
bellard authored
2179
2180
2181
2182
2183
static int fd_chr_read_poll(void *opaque)
{
    CharDriverState *chr = opaque;
    FDCharDriver *s = chr->opaque;
2184
    s->max_size = qemu_chr_can_read(chr);
bellard authored
2185
2186
2187
2188
2189
2190
2191
2192
2193
    return s->max_size;
}

static void fd_chr_read(void *opaque)
{
    CharDriverState *chr = opaque;
    FDCharDriver *s = chr->opaque;
    int size, len;
    uint8_t buf[1024];
2194
bellard authored
2195
2196
2197
2198
2199
2200
    len = sizeof(buf);
    if (len > s->max_size)
        len = s->max_size;
    if (len == 0)
        return;
    size = read(s->fd_in, buf, len);
pbrook authored
2201
2202
2203
2204
2205
    if (size == 0) {
        /* FD has been closed. Remove it from the active list.  */
        qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
        return;
    }
bellard authored
2206
    if (size > 0) {
2207
        qemu_chr_read(chr, buf, size);
bellard authored
2208
2209
2210
    }
}
2211
static void fd_chr_update_read_handler(CharDriverState *chr)
bellard authored
2212
2213
2214
{
    FDCharDriver *s = chr->opaque;
bellard authored
2215
2216
2217
    if (s->fd_in >= 0) {
        if (nographic && s->fd_in == 0) {
        } else {
2218
            qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
bellard authored
2219
                                 fd_chr_read, NULL, chr);
bellard authored
2220
        }
bellard authored
2221
2222
2223
    }
}
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
static void fd_chr_close(struct CharDriverState *chr)
{
    FDCharDriver *s = chr->opaque;

    if (s->fd_in >= 0) {
        if (nographic && s->fd_in == 0) {
        } else {
            qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
        }
    }

    qemu_free(s);
}
bellard authored
2238
/* open a character device to a unix fd */
2239
static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
bellard authored
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
{
    CharDriverState *chr;
    FDCharDriver *s;

    chr = qemu_mallocz(sizeof(CharDriverState));
    if (!chr)
        return NULL;
    s = qemu_mallocz(sizeof(FDCharDriver));
    if (!s) {
        free(chr);
        return NULL;
    }
    s->fd_in = fd_in;
    s->fd_out = fd_out;
    chr->opaque = s;
    chr->chr_write = fd_chr_write;
2256
    chr->chr_update_read_handler = fd_chr_update_read_handler;
2257
    chr->chr_close = fd_chr_close;
2258
2259
2260

    qemu_chr_reset(chr);
bellard authored
2261
2262
2263
    return chr;
}
2264
static CharDriverState *qemu_chr_open_file_out(const char *file_out)
bellard authored
2265
2266
2267
{
    int fd_out;
2268
    TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
bellard authored
2269
2270
2271
2272
2273
    if (fd_out < 0)
        return NULL;
    return qemu_chr_open_fd(-1, fd_out);
}
2274
static CharDriverState *qemu_chr_open_pipe(const char *filename)
bellard authored
2275
{
2276
2277
2278
2279
2280
    int fd_in, fd_out;
    char filename_in[256], filename_out[256];

    snprintf(filename_in, 256, "%s.in", filename);
    snprintf(filename_out, 256, "%s.out", filename);
2281
2282
    TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
    TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2283
2284
2285
2286
2287
    if (fd_in < 0 || fd_out < 0) {
	if (fd_in >= 0)
	    close(fd_in);
	if (fd_out >= 0)
	    close(fd_out);
2288
        TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2289
2290
2291
2292
        if (fd_in < 0)
            return NULL;
    }
    return qemu_chr_open_fd(fd_in, fd_out);
bellard authored
2293
2294
2295
}
bellard authored
2296
2297
2298
/* for STDIO, we handle the case where several clients use it
   (nographic mode) */
2299
2300
2301
#define TERM_FIFO_MAX_SIZE 1

static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2302
static int term_fifo_size;
2303
bellard authored
2304
static int stdio_read_poll(void *opaque)
bellard authored
2305
{
2306
    CharDriverState *chr = opaque;
2307
2308
2309
2310
2311
    /* try to flush the queue if needed */
    if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
        qemu_chr_read(chr, term_fifo, 1);
        term_fifo_size = 0;
2312
    }
2313
2314
2315
2316
2317
    /* see if we can absorb more chars */
    if (term_fifo_size == 0)
        return 1;
    else
        return 0;
bellard authored
2318
2319
}
bellard authored
2320
static void stdio_read(void *opaque)
bellard authored
2321
{
bellard authored
2322
2323
    int size;
    uint8_t buf[1];
2324
2325
    CharDriverState *chr = opaque;
bellard authored
2326
    size = read(0, buf, 1);
2327
2328
2329
2330
2331
    if (size == 0) {
        /* stdin has been closed. Remove it from the active list.  */
        qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
        return;
    }
2332
2333
2334
2335
2336
    if (size > 0) {
        if (qemu_chr_can_read(chr) > 0) {
            qemu_chr_read(chr, buf, 1);
        } else if (term_fifo_size == 0) {
            term_fifo[term_fifo_size++] = buf[0];
2337
2338
2339
2340
        }
    }
}
2341
2342
2343
/* init terminal so that we can grab keys */
static struct termios oldtty;
static int old_fd0_flags;
2344
static int term_atexit_done;
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370

static void term_exit(void)
{
    tcsetattr (0, TCSANOW, &oldtty);
    fcntl(0, F_SETFL, old_fd0_flags);
}

static void term_init(void)
{
    struct termios tty;

    tcgetattr (0, &tty);
    oldtty = tty;
    old_fd0_flags = fcntl(0, F_GETFL);

    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
                          |INLCR|IGNCR|ICRNL|IXON);
    tty.c_oflag |= OPOST;
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
    /* if graphical mode, we allow Ctrl-C handling */
    if (nographic)
        tty.c_lflag &= ~ISIG;
    tty.c_cflag &= ~(CSIZE|PARENB);
    tty.c_cflag |= CS8;
    tty.c_cc[VMIN] = 1;
    tty.c_cc[VTIME] = 0;
2371
2372
2373
    tcsetattr (0, TCSANOW, &tty);
2374
2375
    if (!term_atexit_done++)
        atexit(term_exit);
2376
2377
2378
2379

    fcntl(0, F_SETFL, O_NONBLOCK);
}
2380
2381
2382
2383
2384
2385
2386
2387
static void qemu_chr_close_stdio(struct CharDriverState *chr)
{
    term_exit();
    stdio_nb_clients--;
    qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
    fd_chr_close(chr);
}
2388
static CharDriverState *qemu_chr_open_stdio(void)
bellard authored
2389
2390
2391
{
    CharDriverState *chr;
2392
2393
2394
    if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
        return NULL;
    chr = qemu_chr_open_fd(0, 1);
2395
    chr->chr_close = qemu_chr_close_stdio;
2396
2397
2398
2399
    qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
    stdio_nb_clients++;
    term_init();
bellard authored
2400
2401
2402
    return chr;
}
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
#ifdef __sun__
/* Once Solaris has openpty(), this is going to be removed. */
int openpty(int *amaster, int *aslave, char *name,
            struct termios *termp, struct winsize *winp)
{
        const char *slave;
        int mfd = -1, sfd = -1;

        *amaster = *aslave = -1;

        mfd = open("/dev/ptmx", O_RDWR | O_NOCTTY);
        if (mfd < 0)
                goto err;

        if (grantpt(mfd) == -1 || unlockpt(mfd) == -1)
                goto err;

        if ((slave = ptsname(mfd)) == NULL)
                goto err;

        if ((sfd = open(slave, O_RDONLY | O_NOCTTY)) == -1)
                goto err;

        if (ioctl(sfd, I_PUSH, "ptem") == -1 ||
            (termp != NULL && tcgetattr(sfd, termp) < 0))
                goto err;

        if (amaster)
                *amaster = mfd;
        if (aslave)
                *aslave = sfd;
        if (winp)
                ioctl(sfd, TIOCSWINSZ, winp);

        return 0;

err:
        if (sfd != -1)
                close(sfd);
        close(mfd);
        return -1;
}

void cfmakeraw (struct termios *termios_p)
{
        termios_p->c_iflag &=
                ~(IGNBRK|BRKINT|PARMRK|ISTRIP|INLCR|IGNCR|ICRNL|IXON);
        termios_p->c_oflag &= ~OPOST;
        termios_p->c_lflag &= ~(ECHO|ECHONL|ICANON|ISIG|IEXTEN);
        termios_p->c_cflag &= ~(CSIZE|PARENB);
        termios_p->c_cflag |= CS8;

        termios_p->c_cc[VMIN] = 0;
        termios_p->c_cc[VTIME] = 0;
}
#endif
2460
2461
#if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
    || defined(__NetBSD__) || defined(__OpenBSD__)
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555

typedef struct {
    int fd;
    int connected;
    int polling;
    int read_bytes;
    QEMUTimer *timer;
} PtyCharDriver;

static void pty_chr_update_read_handler(CharDriverState *chr);
static void pty_chr_state(CharDriverState *chr, int connected);

static int pty_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
{
    PtyCharDriver *s = chr->opaque;

    if (!s->connected) {
        /* guest sends data, check for (re-)connect */
        pty_chr_update_read_handler(chr);
        return 0;
    }
    return unix_write(s->fd, buf, len);
}

static int pty_chr_read_poll(void *opaque)
{
    CharDriverState *chr = opaque;
    PtyCharDriver *s = chr->opaque;

    s->read_bytes = qemu_chr_can_read(chr);
    return s->read_bytes;
}

static void pty_chr_read(void *opaque)
{
    CharDriverState *chr = opaque;
    PtyCharDriver *s = chr->opaque;
    int size, len;
    uint8_t buf[1024];

    len = sizeof(buf);
    if (len > s->read_bytes)
        len = s->read_bytes;
    if (len == 0)
        return;
    size = read(s->fd, buf, len);
    if ((size == -1 && errno == EIO) ||
        (size == 0)) {
        pty_chr_state(chr, 0);
        return;
    }
    if (size > 0) {
        pty_chr_state(chr, 1);
        qemu_chr_read(chr, buf, size);
    }
}

static void pty_chr_update_read_handler(CharDriverState *chr)
{
    PtyCharDriver *s = chr->opaque;

    qemu_set_fd_handler2(s->fd, pty_chr_read_poll,
                         pty_chr_read, NULL, chr);
    s->polling = 1;
    /*
     * Short timeout here: just need wait long enougth that qemu makes
     * it through the poll loop once.  When reconnected we want a
     * short timeout so we notice it almost instantly.  Otherwise
     * read() gives us -EIO instantly, making pty_chr_state() reset the
     * timeout to the normal (much longer) poll interval before the
     * timer triggers.
     */
    qemu_mod_timer(s->timer, qemu_get_clock(rt_clock) + 10);
}

static void pty_chr_state(CharDriverState *chr, int connected)
{
    PtyCharDriver *s = chr->opaque;

    if (!connected) {
        qemu_set_fd_handler2(s->fd, NULL, NULL, NULL, NULL);
        s->connected = 0;
        s->polling = 0;
        /* (re-)connect poll interval for idle guests: once per second.
         * We check more frequently in case the guests sends data to
         * the virtual device linked to our pty. */
        qemu_mod_timer(s->timer, qemu_get_clock(rt_clock) + 1000);
    } else {
        if (!s->connected)
            qemu_chr_reset(chr);
        s->connected = 1;
    }
}
2556
static void pty_chr_timer(void *opaque)
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
{
    struct CharDriverState *chr = opaque;
    PtyCharDriver *s = chr->opaque;

    if (s->connected)
        return;
    if (s->polling) {
        /* If we arrive here without polling being cleared due
         * read returning -EIO, then we are (re-)connected */
        pty_chr_state(chr, 1);
        return;
    }

    /* Next poll ... */
    pty_chr_update_read_handler(chr);
}

static void pty_chr_close(struct CharDriverState *chr)
{
    PtyCharDriver *s = chr->opaque;

    qemu_set_fd_handler2(s->fd, NULL, NULL, NULL, NULL);
    close(s->fd);
    qemu_free(s);
}
2583
static CharDriverState *qemu_chr_open_pty(void)
bellard authored
2584
{
2585
2586
    CharDriverState *chr;
    PtyCharDriver *s;
2587
    struct termios tty;
2588
    int slave_fd;
2589
2590
2591
2592
2593
2594
2595
#if defined(__OpenBSD__)
    char pty_name[PATH_MAX];
#define q_ptsname(x) pty_name
#else
    char *pty_name = NULL;
#define q_ptsname(x) ptsname(x)
#endif
2596
2597
2598
2599
2600
2601
2602
2603
2604

    chr = qemu_mallocz(sizeof(CharDriverState));
    if (!chr)
        return NULL;
    s = qemu_mallocz(sizeof(PtyCharDriver));
    if (!s) {
        qemu_free(chr);
        return NULL;
    }
2605
2606
    if (openpty(&s->fd, &slave_fd, pty_name, NULL, NULL) < 0) {
bellard authored
2607
2608
        return NULL;
    }
2609
2610
2611
2612
    /* Set raw attributes on the pty. */
    cfmakeraw(&tty);
    tcsetattr(slave_fd, TCSAFLUSH, &tty);
2613
2614
    close(slave_fd);
2615
    fprintf(stderr, "char device redirected to %s\n", q_ptsname(s->fd));
2616
2617
2618
2619
2620
2621
2622
2623
2624
    chr->opaque = s;
    chr->chr_write = pty_chr_write;
    chr->chr_update_read_handler = pty_chr_update_read_handler;
    chr->chr_close = pty_chr_close;

    s->timer = qemu_new_timer(rt_clock, pty_chr_timer, chr);

    return chr;
bellard authored
2625
}
bellard authored
2626
2627
static void tty_serial_init(int fd, int speed,
bellard authored
2628
2629
2630
2631
2632
                            int parity, int data_bits, int stop_bits)
{
    struct termios tty;
    speed_t spd;
2633
#if 0
2634
    printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2635
2636
2637
           speed, parity, data_bits, stop_bits);
#endif
    tcgetattr (fd, &tty);
bellard authored
2638
2639
2640
#define MARGIN 1.1
    if (speed <= 50 * MARGIN)
bellard authored
2641
        spd = B50;
2642
    else if (speed <= 75 * MARGIN)
bellard authored
2643
        spd = B75;
2644
    else if (speed <= 300 * MARGIN)
bellard authored
2645
        spd = B300;
2646
    else if (speed <= 600 * MARGIN)
bellard authored
2647
        spd = B600;
2648
    else if (speed <= 1200 * MARGIN)
bellard authored
2649
        spd = B1200;
2650
    else if (speed <= 2400 * MARGIN)
bellard authored
2651
        spd = B2400;
2652
    else if (speed <= 4800 * MARGIN)
bellard authored
2653
        spd = B4800;
2654
    else if (speed <= 9600 * MARGIN)
bellard authored
2655
        spd = B9600;
2656
    else if (speed <= 19200 * MARGIN)
bellard authored
2657
        spd = B19200;
2658
    else if (speed <= 38400 * MARGIN)
bellard authored
2659
        spd = B38400;
2660
    else if (speed <= 57600 * MARGIN)
bellard authored
2661
        spd = B57600;
2662
2663
2664
    else if (speed <= 115200 * MARGIN)
        spd = B115200;
    else
bellard authored
2665
2666
2667
2668
2669
2670
2671
2672
2673
        spd = B115200;

    cfsetispeed(&tty, spd);
    cfsetospeed(&tty, spd);

    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
                          |INLCR|IGNCR|ICRNL|IXON);
    tty.c_oflag |= OPOST;
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
bellard authored
2674
    tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
bellard authored
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
    switch(data_bits) {
    default:
    case 8:
        tty.c_cflag |= CS8;
        break;
    case 7:
        tty.c_cflag |= CS7;
        break;
    case 6:
        tty.c_cflag |= CS6;
        break;
    case 5:
        tty.c_cflag |= CS5;
        break;
    }
    switch(parity) {
    default:
    case 'N':
        break;
    case 'E':
        tty.c_cflag |= PARENB;
        break;
    case 'O':
        tty.c_cflag |= PARENB | PARODD;
        break;
    }
bellard authored
2701
2702
    if (stop_bits == 2)
        tty.c_cflag |= CSTOPB;
2703
bellard authored
2704
2705
2706
    tcsetattr (fd, TCSANOW, &tty);
}
2707
static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
bellard authored
2708
2709
{
    FDCharDriver *s = chr->opaque;
2710
2711
2712
2713
2714
    switch(cmd) {
    case CHR_IOCTL_SERIAL_SET_PARAMS:
        {
            QEMUSerialSetParams *ssp = arg;
2715
            tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
                            ssp->data_bits, ssp->stop_bits);
        }
        break;
    case CHR_IOCTL_SERIAL_SET_BREAK:
        {
            int enable = *(int *)arg;
            if (enable)
                tcsendbreak(s->fd_in, 1);
        }
        break;
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
    case CHR_IOCTL_SERIAL_GET_TIOCM:
        {
            int sarg = 0;
            int *targ = (int *)arg;
            ioctl(s->fd_in, TIOCMGET, &sarg);
            *targ = 0;
            if (sarg | TIOCM_CTS)
                *targ |= CHR_TIOCM_CTS;
            if (sarg | TIOCM_CAR)
                *targ |= CHR_TIOCM_CAR;
            if (sarg | TIOCM_DSR)
                *targ |= CHR_TIOCM_DSR;
            if (sarg | TIOCM_RI)
                *targ |= CHR_TIOCM_RI;
            if (sarg | TIOCM_DTR)
                *targ |= CHR_TIOCM_DTR;
            if (sarg | TIOCM_RTS)
                *targ |= CHR_TIOCM_RTS;
        }
        break;
    case CHR_IOCTL_SERIAL_SET_TIOCM:
        {
            int sarg = *(int *)arg;
            int targ = 0;
            if (sarg | CHR_TIOCM_DTR)
                targ |= TIOCM_DTR;
            if (sarg | CHR_TIOCM_RTS)
                targ |= TIOCM_RTS;
            ioctl(s->fd_in, TIOCMSET, &targ);
        }
        break;
2757
2758
2759
2760
    default:
        return -ENOTSUP;
    }
    return 0;
bellard authored
2761
2762
}
2763
static CharDriverState *qemu_chr_open_tty(const char *filename)
bellard authored
2764
2765
2766
2767
{
    CharDriverState *chr;
    int fd;
2768
    TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
bellard authored
2769
2770
    tty_serial_init(fd, 115200, 'N', 8, 1);
    chr = qemu_chr_open_fd(fd, fd);
2771
2772
    if (!chr) {
        close(fd);
bellard authored
2773
        return NULL;
2774
    }
2775
    chr->chr_ioctl = tty_serial_ioctl;
2776
    qemu_chr_reset(chr);
2777
2778
    return chr;
}
2779
2780
2781
2782
2783
2784
#else  /* ! __linux__ && ! __sun__ */
static CharDriverState *qemu_chr_open_pty(void)
{
    return NULL;
}
#endif /* __linux__ || __sun__ */
2785
2786
#if defined(__linux__)
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
typedef struct {
    int fd;
    int mode;
} ParallelCharDriver;

static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
{
    if (s->mode != mode) {
	int m = mode;
        if (ioctl(s->fd, PPSETMODE, &m) < 0)
            return 0;
	s->mode = mode;
    }
    return 1;
}
2803
2804
static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
{
2805
2806
    ParallelCharDriver *drv = chr->opaque;
    int fd = drv->fd;
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
    uint8_t b;

    switch(cmd) {
    case CHR_IOCTL_PP_READ_DATA:
        if (ioctl(fd, PPRDATA, &b) < 0)
            return -ENOTSUP;
        *(uint8_t *)arg = b;
        break;
    case CHR_IOCTL_PP_WRITE_DATA:
        b = *(uint8_t *)arg;
        if (ioctl(fd, PPWDATA, &b) < 0)
            return -ENOTSUP;
        break;
    case CHR_IOCTL_PP_READ_CONTROL:
        if (ioctl(fd, PPRCONTROL, &b) < 0)
            return -ENOTSUP;
2823
2824
2825
2826
	/* Linux gives only the lowest bits, and no way to know data
	   direction! For better compatibility set the fixed upper
	   bits. */
        *(uint8_t *)arg = b | 0xc0;
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
        break;
    case CHR_IOCTL_PP_WRITE_CONTROL:
        b = *(uint8_t *)arg;
        if (ioctl(fd, PPWCONTROL, &b) < 0)
            return -ENOTSUP;
        break;
    case CHR_IOCTL_PP_READ_STATUS:
        if (ioctl(fd, PPRSTATUS, &b) < 0)
            return -ENOTSUP;
        *(uint8_t *)arg = b;
        break;
aurel32 authored
2838
2839
2840
2841
    case CHR_IOCTL_PP_DATA_DIR:
        if (ioctl(fd, PPDATADIR, (int *)arg) < 0)
            return -ENOTSUP;
        break;
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
    case CHR_IOCTL_PP_EPP_READ_ADDR:
	if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
	    struct ParallelIOArg *parg = arg;
	    int n = read(fd, parg->buffer, parg->count);
	    if (n != parg->count) {
		return -EIO;
	    }
	}
        break;
    case CHR_IOCTL_PP_EPP_READ:
	if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
	    struct ParallelIOArg *parg = arg;
	    int n = read(fd, parg->buffer, parg->count);
	    if (n != parg->count) {
		return -EIO;
	    }
	}
        break;
    case CHR_IOCTL_PP_EPP_WRITE_ADDR:
	if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
	    struct ParallelIOArg *parg = arg;
	    int n = write(fd, parg->buffer, parg->count);
	    if (n != parg->count) {
		return -EIO;
	    }
	}
        break;
    case CHR_IOCTL_PP_EPP_WRITE:
	if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
	    struct ParallelIOArg *parg = arg;
	    int n = write(fd, parg->buffer, parg->count);
	    if (n != parg->count) {
		return -EIO;
	    }
	}
        break;
2878
2879
2880
2881
2882
2883
    default:
        return -ENOTSUP;
    }
    return 0;
}
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
static void pp_close(CharDriverState *chr)
{
    ParallelCharDriver *drv = chr->opaque;
    int fd = drv->fd;

    pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
    ioctl(fd, PPRELEASE);
    close(fd);
    qemu_free(drv);
}
2895
static CharDriverState *qemu_chr_open_pp(const char *filename)
2896
2897
{
    CharDriverState *chr;
2898
    ParallelCharDriver *drv;
2899
2900
    int fd;
2901
    TFR(fd = open(filename, O_RDWR));
2902
2903
2904
2905
2906
2907
2908
2909
    if (fd < 0)
        return NULL;

    if (ioctl(fd, PPCLAIM) < 0) {
        close(fd);
        return NULL;
    }
2910
2911
2912
2913
2914
2915
2916
2917
    drv = qemu_mallocz(sizeof(ParallelCharDriver));
    if (!drv) {
        close(fd);
        return NULL;
    }
    drv->fd = fd;
    drv->mode = IEEE1284_MODE_COMPAT;
2918
2919
    chr = qemu_mallocz(sizeof(CharDriverState));
    if (!chr) {
2920
	qemu_free(drv);
2921
2922
2923
2924
2925
        close(fd);
        return NULL;
    }
    chr->chr_write = null_chr_write;
    chr->chr_ioctl = pp_ioctl;
2926
2927
    chr->chr_close = pp_close;
    chr->opaque = drv;
2928
2929
2930

    qemu_chr_reset(chr);
bellard authored
2931
2932
    return chr;
}
2933
#endif /* __linux__ */
bellard authored
2934
2935
#else /* _WIN32 */
bellard authored
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
typedef struct {
    int max_size;
    HANDLE hcom, hrecv, hsend;
    OVERLAPPED orecv, osend;
    BOOL fpipe;
    DWORD len;
} WinCharState;

#define NSENDBUF 2048
#define NRECVBUF 2048
#define MAXCONNECT 1
#define NTIMEOUT 5000

static int win_chr_poll(void *opaque);
static int win_chr_pipe_poll(void *opaque);
2953
static void win_chr_close(CharDriverState *chr)
2954
{
2955
2956
    WinCharState *s = chr->opaque;
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
    if (s->hsend) {
        CloseHandle(s->hsend);
        s->hsend = NULL;
    }
    if (s->hrecv) {
        CloseHandle(s->hrecv);
        s->hrecv = NULL;
    }
    if (s->hcom) {
        CloseHandle(s->hcom);
        s->hcom = NULL;
    }
    if (s->fpipe)
2970
        qemu_del_polling_cb(win_chr_pipe_poll, chr);
2971
    else
2972
        qemu_del_polling_cb(win_chr_poll, chr);
2973
2974
}
2975
static int win_chr_init(CharDriverState *chr, const char *filename)
2976
2977
2978
2979
2980
2981
2982
{
    WinCharState *s = chr->opaque;
    COMMCONFIG comcfg;
    COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
    COMSTAT comstat;
    DWORD size;
    DWORD err;
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
    if (!s->hsend) {
        fprintf(stderr, "Failed CreateEvent\n");
        goto fail;
    }
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
    if (!s->hrecv) {
        fprintf(stderr, "Failed CreateEvent\n");
        goto fail;
    }

    s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
                      OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
    if (s->hcom == INVALID_HANDLE_VALUE) {
        fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
        s->hcom = NULL;
        goto fail;
    }
3002
3003
3004
3005
3006
    if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
        fprintf(stderr, "Failed SetupComm\n");
        goto fail;
    }
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
    ZeroMemory(&comcfg, sizeof(COMMCONFIG));
    size = sizeof(COMMCONFIG);
    GetDefaultCommConfig(filename, &comcfg, &size);
    comcfg.dcb.DCBlength = sizeof(DCB);
    CommConfigDialog(filename, NULL, &comcfg);

    if (!SetCommState(s->hcom, &comcfg.dcb)) {
        fprintf(stderr, "Failed SetCommState\n");
        goto fail;
    }

    if (!SetCommMask(s->hcom, EV_ERR)) {
        fprintf(stderr, "Failed SetCommMask\n");
        goto fail;
    }

    cto.ReadIntervalTimeout = MAXDWORD;
    if (!SetCommTimeouts(s->hcom, &cto)) {
        fprintf(stderr, "Failed SetCommTimeouts\n");
        goto fail;
    }
3029
3030
3031
3032
3033
    if (!ClearCommError(s->hcom, &err, &comstat)) {
        fprintf(stderr, "Failed ClearCommError\n");
        goto fail;
    }
3034
    qemu_add_polling_cb(win_chr_poll, chr);
3035
3036
3037
    return 0;

 fail:
3038
    win_chr_close(chr);
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
    return -1;
}

static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
{
    WinCharState *s = chr->opaque;
    DWORD len, ret, size, err;

    len = len1;
    ZeroMemory(&s->osend, sizeof(s->osend));
    s->osend.hEvent = s->hsend;
    while (len > 0) {
        if (s->hsend)
            ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
        else
            ret = WriteFile(s->hcom, buf, len, &size, NULL);
        if (!ret) {
            err = GetLastError();
            if (err == ERROR_IO_PENDING) {
                ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
                if (ret) {
                    buf += size;
                    len -= size;
                } else {
                    break;
                }
            } else {
                break;
            }
        } else {
            buf += size;
            len -= size;
        }
    }
    return len1 - len;
}
3076
static int win_chr_read_poll(CharDriverState *chr)
3077
{
3078
3079
3080
    WinCharState *s = chr->opaque;

    s->max_size = qemu_chr_can_read(chr);
3081
3082
    return s->max_size;
}
3083
3084
static void win_chr_readfile(CharDriverState *chr)
3085
{
3086
    WinCharState *s = chr->opaque;
3087
3088
3089
    int ret, err;
    uint8_t buf[1024];
    DWORD size;
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
    ZeroMemory(&s->orecv, sizeof(s->orecv));
    s->orecv.hEvent = s->hrecv;
    ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
    if (!ret) {
        err = GetLastError();
        if (err == ERROR_IO_PENDING) {
            ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
        }
    }

    if (size > 0) {
3102
        qemu_chr_read(chr, buf, size);
3103
3104
3105
    }
}
3106
static void win_chr_read(CharDriverState *chr)
3107
{
3108
3109
    WinCharState *s = chr->opaque;
3110
3111
3112
3113
    if (s->len > s->max_size)
        s->len = s->max_size;
    if (s->len == 0)
        return;
3114
3115
    win_chr_readfile(chr);
3116
3117
3118
3119
}

static int win_chr_poll(void *opaque)
{
3120
3121
    CharDriverState *chr = opaque;
    WinCharState *s = chr->opaque;
3122
3123
    COMSTAT status;
    DWORD comerr;
3124
3125
3126
3127
    ClearCommError(s->hcom, &comerr, &status);
    if (status.cbInQue > 0) {
        s->len = status.cbInQue;
3128
3129
        win_chr_read_poll(chr);
        win_chr_read(chr);
3130
3131
3132
3133
3134
        return 1;
    }
    return 0;
}
3135
static CharDriverState *qemu_chr_open_win(const char *filename)
3136
3137
3138
{
    CharDriverState *chr;
    WinCharState *s;
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
    chr = qemu_mallocz(sizeof(CharDriverState));
    if (!chr)
        return NULL;
    s = qemu_mallocz(sizeof(WinCharState));
    if (!s) {
        free(chr);
        return NULL;
    }
    chr->opaque = s;
    chr->chr_write = win_chr_write;
    chr->chr_close = win_chr_close;
3152
    if (win_chr_init(chr, filename) < 0) {
3153
3154
3155
3156
        free(s);
        free(chr);
        return NULL;
    }
3157
    qemu_chr_reset(chr);
3158
3159
3160
3161
3162
    return chr;
}

static int win_chr_pipe_poll(void *opaque)
{
3163
3164
    CharDriverState *chr = opaque;
    WinCharState *s = chr->opaque;
3165
3166
3167
3168
3169
    DWORD size;

    PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
    if (size > 0) {
        s->len = size;
3170
3171
        win_chr_read_poll(chr);
        win_chr_read(chr);
3172
3173
3174
3175
3176
        return 1;
    }
    return 0;
}
3177
static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
3178
{
3179
    WinCharState *s = chr->opaque;
3180
3181
3182
3183
    OVERLAPPED ov;
    int ret;
    DWORD size;
    char openname[256];
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
    s->fpipe = TRUE;

    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
    if (!s->hsend) {
        fprintf(stderr, "Failed CreateEvent\n");
        goto fail;
    }
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
    if (!s->hrecv) {
        fprintf(stderr, "Failed CreateEvent\n");
        goto fail;
    }
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
    snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
    s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
                              PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
                              PIPE_WAIT,
                              MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
    if (s->hcom == INVALID_HANDLE_VALUE) {
        fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
        s->hcom = NULL;
        goto fail;
    }

    ZeroMemory(&ov, sizeof(ov));
    ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
    ret = ConnectNamedPipe(s->hcom, &ov);
    if (ret) {
        fprintf(stderr, "Failed ConnectNamedPipe\n");
        goto fail;
    }

    ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
    if (!ret) {
        fprintf(stderr, "Failed GetOverlappedResult\n");
        if (ov.hEvent) {
            CloseHandle(ov.hEvent);
            ov.hEvent = NULL;
        }
        goto fail;
    }

    if (ov.hEvent) {
        CloseHandle(ov.hEvent);
        ov.hEvent = NULL;
    }
3231
    qemu_add_polling_cb(win_chr_pipe_poll, chr);
3232
3233
3234
    return 0;

 fail:
3235
    win_chr_close(chr);
3236
3237
3238
3239
    return -1;
}
3240
static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
{
    CharDriverState *chr;
    WinCharState *s;

    chr = qemu_mallocz(sizeof(CharDriverState));
    if (!chr)
        return NULL;
    s = qemu_mallocz(sizeof(WinCharState));
    if (!s) {
        free(chr);
        return NULL;
    }
    chr->opaque = s;
    chr->chr_write = win_chr_write;
    chr->chr_close = win_chr_close;
3256
3257
    if (win_chr_pipe_init(chr, filename) < 0) {
3258
3259
3260
3261
        free(s);
        free(chr);
        return NULL;
    }
3262
    qemu_chr_reset(chr);
3263
3264
3265
    return chr;
}
3266
static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
{
    CharDriverState *chr;
    WinCharState *s;

    chr = qemu_mallocz(sizeof(CharDriverState));
    if (!chr)
        return NULL;
    s = qemu_mallocz(sizeof(WinCharState));
    if (!s) {
        free(chr);
        return NULL;
    }
    s->hcom = fd_out;
    chr->opaque = s;
    chr->chr_write = win_chr_write;
3282
    qemu_chr_reset(chr);
3283
3284
    return chr;
}
3285
3286
3287
3288
3289
3290

static CharDriverState *qemu_chr_open_win_con(const char *filename)
{
    return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
}
3291
static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
3292
3293
{
    HANDLE fd_out;
3294
3295
3296
3297
3298
3299
3300
3301
    fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
                        OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
    if (fd_out == INVALID_HANDLE_VALUE)
        return NULL;

    return qemu_chr_open_win_file(fd_out);
}
3302
#endif /* !_WIN32 */
3303
3304
3305
3306
3307
3308
3309
/***********************************************************/
/* UDP Net console */

typedef struct {
    int fd;
    struct sockaddr_in daddr;
3310
    uint8_t buf[1024];
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
    int bufcnt;
    int bufptr;
    int max_size;
} NetCharDriver;

static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
{
    NetCharDriver *s = chr->opaque;

    return sendto(s->fd, buf, len, 0,
                  (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
}

static int udp_chr_read_poll(void *opaque)
{
    CharDriverState *chr = opaque;
    NetCharDriver *s = chr->opaque;
3329
    s->max_size = qemu_chr_can_read(chr);
3330
3331
3332
3333
3334

    /* If there were any stray characters in the queue process them
     * first
     */
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
3335
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
3336
        s->bufptr++;
3337
        s->max_size = qemu_chr_can_read(chr);
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
    }
    return s->max_size;
}

static void udp_chr_read(void *opaque)
{
    CharDriverState *chr = opaque;
    NetCharDriver *s = chr->opaque;

    if (s->max_size == 0)
        return;
    s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
    s->bufptr = s->bufcnt;
    if (s->bufcnt <= 0)
        return;

    s->bufptr = 0;
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
3356
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
3357
        s->bufptr++;
3358
        s->max_size = qemu_chr_can_read(chr);
3359
3360
3361
    }
}
3362
static void udp_chr_update_read_handler(CharDriverState *chr)
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
{
    NetCharDriver *s = chr->opaque;

    if (s->fd >= 0) {
        qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
                             udp_chr_read, NULL, chr);
    }
}

int parse_host_port(struct sockaddr_in *saddr, const char *str);
3373
3374
3375
#ifndef _WIN32
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
#endif
3376
3377
3378
int parse_host_src_port(struct sockaddr_in *haddr,
                        struct sockaddr_in *saddr,
                        const char *str);
3379
3380
static CharDriverState *qemu_chr_open_udp(const char *def)
3381
3382
3383
3384
{
    CharDriverState *chr = NULL;
    NetCharDriver *s = NULL;
    int fd = -1;
3385
    struct sockaddr_in saddr;
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399

    chr = qemu_mallocz(sizeof(CharDriverState));
    if (!chr)
        goto return_err;
    s = qemu_mallocz(sizeof(NetCharDriver));
    if (!s)
        goto return_err;

    fd = socket(PF_INET, SOCK_DGRAM, 0);
    if (fd < 0) {
        perror("socket(PF_INET, SOCK_DGRAM)");
        goto return_err;
    }
3400
3401
3402
    if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
        printf("Could not parse: %s\n", def);
        goto return_err;
3403
3404
    }
3405
    if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
    {
        perror("bind");
        goto return_err;
    }

    s->fd = fd;
    s->bufcnt = 0;
    s->bufptr = 0;
    chr->opaque = s;
    chr->chr_write = udp_chr_write;
3416
    chr->chr_update_read_handler = udp_chr_update_read_handler;
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
    return chr;

return_err:
    if (chr)
        free(chr);
    if (s)
        free(s);
    if (fd >= 0)
        closesocket(fd);
    return NULL;
}

/***********************************************************/
/* TCP Net console */

typedef struct {
    int fd, listen_fd;
    int connected;
    int max_size;
3436
    int do_telnetopt;
3437
    int do_nodelay;
3438
    int is_unix;
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
} TCPCharDriver;

static void tcp_chr_accept(void *opaque);

static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
{
    TCPCharDriver *s = chr->opaque;
    if (s->connected) {
        return send_all(s->fd, buf, len);
    } else {
        /* XXX: indicate an error ? */
        return len;
    }
}

static int tcp_chr_read_poll(void *opaque)
{
    CharDriverState *chr = opaque;
    TCPCharDriver *s = chr->opaque;
    if (!s->connected)
        return 0;
3460
    s->max_size = qemu_chr_can_read(chr);
3461
3462
3463
    return s->max_size;
}
3464
3465
3466
3467
#define IAC 255
#define IAC_BREAK 243
static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
                                      TCPCharDriver *s,
3468
                                      uint8_t *buf, int *size)
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
{
    /* Handle any telnet client's basic IAC options to satisfy char by
     * char mode with no echo.  All IAC options will be removed from
     * the buf and the do_telnetopt variable will be used to track the
     * state of the width of the IAC information.
     *
     * IAC commands come in sets of 3 bytes with the exception of the
     * "IAC BREAK" command and the double IAC.
     */

    int i;
    int j = 0;

    for (i = 0; i < *size; i++) {
        if (s->do_telnetopt > 1) {
            if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
                /* Double IAC means send an IAC */
                if (j != i)
                    buf[j] = buf[i];
                j++;
                s->do_telnetopt = 1;
            } else {
                if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
                    /* Handle IAC break commands by sending a serial break */
3493
                    qemu_chr_event(chr, CHR_EVENT_BREAK);
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
                    s->do_telnetopt++;
                }
                s->do_telnetopt++;
            }
            if (s->do_telnetopt >= 4) {
                s->do_telnetopt = 1;
            }
        } else {
            if ((unsigned char)buf[i] == IAC) {
                s->do_telnetopt = 2;
            } else {
                if (j != i)
                    buf[j] = buf[i];
                j++;
            }
        }
    }
    *size = j;
}
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
static void tcp_chr_read(void *opaque)
{
    CharDriverState *chr = opaque;
    TCPCharDriver *s = chr->opaque;
    uint8_t buf[1024];
    int len, size;

    if (!s->connected || s->max_size <= 0)
        return;
    len = sizeof(buf);
    if (len > s->max_size)
        len = s->max_size;
    size = recv(s->fd, buf, len, 0);
    if (size == 0) {
        /* connection closed */
        s->connected = 0;
        if (s->listen_fd >= 0) {
            qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
        }
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
        closesocket(s->fd);
        s->fd = -1;
    } else if (size > 0) {
3537
3538
3539
        if (s->do_telnetopt)
            tcp_chr_process_IAC_bytes(chr, s, buf, &size);
        if (size > 0)
3540
            qemu_chr_read(chr, buf, size);
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
    }
}

static void tcp_chr_connect(void *opaque)
{
    CharDriverState *chr = opaque;
    TCPCharDriver *s = chr->opaque;

    s->connected = 1;
    qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
                         tcp_chr_read, NULL, chr);
3552
    qemu_chr_reset(chr);
3553
3554
}
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
#define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
static void tcp_chr_telnet_init(int fd)
{
    char buf[3];
    /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
    IACSET(buf, 0xff, 0xfb, 0x01);  /* IAC WILL ECHO */
    send(fd, (char *)buf, 3, 0);
    IACSET(buf, 0xff, 0xfb, 0x03);  /* IAC WILL Suppress go ahead */
    send(fd, (char *)buf, 3, 0);
    IACSET(buf, 0xff, 0xfb, 0x00);  /* IAC WILL Binary */
    send(fd, (char *)buf, 3, 0);
    IACSET(buf, 0xff, 0xfd, 0x00);  /* IAC DO Binary */
    send(fd, (char *)buf, 3, 0);
}
3570
3571
3572
3573
3574
3575
static void socket_set_nodelay(int fd)
{
    int val = 1;
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
}
3576
3577
3578
3579
3580
static void tcp_chr_accept(void *opaque)
{
    CharDriverState *chr = opaque;
    TCPCharDriver *s = chr->opaque;
    struct sockaddr_in saddr;
3581
3582
3583
3584
#ifndef _WIN32
    struct sockaddr_un uaddr;
#endif
    struct sockaddr *addr;
3585
3586
3587
3588
    socklen_t len;
    int fd;

    for(;;) {
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
#ifndef _WIN32
	if (s->is_unix) {
	    len = sizeof(uaddr);
	    addr = (struct sockaddr *)&uaddr;
	} else
#endif
	{
	    len = sizeof(saddr);
	    addr = (struct sockaddr *)&saddr;
	}
        fd = accept(s->listen_fd, addr, &len);
3600
3601
3602
        if (fd < 0 && errno != EINTR) {
            return;
        } else if (fd >= 0) {
3603
3604
            if (s->do_telnetopt)
                tcp_chr_telnet_init(fd);
3605
3606
3607
3608
            break;
        }
    }
    socket_set_nonblock(fd);
3609
3610
    if (s->do_nodelay)
        socket_set_nodelay(fd);
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
    s->fd = fd;
    qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
    tcp_chr_connect(chr);
}

static void tcp_chr_close(CharDriverState *chr)
{
    TCPCharDriver *s = chr->opaque;
    if (s->fd >= 0)
        closesocket(s->fd);
    if (s->listen_fd >= 0)
        closesocket(s->listen_fd);
    qemu_free(s);
}
3626
static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3627
3628
                                          int is_telnet,
					  int is_unix)
3629
3630
3631
3632
{
    CharDriverState *chr = NULL;
    TCPCharDriver *s = NULL;
    int fd = -1, ret, err, val;
3633
3634
    int is_listen = 0;
    int is_waitconnect = 1;
3635
    int do_nodelay = 0;
3636
    const char *ptr;
3637
    struct sockaddr_in saddr;
3638
3639
3640
3641
3642
#ifndef _WIN32
    struct sockaddr_un uaddr;
#endif
    struct sockaddr *addr;
    socklen_t addrlen;
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
#ifndef _WIN32
    if (is_unix) {
	addr = (struct sockaddr *)&uaddr;
	addrlen = sizeof(uaddr);
	if (parse_unix_path(&uaddr, host_str) < 0)
	    goto fail;
    } else
#endif
    {
	addr = (struct sockaddr *)&saddr;
	addrlen = sizeof(saddr);
	if (parse_host_port(&saddr, host_str) < 0)
	    goto fail;
    }
3658
3659
3660
3661
3662
3663
3664
3665
    ptr = host_str;
    while((ptr = strchr(ptr,','))) {
        ptr++;
        if (!strncmp(ptr,"server",6)) {
            is_listen = 1;
        } else if (!strncmp(ptr,"nowait",6)) {
            is_waitconnect = 0;
3666
3667
        } else if (!strncmp(ptr,"nodelay",6)) {
            do_nodelay = 1;
3668
3669
3670
3671
3672
3673
3674
3675
        } else {
            printf("Unknown option: %s\n", ptr);
            goto fail;
        }
    }
    if (!is_listen)
        is_waitconnect = 0;
3676
3677
3678
3679
3680
3681
    chr = qemu_mallocz(sizeof(CharDriverState));
    if (!chr)
        goto fail;
    s = qemu_mallocz(sizeof(TCPCharDriver));
    if (!s)
        goto fail;
3682
3683
3684
3685
3686
3687
3688

#ifndef _WIN32
    if (is_unix)
	fd = socket(PF_UNIX, SOCK_STREAM, 0);
    else
#endif
	fd = socket(PF_INET, SOCK_STREAM, 0);
3689
3690

    if (fd < 0)
3691
        goto fail;
3692
3693
3694

    if (!is_waitconnect)
        socket_set_nonblock(fd);
3695
3696
3697
3698

    s->connected = 0;
    s->fd = -1;
    s->listen_fd = -1;
3699
    s->is_unix = is_unix;
3700
    s->do_nodelay = do_nodelay && !is_unix;
3701
3702
3703
3704
3705

    chr->opaque = s;
    chr->chr_write = tcp_chr_write;
    chr->chr_close = tcp_chr_close;
3706
3707
    if (is_listen) {
        /* allow fast reuse */
3708
3709
3710
#ifndef _WIN32
	if (is_unix) {
	    char path[109];
3711
	    pstrcpy(path, sizeof(path), uaddr.sun_path);
3712
3713
3714
3715
3716
3717
3718
	    unlink(path);
	} else
#endif
	{
	    val = 1;
	    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
	}
3719
3720
3721
        ret = bind(fd, addr, addrlen);
        if (ret < 0)
3722
            goto fail;
3723
3724
3725
3726
        ret = listen(fd, 0);
        if (ret < 0)
            goto fail;
3727
3728
3729
        s->listen_fd = fd;
        qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3730
3731
        if (is_telnet)
            s->do_telnetopt = 1;
3732
3733
    } else {
        for(;;) {
3734
            ret = connect(fd, addr, addrlen);
3735
3736
3737
3738
3739
            if (ret < 0) {
                err = socket_error();
                if (err == EINTR || err == EWOULDBLOCK) {
                } else if (err == EINPROGRESS) {
                    break;
3740
3741
3742
3743
#ifdef _WIN32
                } else if (err == WSAEALREADY) {
                    break;
#endif
3744
3745
3746
3747
3748
3749
3750
3751
3752
                } else {
                    goto fail;
                }
            } else {
                s->connected = 1;
                break;
            }
        }
        s->fd = fd;
3753
        socket_set_nodelay(fd);
3754
3755
3756
3757
3758
        if (s->connected)
            tcp_chr_connect(chr);
        else
            qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
    }
3759
3760
3761
3762
3763
3764
3765
    if (is_listen && is_waitconnect) {
        printf("QEMU waiting for connection on: %s\n", host_str);
        tcp_chr_accept(chr);
        socket_set_nonblock(s->listen_fd);
    }
3766
3767
3768
3769
3770
3771
3772
3773
3774
    return chr;
 fail:
    if (fd >= 0)
        closesocket(fd);
    qemu_free(s);
    qemu_free(chr);
    return NULL;
}
bellard authored
3775
3776
CharDriverState *qemu_chr_open(const char *filename)
{
bellard authored
3777
    const char *p;
bellard authored
3778
bellard authored
3779
    if (!strcmp(filename, "vc")) {
3780
3781
3782
        return text_console_init(&display_state, 0);
    } else if (strstart(filename, "vc:", &p)) {
        return text_console_init(&display_state, p);
bellard authored
3783
3784
    } else if (!strcmp(filename, "null")) {
        return qemu_chr_open_null();
3785
    } else
3786
    if (strstart(filename, "tcp:", &p)) {
3787
        return qemu_chr_open_tcp(p, 0, 0);
3788
    } else
3789
    if (strstart(filename, "telnet:", &p)) {
3790
        return qemu_chr_open_tcp(p, 1, 0);
3791
3792
3793
3794
    } else
    if (strstart(filename, "udp:", &p)) {
        return qemu_chr_open_udp(p);
    } else
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
    if (strstart(filename, "mon:", &p)) {
        CharDriverState *drv = qemu_chr_open(p);
        if (drv) {
            drv = qemu_chr_open_mux(drv);
            monitor_init(drv, !nographic);
            return drv;
        }
        printf("Unable to open driver: %s\n", p);
        return 0;
    } else
bellard authored
3805
#ifndef _WIN32
3806
3807
3808
    if (strstart(filename, "unix:", &p)) {
	return qemu_chr_open_tcp(p, 0, 1);
    } else if (strstart(filename, "file:", &p)) {
bellard authored
3809
3810
3811
        return qemu_chr_open_file_out(p);
    } else if (strstart(filename, "pipe:", &p)) {
        return qemu_chr_open_pipe(p);
bellard authored
3812
    } else if (!strcmp(filename, "pty")) {
bellard authored
3813
3814
3815
        return qemu_chr_open_pty();
    } else if (!strcmp(filename, "stdio")) {
        return qemu_chr_open_stdio();
3816
    } else
bellard authored
3817
#if defined(__linux__)
3818
3819
    if (strstart(filename, "/dev/parport", NULL)) {
        return qemu_chr_open_pp(filename);
3820
    } else
3821
#endif
3822
3823
#if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
    || defined(__NetBSD__) || defined(__OpenBSD__)
bellard authored
3824
3825
    if (strstart(filename, "/dev/", NULL)) {
        return qemu_chr_open_tty(filename);
3826
3827
    } else
#endif
3828
#else /* !_WIN32 */
3829
3830
3831
3832
3833
3834
    if (strstart(filename, "COM", NULL)) {
        return qemu_chr_open_win(filename);
    } else
    if (strstart(filename, "pipe:", &p)) {
        return qemu_chr_open_win_pipe(p);
    } else
3835
3836
3837
    if (strstart(filename, "con:", NULL)) {
        return qemu_chr_open_win_con(filename);
    } else
3838
3839
    if (strstart(filename, "file:", &p)) {
        return qemu_chr_open_win_file_out(p);
aurel32 authored
3840
3841
3842
3843
3844
3845
    } else
#endif
#ifdef CONFIG_BRLAPI
    if (!strcmp(filename, "braille")) {
        return chr_baum_init();
    } else
3846
#endif
bellard authored
3847
3848
3849
3850
3851
    {
        return NULL;
    }
}
3852
3853
3854
3855
void qemu_chr_close(CharDriverState *chr)
{
    if (chr->chr_close)
        chr->chr_close(chr);
3856
    qemu_free(chr);
3857
3858
}
3859
/***********************************************************/
bellard authored
3860
/* network device redirectors */
3861
3862
__attribute__ (( unused ))
3863
static void hex_dump(FILE *f, const uint8_t *buf, int size)
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
{
    int len, i, j, c;

    for(i=0;i<size;i+=16) {
        len = size - i;
        if (len > 16)
            len = 16;
        fprintf(f, "%08x ", i);
        for(j=0;j<16;j++) {
            if (j < len)
                fprintf(f, " %02x", buf[i+j]);
            else
                fprintf(f, "   ");
        }
        fprintf(f, " ");
        for(j=0;j<len;j++) {
            c = buf[i+j];
            if (c < ' ' || c > '~')
                c = '.';
            fprintf(f, "%c", c);
        }
        fprintf(f, "\n");
    }
}
bellard authored
3889
static int parse_macaddr(uint8_t *macaddr, const char *p)
3890
{
bellard authored
3891
    int i;
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
    char *last_char;
    long int offset;

    errno = 0;
    offset = strtol(p, &last_char, 0);    
    if (0 == errno && '\0' == *last_char &&
            offset >= 0 && offset <= 0xFFFFFF) {
        macaddr[3] = (offset & 0xFF0000) >> 16;
        macaddr[4] = (offset & 0xFF00) >> 8;
        macaddr[5] = offset & 0xFF;
        return 0;
    } else {
        for(i = 0; i < 6; i++) {
            macaddr[i] = strtol(p, (char **)&p, 16);
            if (i == 5) {
                if (*p != '\0')
                    return -1;
            } else {
                if (*p != ':' && *p != '-')
                    return -1;
                p++;
            }
bellard authored
3914
        }
3915
        return 0;    
bellard authored
3916
    }
3917
3918

    return -1;
3919
}
3920
bellard authored
3921
static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3922
{
bellard authored
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
    const char *p, *p1;
    int len;
    p = *pp;
    p1 = strchr(p, sep);
    if (!p1)
        return -1;
    len = p1 - p;
    p1++;
    if (buf_size > 0) {
        if (len > buf_size - 1)
            len = buf_size - 1;
        memcpy(buf, p, len);
        buf[len] = '\0';
    }
    *pp = p1;
    return 0;
3939
3940
}
3941
3942
3943
3944
3945
3946
3947
int parse_host_src_port(struct sockaddr_in *haddr,
                        struct sockaddr_in *saddr,
                        const char *input_str)
{
    char *str = strdup(input_str);
    char *host_str = str;
    char *src_str;
3948
    const char *src_str2;
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
    char *ptr;

    /*
     * Chop off any extra arguments at the end of the string which
     * would start with a comma, then fill in the src port information
     * if it was provided else use the "any address" and "any port".
     */
    if ((ptr = strchr(str,',')))
        *ptr = '\0';

    if ((src_str = strchr(input_str,'@'))) {
        *src_str = '\0';
        src_str++;
    }

    if (parse_host_port(haddr, host_str) < 0)
        goto fail;
3967
    src_str2 = src_str;
3968
    if (!src_str || *src_str == '\0')
3969
        src_str2 = ":0";
3970
3971
    if (parse_host_port(saddr, src_str2) < 0)
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
        goto fail;

    free(str);
    return(0);

fail:
    free(str);
    return -1;
}
bellard authored
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
int parse_host_port(struct sockaddr_in *saddr, const char *str)
{
    char buf[512];
    struct hostent *he;
    const char *p, *r;
    int port;

    p = str;
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
        return -1;
    saddr->sin_family = AF_INET;
    if (buf[0] == '\0') {
        saddr->sin_addr.s_addr = 0;
    } else {
        if (isdigit(buf[0])) {
            if (!inet_aton(buf, &saddr->sin_addr))
                return -1;
        } else {
            if ((he = gethostbyname(buf)) == NULL)
                return - 1;
            saddr->sin_addr = *(struct in_addr *)he->h_addr;
        }
    }
    port = strtol(p, (char **)&r, 0);
    if (r == p)
        return -1;
    saddr->sin_port = htons(port);
    return 0;
}
4011
4012
4013
#ifndef _WIN32
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
{
    const char *p;
    int len;

    len = MIN(108, strlen(str));
    p = strchr(str, ',');
    if (p)
	len = MIN(len, p - str);

    memset(uaddr, 0, sizeof(*uaddr));

    uaddr->sun_family = AF_UNIX;
    memcpy(uaddr->sun_path, str, len);

    return 0;
}
4030
#endif
4031
bellard authored
4032
4033
/* find or alloc a new VLAN */
VLANState *qemu_find_vlan(int id)
4034
{
bellard authored
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
    VLANState **pvlan, *vlan;
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
        if (vlan->id == id)
            return vlan;
    }
    vlan = qemu_mallocz(sizeof(VLANState));
    if (!vlan)
        return NULL;
    vlan->id = id;
    vlan->next = NULL;
    pvlan = &first_vlan;
    while (*pvlan != NULL)
        pvlan = &(*pvlan)->next;
    *pvlan = vlan;
    return vlan;
4050
4051
}
bellard authored
4052
VLANClientState *qemu_new_vlan_client(VLANState *vlan,
4053
4054
4055
                                      IOReadHandler *fd_read,
                                      IOCanRWHandler *fd_can_read,
                                      void *opaque)
4056
{
bellard authored
4057
4058
4059
4060
4061
    VLANClientState *vc, **pvc;
    vc = qemu_mallocz(sizeof(VLANClientState));
    if (!vc)
        return NULL;
    vc->fd_read = fd_read;
4062
    vc->fd_can_read = fd_can_read;
bellard authored
4063
4064
4065
4066
4067
4068
4069
4070
4071
    vc->opaque = opaque;
    vc->vlan = vlan;

    vc->next = NULL;
    pvc = &vlan->first_client;
    while (*pvc != NULL)
        pvc = &(*pvc)->next;
    *pvc = vc;
    return vc;
4072
4073
}
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
void qemu_del_vlan_client(VLANClientState *vc)
{
    VLANClientState **pvc = &vc->vlan->first_client;

    while (*pvc != NULL)
        if (*pvc == vc) {
            *pvc = vc->next;
            free(vc);
            break;
        } else
            pvc = &(*pvc)->next;
}
4087
4088
4089
4090
4091
4092
4093
int qemu_can_send_packet(VLANClientState *vc1)
{
    VLANState *vlan = vc1->vlan;
    VLANClientState *vc;

    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
        if (vc != vc1) {
4094
4095
            if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
                return 1;
4096
4097
        }
    }
4098
    return 0;
4099
4100
}
bellard authored
4101
void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
4102
{
bellard authored
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
    VLANState *vlan = vc1->vlan;
    VLANClientState *vc;

#if 0
    printf("vlan %d send:\n", vlan->id);
    hex_dump(stdout, buf, size);
#endif
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
        if (vc != vc1) {
            vc->fd_read(vc->opaque, buf, size);
        }
    }
4115
4116
}
4117
4118
4119
4120
4121
#if defined(CONFIG_SLIRP)

/* slirp network adapter */

static int slirp_inited;
bellard authored
4122
static VLANClientState *slirp_vc;
4123
4124
4125

int slirp_can_output(void)
{
4126
    return !slirp_vc || qemu_can_send_packet(slirp_vc);
4127
4128
4129
}

void slirp_output(const uint8_t *pkt, int pkt_len)
4130
{
4131
#if 0
bellard authored
4132
    printf("slirp output:\n");
4133
4134
    hex_dump(stdout, pkt, pkt_len);
#endif
4135
4136
    if (!slirp_vc)
        return;
bellard authored
4137
    qemu_send_packet(slirp_vc, pkt, pkt_len);
4138
4139
}
bellard authored
4140
static void slirp_receive(void *opaque, const uint8_t *buf, int size)
4141
4142
{
#if 0
bellard authored
4143
    printf("slirp input:\n");
4144
4145
4146
4147
4148
    hex_dump(stdout, buf, size);
#endif
    slirp_input(buf, size);
}
bellard authored
4149
static int net_slirp_init(VLANState *vlan)
4150
4151
4152
4153
4154
{
    if (!slirp_inited) {
        slirp_inited = 1;
        slirp_init();
    }
4155
    slirp_vc = qemu_new_vlan_client(vlan,
4156
                                    slirp_receive, NULL, NULL);
bellard authored
4157
    snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
bellard authored
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
    return 0;
}

static void net_slirp_redir(const char *redir_str)
{
    int is_udp;
    char buf[256], *r;
    const char *p;
    struct in_addr guest_addr;
    int host_port, guest_port;
4168
bellard authored
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
    if (!slirp_inited) {
        slirp_inited = 1;
        slirp_init();
    }

    p = redir_str;
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
        goto fail;
    if (!strcmp(buf, "tcp")) {
        is_udp = 0;
    } else if (!strcmp(buf, "udp")) {
        is_udp = 1;
    } else {
        goto fail;
    }

    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
        goto fail;
    host_port = strtol(buf, &r, 0);
    if (r == buf)
        goto fail;

    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
        goto fail;
    if (buf[0] == '\0') {
        pstrcpy(buf, sizeof(buf), "10.0.2.15");
    }
    if (!inet_aton(buf, &guest_addr))
        goto fail;
4198
bellard authored
4199
4200
4201
    guest_port = strtol(p, &r, 0);
    if (r == p)
        goto fail;
4202
bellard authored
4203
4204
4205
4206
4207
4208
4209
4210
4211
    if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
        fprintf(stderr, "qemu: could not set up redirection\n");
        exit(1);
    }
    return;
 fail:
    fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
    exit(1);
}
4212
bellard authored
4213
4214
#ifndef _WIN32
bellard authored
4215
4216
char smb_dir[1024];
4217
static void erase_dir(char *dir_name)
bellard authored
4218
4219
4220
4221
4222
4223
{
    DIR *d;
    struct dirent *de;
    char filename[1024];

    /* erase all the files in the directory */
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
    if ((d = opendir(dir_name)) != 0) {
        for(;;) {
            de = readdir(d);
            if (!de)
                break;
            if (strcmp(de->d_name, ".") != 0 &&
                strcmp(de->d_name, "..") != 0) {
                snprintf(filename, sizeof(filename), "%s/%s",
                         smb_dir, de->d_name);
                if (unlink(filename) != 0)  /* is it a directory? */
                    erase_dir(filename);
            }
bellard authored
4236
        }
4237
4238
        closedir(d);
        rmdir(dir_name);
bellard authored
4239
    }
4240
4241
4242
4243
4244
4245
}

/* automatic user mode samba server configuration */
static void smb_exit(void)
{
    erase_dir(smb_dir);
bellard authored
4246
4247
4248
}

/* automatic user mode samba server configuration */
4249
static void net_slirp_smb(const char *exported_dir)
bellard authored
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
{
    char smb_conf[1024];
    char smb_cmdline[1024];
    FILE *f;

    if (!slirp_inited) {
        slirp_inited = 1;
        slirp_init();
    }

    /* XXX: better tmp dir construction */
    snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
    if (mkdir(smb_dir, 0700) < 0) {
        fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
        exit(1);
    }
    snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
4267
bellard authored
4268
4269
4270
4271
4272
    f = fopen(smb_conf, "w");
    if (!f) {
        fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
        exit(1);
    }
4273
    fprintf(f,
bellard authored
4274
            "[global]\n"
bellard authored
4275
4276
4277
            "private dir=%s\n"
            "smb ports=0\n"
            "socket address=127.0.0.1\n"
bellard authored
4278
4279
4280
4281
            "pid directory=%s\n"
            "lock directory=%s\n"
            "log file=%s/log.smbd\n"
            "smb passwd file=%s/smbpasswd\n"
bellard authored
4282
            "security = share\n"
bellard authored
4283
4284
4285
4286
4287
            "[qemu]\n"
            "path=%s\n"
            "read only=no\n"
            "guest ok=yes\n",
            smb_dir,
bellard authored
4288
            smb_dir,
bellard authored
4289
4290
4291
4292
4293
4294
4295
4296
            smb_dir,
            smb_dir,
            smb_dir,
            exported_dir
            );
    fclose(f);
    atexit(smb_exit);
4297
4298
    snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
             SMBD_COMMAND, smb_conf);
4299
bellard authored
4300
4301
    slirp_add_exec(0, smb_cmdline, 4, 139);
}
bellard authored
4302
bellard authored
4303
#endif /* !defined(_WIN32) */
4304
4305
4306
4307
void do_info_slirp(void)
{
    slirp_stats();
}
bellard authored
4308
4309
4310
4311
#endif /* CONFIG_SLIRP */

#if !defined(_WIN32)
bellard authored
4312
4313
4314
4315

typedef struct TAPState {
    VLANClientState *vc;
    int fd;
4316
    char down_script[1024];
bellard authored
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
} TAPState;

static void tap_receive(void *opaque, const uint8_t *buf, int size)
{
    TAPState *s = opaque;
    int ret;
    for(;;) {
        ret = write(s->fd, buf, size);
        if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
        } else {
            break;
        }
    }
}

static void tap_send(void *opaque)
{
    TAPState *s = opaque;
    uint8_t buf[4096];
    int size;
4338
4339
4340
4341
4342
4343
4344
#ifdef __sun__
    struct strbuf sbuf;
    int f = 0;
    sbuf.maxlen = sizeof(buf);
    sbuf.buf = buf;
    size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
#else
bellard authored
4345
    size = read(s->fd, buf, sizeof(buf));
4346
#endif
bellard authored
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
    if (size > 0) {
        qemu_send_packet(s->vc, buf, size);
    }
}

/* fd support */

static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
{
    TAPState *s;

    s = qemu_mallocz(sizeof(TAPState));
    if (!s)
        return NULL;
    s->fd = fd;
4362
    s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
bellard authored
4363
4364
4365
4366
4367
    qemu_set_fd_handler(s->fd, tap_send, NULL, s);
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
    return s;
}
4368
#if defined (_BSD) || defined (__FreeBSD_kernel__)
bellard authored
4369
static int tap_open(char *ifname, int ifname_size)
bellard authored
4370
4371
4372
4373
{
    int fd;
    char *dev;
    struct stat s;
4374
4375
    TFR(fd = open("/dev/tap", O_RDWR));
bellard authored
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
    if (fd < 0) {
        fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
        return -1;
    }

    fstat(fd, &s);
    dev = devname(s.st_rdev, S_IFCHR);
    pstrcpy(ifname, ifname_size, dev);

    fcntl(fd, F_SETFL, O_NONBLOCK);
    return fd;
}
bellard authored
4388
#elif defined(__sun__)
4389
#define TUNNEWPPA       (('T'<<16) | 0x0001)
4390
4391
/*
 * Allocate TAP device, returns opened fd.
4392
 * Stores dev name in the first arg(must be large enough).
4393
 */
4394
int tap_alloc(char *dev, size_t dev_size)
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
{
    int tap_fd, if_fd, ppa = -1;
    static int ip_fd = 0;
    char *ptr;

    static int arp_fd = 0;
    int ip_muxid, arp_muxid;
    struct strioctl  strioc_if, strioc_ppa;
    int link_type = I_PLINK;;
    struct lifreq ifr;
    char actual_name[32] = "";

    memset(&ifr, 0x0, sizeof(ifr));

    if( *dev ){
4410
4411
       ptr = dev;
       while( *ptr && !isdigit((int)*ptr) ) ptr++;
4412
4413
4414
4415
4416
4417
4418
       ppa = atoi(ptr);
    }

    /* Check if IP device was opened */
    if( ip_fd )
       close(ip_fd);
4419
4420
    TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
    if (ip_fd < 0) {
4421
4422
4423
4424
       syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
       return -1;
    }
4425
4426
    TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
    if (tap_fd < 0) {
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
       syslog(LOG_ERR, "Can't open /dev/tap");
       return -1;
    }

    /* Assign a new PPA and get its unit number. */
    strioc_ppa.ic_cmd = TUNNEWPPA;
    strioc_ppa.ic_timout = 0;
    strioc_ppa.ic_len = sizeof(ppa);
    strioc_ppa.ic_dp = (char *)&ppa;
    if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
       syslog (LOG_ERR, "Can't assign new interface");
4439
4440
    TFR(if_fd = open("/dev/tap", O_RDWR, 0));
    if (if_fd < 0) {
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
       syslog(LOG_ERR, "Can't open /dev/tap (2)");
       return -1;
    }
    if(ioctl(if_fd, I_PUSH, "ip") < 0){
       syslog(LOG_ERR, "Can't push IP module");
       return -1;
    }

    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
	syslog(LOG_ERR, "Can't get flags\n");

    snprintf (actual_name, 32, "tap%d", ppa);
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));

    ifr.lifr_ppa = ppa;
    /* Assign ppa according to the unit number returned by tun device */

    if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
        syslog (LOG_ERR, "Can't set PPA %d", ppa);
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
        syslog (LOG_ERR, "Can't get flags\n");
    /* Push arp module to if_fd */
    if (ioctl (if_fd, I_PUSH, "arp") < 0)
        syslog (LOG_ERR, "Can't push ARP module (2)");

    /* Push arp module to ip_fd */
    if (ioctl (ip_fd, I_POP, NULL) < 0)
        syslog (LOG_ERR, "I_POP failed\n");
    if (ioctl (ip_fd, I_PUSH, "arp") < 0)
        syslog (LOG_ERR, "Can't push ARP module (3)\n");
    /* Open arp_fd */
4472
4473
    TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
    if (arp_fd < 0)
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
       syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");

    /* Set ifname to arp */
    strioc_if.ic_cmd = SIOCSLIFNAME;
    strioc_if.ic_timout = 0;
    strioc_if.ic_len = sizeof(ifr);
    strioc_if.ic_dp = (char *)&ifr;
    if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
        syslog (LOG_ERR, "Can't set ifname to arp\n");
    }

    if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
       syslog(LOG_ERR, "Can't link TAP device to IP");
       return -1;
    }

    if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
        syslog (LOG_ERR, "Can't link TAP device to ARP");

    close (if_fd);

    memset(&ifr, 0x0, sizeof(ifr));
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
    ifr.lifr_ip_muxid  = ip_muxid;
    ifr.lifr_arp_muxid = arp_muxid;

    if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
    {
      ioctl (ip_fd, I_PUNLINK , arp_muxid);
      ioctl (ip_fd, I_PUNLINK, ip_muxid);
      syslog (LOG_ERR, "Can't set multiplexor id");
    }
4507
    snprintf(dev, dev_size, "tap%d", ppa);
4508
4509
4510
    return tap_fd;
}
bellard authored
4511
4512
static int tap_open(char *ifname, int ifname_size)
{
4513
4514
    char  dev[10]="";
    int fd;
4515
    if( (fd = tap_alloc(dev, sizeof(dev))) < 0 ){
4516
4517
4518
4519
4520
4521
       fprintf(stderr, "Cannot allocate TAP device\n");
       return -1;
    }
    pstrcpy(ifname, ifname_size, dev);
    fcntl(fd, F_SETFL, O_NONBLOCK);
    return fd;
bellard authored
4522
}
bellard authored
4523
#else
bellard authored
4524
static int tap_open(char *ifname, int ifname_size)
4525
{
4526
    struct ifreq ifr;
4527
    int fd, ret;
4528
4529
    TFR(fd = open("/dev/net/tun", O_RDWR));
4530
4531
4532
    if (fd < 0) {
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
        return -1;
4533
    }
4534
4535
    memset(&ifr, 0, sizeof(ifr));
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
bellard authored
4536
4537
4538
4539
    if (ifname[0] != '\0')
        pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
    else
        pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4540
4541
4542
4543
4544
4545
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
    if (ret != 0) {
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
        close(fd);
        return -1;
    }
4546
    pstrcpy(ifname, ifname_size, ifr.ifr_name);
4547
    fcntl(fd, F_SETFL, O_NONBLOCK);
4548
4549
    return fd;
}
bellard authored
4550
#endif
4551
4552
static int launch_script(const char *setup_script, const char *ifname, int fd)
bellard authored
4553
{
4554
    int pid, status;
bellard authored
4555
4556
4557
    char *args[3];
    char **parg;
4558
        /* try to launch network script */
bellard authored
4559
4560
4561
        pid = fork();
        if (pid >= 0) {
            if (pid == 0) {
4562
4563
4564
4565
4566
4567
4568
4569
                int open_max = sysconf (_SC_OPEN_MAX), i;
                for (i = 0; i < open_max; i++)
                    if (i != STDIN_FILENO &&
                        i != STDOUT_FILENO &&
                        i != STDERR_FILENO &&
                        i != fd)
                        close(i);
bellard authored
4570
4571
                parg = args;
                *parg++ = (char *)setup_script;
4572
                *parg++ = (char *)ifname;
bellard authored
4573
4574
                *parg++ = NULL;
                execv(setup_script, args);
4575
                _exit(1);
bellard authored
4576
4577
4578
4579
4580
4581
4582
4583
4584
            }
            while (waitpid(pid, &status, 0) != pid);
            if (!WIFEXITED(status) ||
                WEXITSTATUS(status) != 0) {
                fprintf(stderr, "%s: could not launch network script\n",
                        setup_script);
                return -1;
            }
        }
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
    return 0;
}

static int net_tap_init(VLANState *vlan, const char *ifname1,
                        const char *setup_script, const char *down_script)
{
    TAPState *s;
    int fd;
    char ifname[128];

    if (ifname1 != NULL)
        pstrcpy(ifname, sizeof(ifname), ifname1);
    else
        ifname[0] = '\0';
    TFR(fd = tap_open(ifname, sizeof(ifname)));
    if (fd < 0)
        return -1;

    if (!setup_script || !strcmp(setup_script, "no"))
        setup_script = "";
    if (setup_script[0] != '\0') {
	if (launch_script(setup_script, ifname, fd))
	    return -1;
bellard authored
4608
4609
4610
4611
    }
    s = net_tap_fd_init(vlan, fd);
    if (!s)
        return -1;
4612
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
bellard authored
4613
             "tap: ifname=%s setup_script=%s", ifname, setup_script);
4614
4615
    if (down_script && strcmp(down_script, "no"))
        snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
bellard authored
4616
4617
4618
    return 0;
}
bellard authored
4619
4620
#endif /* !_WIN32 */
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
#if defined(CONFIG_VDE)
typedef struct VDEState {
    VLANClientState *vc;
    VDECONN *vde;
} VDEState;

static void vde_to_qemu(void *opaque)
{
    VDEState *s = opaque;
    uint8_t buf[4096];
    int size;

    size = vde_recv(s->vde, buf, sizeof(buf), 0);
    if (size > 0) {
        qemu_send_packet(s->vc, buf, size);
    }
}

static void vde_from_qemu(void *opaque, const uint8_t *buf, int size)
{
    VDEState *s = opaque;
    int ret;
    for(;;) {
        ret = vde_send(s->vde, buf, size, 0);
        if (ret < 0 && errno == EINTR) {
        } else {
            break;
        }
    }
}

static int net_vde_init(VLANState *vlan, const char *sock, int port,
                        const char *group, int mode)
{
    VDEState *s;
    char *init_group = strlen(group) ? (char *)group : NULL;
    char *init_sock = strlen(sock) ? (char *)sock : NULL;

    struct vde_open_args args = {
        .port = port,
        .group = init_group,
        .mode = mode,
    };

    s = qemu_mallocz(sizeof(VDEState));
    if (!s)
        return -1;
    s->vde = vde_open(init_sock, "QEMU", &args);
    if (!s->vde){
        free(s);
        return -1;
    }
    s->vc = qemu_new_vlan_client(vlan, vde_from_qemu, NULL, s);
    qemu_set_fd_handler(vde_datafd(s->vde), vde_to_qemu, NULL, s);
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), "vde: sock=%s fd=%d",
             sock, vde_datafd(s->vde));
    return 0;
}
#endif
bellard authored
4681
4682
4683
4684
4685
4686
4687
4688
/* network connection */
typedef struct NetSocketState {
    VLANClientState *vc;
    int fd;
    int state; /* 0 = getting length, 1 = getting data */
    int index;
    int packet_len;
    uint8_t buf[4096];
4689
    struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
bellard authored
4690
4691
4692
4693
4694
4695
4696
4697
4698
} NetSocketState;

typedef struct NetSocketListenState {
    VLANState *vlan;
    int fd;
} NetSocketListenState;

/* XXX: we consider we can send the whole packet without blocking */
static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4699
{
bellard authored
4700
4701
4702
4703
    NetSocketState *s = opaque;
    uint32_t len;
    len = htonl(size);
bellard authored
4704
4705
    send_all(s->fd, (const uint8_t *)&len, sizeof(len));
    send_all(s->fd, buf, size);
4706
4707
}
4708
4709
4710
static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
{
    NetSocketState *s = opaque;
4711
    sendto(s->fd, buf, size, 0,
4712
4713
4714
           (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
}
bellard authored
4715
static void net_socket_send(void *opaque)
4716
{
bellard authored
4717
    NetSocketState *s = opaque;
bellard authored
4718
    int l, size, err;
bellard authored
4719
4720
4721
    uint8_t buf1[4096];
    const uint8_t *buf;
bellard authored
4722
4723
4724
    size = recv(s->fd, buf1, sizeof(buf1), 0);
    if (size < 0) {
        err = socket_error();
4725
        if (err != EWOULDBLOCK)
bellard authored
4726
4727
            goto eoc;
    } else if (size == 0) {
bellard authored
4728
        /* end of connection */
bellard authored
4729
    eoc:
bellard authored
4730
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
bellard authored
4731
        closesocket(s->fd);
bellard authored
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
        return;
    }
    buf = buf1;
    while (size > 0) {
        /* reassemble a packet from the network */
        switch(s->state) {
        case 0:
            l = 4 - s->index;
            if (l > size)
                l = size;
            memcpy(s->buf + s->index, buf, l);
            buf += l;
            size -= l;
            s->index += l;
            if (s->index == 4) {
                /* got length */
                s->packet_len = ntohl(*(uint32_t *)s->buf);
                s->index = 0;
                s->state = 1;
            }
            break;
        case 1:
            l = s->packet_len - s->index;
            if (l > size)
                l = size;
            memcpy(s->buf + s->index, buf, l);
            s->index += l;
            buf += l;
            size -= l;
            if (s->index >= s->packet_len) {
                qemu_send_packet(s->vc, s->buf, s->packet_len);
                s->index = 0;
                s->state = 0;
            }
            break;
        }
    }
4769
4770
}
4771
4772
4773
4774
4775
4776
static void net_socket_send_dgram(void *opaque)
{
    NetSocketState *s = opaque;
    int size;

    size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4777
    if (size < 0)
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
        return;
    if (size == 0) {
        /* end of connection */
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
        return;
    }
    qemu_send_packet(s->vc, s->buf, size);
}

static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
{
    struct ip_mreq imr;
    int fd;
    int val, ret;
    if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
	fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4794
		inet_ntoa(mcastaddr->sin_addr),
bellard authored
4795
                (int)ntohl(mcastaddr->sin_addr.s_addr));
4796
4797
4798
4799
4800
4801
4802
4803
4804
	return -1;

    }
    fd = socket(PF_INET, SOCK_DGRAM, 0);
    if (fd < 0) {
        perror("socket(PF_INET, SOCK_DGRAM)");
        return -1;
    }
bellard authored
4805
    val = 1;
4806
    ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
bellard authored
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
                   (const char *)&val, sizeof(val));
    if (ret < 0) {
	perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
	goto fail;
    }

    ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
    if (ret < 0) {
        perror("bind");
        goto fail;
    }
4818
4819
4820
4821
4822
    /* Add host to multicast group */
    imr.imr_multiaddr = mcastaddr->sin_addr;
    imr.imr_interface.s_addr = htonl(INADDR_ANY);
4823
    ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
bellard authored
4824
                     (const char *)&imr, sizeof(struct ip_mreq));
4825
4826
4827
4828
4829
4830
4831
    if (ret < 0) {
	perror("setsockopt(IP_ADD_MEMBERSHIP)");
	goto fail;
    }

    /* Force mcast msgs to loopback (eg. several QEMUs in same host */
    val = 1;
4832
    ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
bellard authored
4833
                   (const char *)&val, sizeof(val));
4834
4835
4836
4837
4838
    if (ret < 0) {
	perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
	goto fail;
    }
bellard authored
4839
    socket_set_nonblock(fd);
4840
4841
    return fd;
fail:
4842
    if (fd >= 0)
4843
        closesocket(fd);
4844
4845
4846
    return -1;
}
4847
static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4848
4849
4850
4851
4852
4853
4854
4855
                                          int is_connected)
{
    struct sockaddr_in saddr;
    int newfd;
    socklen_t saddr_len;
    NetSocketState *s;

    /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4856
     * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
     * by ONLY ONE process: we must "clone" this dgram socket --jjo
     */

    if (is_connected) {
	if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
	    /* must be bound */
	    if (saddr.sin_addr.s_addr==0) {
		fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
			fd);
		return NULL;
	    }
	    /* clone dgram socket */
	    newfd = net_socket_mcast_create(&saddr);
	    if (newfd < 0) {
		/* error already reported by net_socket_mcast_create() */
		close(fd);
		return NULL;
	    }
	    /* clone newfd to fd, close newfd */
	    dup2(newfd, fd);
	    close(newfd);
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
	} else {
	    fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
		    fd, strerror(errno));
	    return NULL;
	}
    }

    s = qemu_mallocz(sizeof(NetSocketState));
    if (!s)
        return NULL;
    s->fd = fd;
4891
    s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4892
4893
4894
4895
4896
4897
    qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);

    /* mcast: save bound address as dst */
    if (is_connected) s->dgram_dst=saddr;

    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4898
	    "socket: fd=%d (%s mcast=%s:%d)",
4899
4900
4901
4902
4903
	    fd, is_connected? "cloned" : "",
	    inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
    return s;
}
bellard authored
4904
static void net_socket_connect(void *opaque)
4905
{
bellard authored
4906
4907
4908
    NetSocketState *s = opaque;
    qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
}
4909
4910
static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
bellard authored
4911
4912
4913
4914
4915
4916
4917
                                          int is_connected)
{
    NetSocketState *s;
    s = qemu_mallocz(sizeof(NetSocketState));
    if (!s)
        return NULL;
    s->fd = fd;
4918
    s->vc = qemu_new_vlan_client(vlan,
4919
                                 net_socket_receive, NULL, s);
bellard authored
4920
4921
4922
4923
4924
4925
4926
4927
4928
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
             "socket: fd=%d", fd);
    if (is_connected) {
        net_socket_connect(s);
    } else {
        qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
    }
    return s;
}
4929
4930
static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4931
4932
4933
4934
                                          int is_connected)
{
    int so_type=-1, optlen=sizeof(so_type);
4935
4936
    if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type,
        (socklen_t *)&optlen)< 0) {
ths authored
4937
	fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
	return NULL;
    }
    switch(so_type) {
    case SOCK_DGRAM:
        return net_socket_fd_init_dgram(vlan, fd, is_connected);
    case SOCK_STREAM:
        return net_socket_fd_init_stream(vlan, fd, is_connected);
    default:
        /* who knows ... this could be a eg. a pty, do warn and continue as stream */
        fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
        return net_socket_fd_init_stream(vlan, fd, is_connected);
    }
    return NULL;
}
bellard authored
4953
4954
static void net_socket_accept(void *opaque)
{
4955
    NetSocketListenState *s = opaque;
bellard authored
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
    NetSocketState *s1;
    struct sockaddr_in saddr;
    socklen_t len;
    int fd;

    for(;;) {
        len = sizeof(saddr);
        fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
        if (fd < 0 && errno != EINTR) {
            return;
        } else if (fd >= 0) {
            break;
4968
        }
4969
    }
4970
    s1 = net_socket_fd_init(s->vlan, fd, 1);
bellard authored
4971
    if (!s1) {
4972
        closesocket(fd);
bellard authored
4973
4974
    } else {
        snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4975
                 "socket: connection from %s:%d",
bellard authored
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
                 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
    }
}

static int net_socket_listen_init(VLANState *vlan, const char *host_str)
{
    NetSocketListenState *s;
    int fd, val, ret;
    struct sockaddr_in saddr;

    if (parse_host_port(&saddr, host_str) < 0)
        return -1;
4988
bellard authored
4989
4990
4991
4992
4993
4994
4995
4996
4997
    s = qemu_mallocz(sizeof(NetSocketListenState));
    if (!s)
        return -1;

    fd = socket(PF_INET, SOCK_STREAM, 0);
    if (fd < 0) {
        perror("socket");
        return -1;
    }
bellard authored
4998
    socket_set_nonblock(fd);
bellard authored
4999
5000
5001

    /* allow fast reuse */
    val = 1;
bellard authored
5002
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
5003
bellard authored
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
    ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
    if (ret < 0) {
        perror("bind");
        return -1;
    }
    ret = listen(fd, 0);
    if (ret < 0) {
        perror("listen");
        return -1;
    }
    s->vlan = vlan;
    s->fd = fd;
    qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
5017
    return 0;
5018
5019
}
bellard authored
5020
static int net_socket_connect_init(VLANState *vlan, const char *host_str)
5021
{
bellard authored
5022
    NetSocketState *s;
bellard authored
5023
    int fd, connected, ret, err;
bellard authored
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
    struct sockaddr_in saddr;

    if (parse_host_port(&saddr, host_str) < 0)
        return -1;

    fd = socket(PF_INET, SOCK_STREAM, 0);
    if (fd < 0) {
        perror("socket");
        return -1;
    }
bellard authored
5034
    socket_set_nonblock(fd);
bellard authored
5035
5036
5037
5038
5039

    connected = 0;
    for(;;) {
        ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
        if (ret < 0) {
bellard authored
5040
5041
5042
            err = socket_error();
            if (err == EINTR || err == EWOULDBLOCK) {
            } else if (err == EINPROGRESS) {
bellard authored
5043
                break;
5044
5045
5046
5047
#ifdef _WIN32
            } else if (err == WSAEALREADY) {
                break;
#endif
bellard authored
5048
5049
            } else {
                perror("connect");
bellard authored
5050
                closesocket(fd);
bellard authored
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
                return -1;
            }
        } else {
            connected = 1;
            break;
        }
    }
    s = net_socket_fd_init(vlan, fd, connected);
    if (!s)
        return -1;
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
5062
             "socket: connect to %s:%d",
bellard authored
5063
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
5064
    return 0;
5065
}
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
{
    NetSocketState *s;
    int fd;
    struct sockaddr_in saddr;

    if (parse_host_port(&saddr, host_str) < 0)
        return -1;


    fd = net_socket_mcast_create(&saddr);
    if (fd < 0)
	return -1;

    s = net_socket_fd_init(vlan, fd, 0);
    if (!s)
        return -1;

    s->dgram_dst = saddr;
5086
5087
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
5088
             "socket: mcast=%s:%d",
5089
5090
5091
5092
5093
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
    return 0;

}
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
static const char *get_opt_name(char *buf, int buf_size, const char *p)
{
    char *q;

    q = buf;
    while (*p != '\0' && *p != '=') {
        if (q && (q - buf) < buf_size - 1)
            *q++ = *p;
        p++;
    }
    if (q)
        *q = '\0';

    return p;
}

static const char *get_opt_value(char *buf, int buf_size, const char *p)
5111
5112
5113
5114
5115
{
    char *q;

    q = buf;
    while (*p != '\0') {
5116
5117
        if (*p == ',') {
            if (*(p + 1) != ',')
5118
5119
                break;
            p++;
5120
        }
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
        if (q && (q - buf) < buf_size - 1)
            *q++ = *p;
        p++;
    }
    if (q)
        *q = '\0';

    return p;
}
bellard authored
5131
5132
5133
5134
5135
5136
5137
5138
static int get_param_value(char *buf, int buf_size,
                           const char *tag, const char *str)
{
    const char *p;
    char option[128];

    p = str;
    for(;;) {
5139
        p = get_opt_name(option, sizeof(option), p);
bellard authored
5140
5141
5142
5143
        if (*p != '=')
            break;
        p++;
        if (!strcmp(tag, option)) {
5144
            (void)get_opt_value(buf, buf_size, p);
5145
            return strlen(buf);
bellard authored
5146
        } else {
5147
            p = get_opt_value(NULL, 0, p);
bellard authored
5148
5149
5150
5151
5152
5153
5154
5155
        }
        if (*p != ',')
            break;
        p++;
    }
    return 0;
}
5156
static int check_params(char *buf, int buf_size,
5157
                        const char * const *params, const char *str)
5158
5159
5160
5161
5162
5163
{
    const char *p;
    int i;

    p = str;
    for(;;) {
5164
        p = get_opt_name(buf, buf_size, p);
5165
5166
5167
5168
5169
5170
5171
5172
        if (*p != '=')
            return -1;
        p++;
        for(i = 0; params[i] != NULL; i++)
            if (!strcmp(params[i], buf))
                break;
        if (params[i] == NULL)
            return -1;
5173
        p = get_opt_value(NULL, 0, p);
5174
5175
5176
5177
5178
5179
5180
        if (*p != ',')
            break;
        p++;
    }
    return 0;
}
5181
static int net_client_init(const char *device, const char *p)
bellard authored
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
{
    char buf[1024];
    int vlan_id, ret;
    VLANState *vlan;

    vlan_id = 0;
    if (get_param_value(buf, sizeof(buf), "vlan", p)) {
        vlan_id = strtol(buf, NULL, 0);
    }
    vlan = qemu_find_vlan(vlan_id);
    if (!vlan) {
        fprintf(stderr, "Could not create vlan %d\n", vlan_id);
        return -1;
    }
    if (!strcmp(device, "nic")) {
        NICInfo *nd;
        uint8_t *macaddr;

        if (nb_nics >= MAX_NICS) {
            fprintf(stderr, "Too Many NICs\n");
            return -1;
        }
        nd = &nd_table[nb_nics];
        macaddr = nd->macaddr;
        macaddr[0] = 0x52;
        macaddr[1] = 0x54;
        macaddr[2] = 0x00;
        macaddr[3] = 0x12;
        macaddr[4] = 0x34;
        macaddr[5] = 0x56 + nb_nics;

        if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
            if (parse_macaddr(macaddr, buf) < 0) {
                fprintf(stderr, "invalid syntax for ethernet address\n");
                return -1;
            }
        }
5219
5220
5221
        if (get_param_value(buf, sizeof(buf), "model", p)) {
            nd->model = strdup(buf);
        }
bellard authored
5222
5223
        nd->vlan = vlan;
        nb_nics++;
5224
        vlan->nb_guest_devs++;
bellard authored
5225
5226
5227
5228
5229
5230
5231
5232
5233
        ret = 0;
    } else
    if (!strcmp(device, "none")) {
        /* does nothing. It is needed to signal that no network cards
           are wanted */
        ret = 0;
    } else
#ifdef CONFIG_SLIRP
    if (!strcmp(device, "user")) {
pbrook authored
5234
        if (get_param_value(buf, sizeof(buf), "hostname", p)) {
bellard authored
5235
            pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
pbrook authored
5236
        }
5237
        vlan->nb_host_devs++;
bellard authored
5238
5239
5240
        ret = net_slirp_init(vlan);
    } else
#endif
bellard authored
5241
5242
5243
5244
5245
5246
5247
#ifdef _WIN32
    if (!strcmp(device, "tap")) {
        char ifname[64];
        if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
            fprintf(stderr, "tap: no interface name\n");
            return -1;
        }
5248
        vlan->nb_host_devs++;
bellard authored
5249
5250
5251
        ret = tap_win32_init(vlan, ifname);
    } else
#else
bellard authored
5252
5253
    if (!strcmp(device, "tap")) {
        char ifname[64];
5254
        char setup_script[1024], down_script[1024];
bellard authored
5255
        int fd;
pbrook authored
5256
        vlan->nb_host_devs++;
bellard authored
5257
5258
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
            fd = strtol(buf, NULL, 0);
5259
            fcntl(fd, F_SETFL, O_NONBLOCK);
bellard authored
5260
5261
5262
5263
            ret = -1;
            if (net_tap_fd_init(vlan, fd))
                ret = 0;
        } else {
bellard authored
5264
5265
5266
            if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
                ifname[0] = '\0';
            }
bellard authored
5267
5268
5269
            if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
                pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
            }
5270
5271
5272
5273
            if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
                pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
            }
            ret = net_tap_init(vlan, ifname, setup_script, down_script);
bellard authored
5274
5275
        }
    } else
bellard authored
5276
#endif
bellard authored
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
    if (!strcmp(device, "socket")) {
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
            int fd;
            fd = strtol(buf, NULL, 0);
            ret = -1;
            if (net_socket_fd_init(vlan, fd, 1))
                ret = 0;
        } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
            ret = net_socket_listen_init(vlan, buf);
        } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
            ret = net_socket_connect_init(vlan, buf);
5288
5289
        } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
            ret = net_socket_mcast_init(vlan, buf);
bellard authored
5290
5291
5292
5293
        } else {
            fprintf(stderr, "Unknown socket options: %s\n", p);
            return -1;
        }
5294
        vlan->nb_host_devs++;
bellard authored
5295
    } else
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
#ifdef CONFIG_VDE
    if (!strcmp(device, "vde")) {
        char vde_sock[1024], vde_group[512];
	int vde_port, vde_mode;
        vlan->nb_host_devs++;
        if (get_param_value(vde_sock, sizeof(vde_sock), "sock", p) <= 0) {
	    vde_sock[0] = '\0';
	}
	if (get_param_value(buf, sizeof(buf), "port", p) > 0) {
	    vde_port = strtol(buf, NULL, 10);
	} else {
	    vde_port = 0;
	}
	if (get_param_value(vde_group, sizeof(vde_group), "group", p) <= 0) {
	    vde_group[0] = '\0';
	}
	if (get_param_value(buf, sizeof(buf), "mode", p) > 0) {
	    vde_mode = strtol(buf, NULL, 8);
	} else {
	    vde_mode = 0700;
	}
	ret = net_vde_init(vlan, vde_sock, vde_port, vde_group, vde_mode);
    } else
#endif
bellard authored
5320
5321
5322
5323
5324
5325
5326
    {
        fprintf(stderr, "Unknown network device: %s\n", device);
        return -1;
    }
    if (ret < 0) {
        fprintf(stderr, "Could not initialize device '%s'\n", device);
    }
5327
bellard authored
5328
5329
5330
    return ret;
}
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
static int net_client_parse(const char *str)
{
    const char *p;
    char *q;
    char device[64];

    p = str;
    q = device;
    while (*p != '\0' && *p != ',') {
        if ((q - device) < sizeof(device) - 1)
            *q++ = *p;
        p++;
    }
    *q = '\0';
    if (*p == ',')
        p++;

    return net_client_init(device, p);
}
bellard authored
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
void do_info_network(void)
{
    VLANState *vlan;
    VLANClientState *vc;

    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
        term_printf("VLAN %d devices:\n", vlan->id);
        for(vc = vlan->first_client; vc != NULL; vc = vc->next)
            term_printf("  %s\n", vc->info_str);
    }
}
5362
5363
#define HD_ALIAS "index=%d,media=disk"
5364
5365
5366
5367
5368
5369
#ifdef TARGET_PPC
#define CDROM_ALIAS "index=1,media=cdrom"
#else
#define CDROM_ALIAS "index=2,media=cdrom"
#endif
#define FD_ALIAS "index=%d,if=floppy"
5370
5371
#define PFLASH_ALIAS "if=pflash"
#define MTD_ALIAS "if=mtd"
5372
#define SD_ALIAS "index=0,if=sd"
5373
5374
static int drive_add(const char *file, const char *fmt, ...)
5375
5376
5377
5378
5379
5380
5381
5382
{
    va_list ap;

    if (nb_drives_opt >= MAX_DRIVES) {
        fprintf(stderr, "qemu: too many drives\n");
        exit(1);
    }
5383
    drives_opt[nb_drives_opt].file = file;
5384
    va_start(ap, fmt);
5385
5386
    vsnprintf(drives_opt[nb_drives_opt].opt,
              sizeof(drives_opt[0].opt), fmt, ap);
5387
5388
5389
5390
5391
    va_end(ap);

    return nb_drives_opt++;
}
5392
int drive_get_index(BlockInterfaceType type, int bus, int unit)
5393
5394
5395
5396
5397
5398
{
    int index;

    /* seek interface, bus and unit */

    for (index = 0; index < nb_drives; index++)
5399
        if (drives_table[index].type == type &&
5400
5401
5402
5403
5404
5405
5406
	    drives_table[index].bus == bus &&
	    drives_table[index].unit == unit)
        return index;

    return -1;
}
5407
int drive_get_max_bus(BlockInterfaceType type)
5408
5409
5410
5411
5412
5413
{
    int max_bus;
    int index;

    max_bus = -1;
    for (index = 0; index < nb_drives; index++) {
5414
        if(drives_table[index].type == type &&
5415
5416
5417
5418
5419
5420
           drives_table[index].bus > max_bus)
            max_bus = drives_table[index].bus;
    }
    return max_bus;
}
5421
5422
5423
5424
5425
static void bdrv_format_print(void *opaque, const char *name)
{
    fprintf(stderr, " %s", name);
}
5426
5427
static int drive_init(struct drive_opt *arg, int snapshot,
                      QEMUMachine *machine)
5428
5429
5430
{
    char buf[128];
    char file[1024];
5431
5432
    char devname[128];
    const char *mediastr = "";
5433
    BlockInterfaceType type;
5434
5435
5436
5437
    enum { MEDIA_DISK, MEDIA_CDROM } media;
    int bus_id, unit_id;
    int cyls, heads, secs, translation;
    BlockDriverState *bdrv;
5438
    BlockDriver *drv = NULL;
5439
5440
    int max_devs;
    int index;
5441
5442
    int cache;
    int bdrv_flags;
5443
    char *str = arg->opt;
5444
5445
5446
5447
    static const char * const params[] = { "bus", "unit", "if", "index",
                                           "cyls", "heads", "secs", "trans",
                                           "media", "snapshot", "file",
                                           "cache", "format", NULL };
5448
5449

    if (check_params(buf, sizeof(buf), params, str) < 0) {
5450
         fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
                         buf, str);
         return -1;
    }

    file[0] = 0;
    cyls = heads = secs = 0;
    bus_id = 0;
    unit_id = -1;
    translation = BIOS_ATA_TRANSLATION_AUTO;
    index = -1;
5461
    cache = 1;
5462
5463
5464
5465
5466
5467
5468

    if (!strcmp(machine->name, "realview") ||
        !strcmp(machine->name, "SS-5") ||
        !strcmp(machine->name, "SS-10") ||
        !strcmp(machine->name, "SS-600MP") ||
        !strcmp(machine->name, "versatilepb") ||
        !strcmp(machine->name, "versatileab")) {
5469
        type = IF_SCSI;
5470
        max_devs = MAX_SCSI_DEVS;
5471
        pstrcpy(devname, sizeof(devname), "scsi");
5472
    } else {
5473
        type = IF_IDE;
5474
        max_devs = MAX_IDE_DEVS;
5475
        pstrcpy(devname, sizeof(devname), "ide");
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
    }
    media = MEDIA_DISK;

    /* extract parameters */

    if (get_param_value(buf, sizeof(buf), "bus", str)) {
        bus_id = strtol(buf, NULL, 0);
	if (bus_id < 0) {
	    fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
	    return -1;
	}
    }

    if (get_param_value(buf, sizeof(buf), "unit", str)) {
        unit_id = strtol(buf, NULL, 0);
	if (unit_id < 0) {
	    fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
	    return -1;
	}
    }

    if (get_param_value(buf, sizeof(buf), "if", str)) {
5498
        pstrcpy(devname, sizeof(devname), buf);
5499
        if (!strcmp(buf, "ide")) {
5500
	    type = IF_IDE;
5501
5502
            max_devs = MAX_IDE_DEVS;
        } else if (!strcmp(buf, "scsi")) {
5503
	    type = IF_SCSI;
5504
5505
            max_devs = MAX_SCSI_DEVS;
        } else if (!strcmp(buf, "floppy")) {
5506
	    type = IF_FLOPPY;
5507
5508
            max_devs = 0;
        } else if (!strcmp(buf, "pflash")) {
5509
	    type = IF_PFLASH;
5510
5511
            max_devs = 0;
	} else if (!strcmp(buf, "mtd")) {
5512
	    type = IF_MTD;
5513
5514
            max_devs = 0;
	} else if (!strcmp(buf, "sd")) {
5515
	    type = IF_SD;
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
            max_devs = 0;
	} else {
            fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
            return -1;
	}
    }

    if (get_param_value(buf, sizeof(buf), "index", str)) {
        index = strtol(buf, NULL, 0);
	if (index < 0) {
	    fprintf(stderr, "qemu: '%s' invalid index\n", str);
	    return -1;
	}
    }

    if (get_param_value(buf, sizeof(buf), "cyls", str)) {
        cyls = strtol(buf, NULL, 0);
    }

    if (get_param_value(buf, sizeof(buf), "heads", str)) {
        heads = strtol(buf, NULL, 0);
    }

    if (get_param_value(buf, sizeof(buf), "secs", str)) {
        secs = strtol(buf, NULL, 0);
    }

    if (cyls || heads || secs) {
        if (cyls < 1 || cyls > 16383) {
            fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
	    return -1;
	}
        if (heads < 1 || heads > 16) {
            fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
	    return -1;
	}
        if (secs < 1 || secs > 63) {
            fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
	    return -1;
	}
    }

    if (get_param_value(buf, sizeof(buf), "trans", str)) {
        if (!cyls) {
            fprintf(stderr,
                    "qemu: '%s' trans must be used with cyls,heads and secs\n",
                    str);
            return -1;
        }
        if (!strcmp(buf, "none"))
            translation = BIOS_ATA_TRANSLATION_NONE;
        else if (!strcmp(buf, "lba"))
            translation = BIOS_ATA_TRANSLATION_LBA;
        else if (!strcmp(buf, "auto"))
            translation = BIOS_ATA_TRANSLATION_AUTO;
	else {
            fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
	    return -1;
	}
    }

    if (get_param_value(buf, sizeof(buf), "media", str)) {
        if (!strcmp(buf, "disk")) {
	    media = MEDIA_DISK;
	} else if (!strcmp(buf, "cdrom")) {
            if (cyls || secs || heads) {
                fprintf(stderr,
                        "qemu: '%s' invalid physical CHS format\n", str);
	        return -1;
            }
	    media = MEDIA_CDROM;
	} else {
	    fprintf(stderr, "qemu: '%s' invalid media\n", str);
	    return -1;
	}
    }

    if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
        if (!strcmp(buf, "on"))
	    snapshot = 1;
        else if (!strcmp(buf, "off"))
	    snapshot = 0;
	else {
	    fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
	    return -1;
	}
    }
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
    if (get_param_value(buf, sizeof(buf), "cache", str)) {
        if (!strcmp(buf, "off"))
            cache = 0;
        else if (!strcmp(buf, "on"))
            cache = 1;
        else {
           fprintf(stderr, "qemu: invalid cache option\n");
           return -1;
        }
    }
5615
    if (get_param_value(buf, sizeof(buf), "format", str)) {
5616
5617
5618
5619
5620
5621
       if (strcmp(buf, "?") == 0) {
            fprintf(stderr, "qemu: Supported formats:");
            bdrv_iterate_format(bdrv_format_print, NULL);
            fprintf(stderr, "\n");
	    return -1;
        }
5622
5623
5624
5625
5626
5627
5628
        drv = bdrv_find_format(buf);
        if (!drv) {
            fprintf(stderr, "qemu: '%s' invalid format\n", buf);
            return -1;
        }
    }
5629
5630
5631
5632
    if (arg->file == NULL)
        get_param_value(file, sizeof(file), "file", str);
    else
        pstrcpy(file, sizeof(file), arg->file);
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657

    /* compute bus and unit according index */

    if (index != -1) {
        if (bus_id != 0 || unit_id != -1) {
            fprintf(stderr,
                    "qemu: '%s' index cannot be used with bus and unit\n", str);
            return -1;
        }
        if (max_devs == 0)
        {
            unit_id = index;
            bus_id = 0;
        } else {
            unit_id = index % max_devs;
            bus_id = index / max_devs;
        }
    }

    /* if user doesn't specify a unit_id,
     * try to find the first free
     */

    if (unit_id == -1) {
       unit_id = 0;
5658
       while (drive_get_index(type, bus_id, unit_id) != -1) {
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
           unit_id++;
           if (max_devs && unit_id >= max_devs) {
               unit_id -= max_devs;
               bus_id++;
           }
       }
    }

    /* check unit id */

    if (max_devs && unit_id >= max_devs) {
        fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
                        str, unit_id, max_devs - 1);
        return -1;
    }

    /*
     * ignore multiple definitions
     */
5679
    if (drive_get_index(type, bus_id, unit_id) != -1)
5680
5681
5682
5683
        return 0;

    /* init */
5684
    if (type == IF_IDE || type == IF_SCSI)
5685
        mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
5686
5687
5688
5689
5690
5691
    if (max_devs)
        snprintf(buf, sizeof(buf), "%s%i%s%i",
                 devname, bus_id, mediastr, unit_id);
    else
        snprintf(buf, sizeof(buf), "%s%s%i",
                 devname, mediastr, unit_id);
5692
5693
    bdrv = bdrv_new(buf);
    drives_table[nb_drives].bdrv = bdrv;
5694
    drives_table[nb_drives].type = type;
5695
5696
5697
5698
    drives_table[nb_drives].bus = bus_id;
    drives_table[nb_drives].unit = unit_id;
    nb_drives++;
5699
    switch(type) {
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
    case IF_IDE:
    case IF_SCSI:
        switch(media) {
	case MEDIA_DISK:
            if (cyls != 0) {
                bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
                bdrv_set_translation_hint(bdrv, translation);
            }
	    break;
	case MEDIA_CDROM:
            bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
	    break;
	}
        break;
    case IF_SD:
        /* FIXME: This isn't really a floppy, but it's a reasonable
           approximation.  */
    case IF_FLOPPY:
        bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
        break;
    case IF_PFLASH:
    case IF_MTD:
        break;
    }
    if (!file[0])
        return 0;
5726
5727
5728
5729
5730
    bdrv_flags = 0;
    if (snapshot)
        bdrv_flags |= BDRV_O_SNAPSHOT;
    if (!cache)
        bdrv_flags |= BDRV_O_DIRECT;
5731
    if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0 || qemu_key_check(bdrv, file)) {
5732
5733
5734
5735
5736
5737
5738
        fprintf(stderr, "qemu: could not open disk image %s\n",
                        file);
        return -1;
    }
    return 0;
}
5739
/***********************************************************/
bellard authored
5740
5741
/* USB devices */
pbrook authored
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
static USBPort *used_usb_ports;
static USBPort *free_usb_ports;

/* ??? Maybe change this to register a hub to keep track of the topology.  */
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
                            usb_attachfn attach)
{
    port->opaque = opaque;
    port->index = index;
    port->attach = attach;
    port->next = free_usb_ports;
    free_usb_ports = port;
}
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
int usb_device_add_dev(USBDevice *dev)
{
    USBPort *port;

    /* Find a USB port to add the device to.  */
    port = free_usb_ports;
    if (!port->next) {
        USBDevice *hub;

        /* Create a new hub and chain it on.  */
        free_usb_ports = NULL;
        port->next = used_usb_ports;
        used_usb_ports = port;

        hub = usb_hub_init(VM_USB_HUB_SIZE);
        usb_attach(port, hub);
        port = free_usb_ports;
    }

    free_usb_ports = port->next;
    port->next = used_usb_ports;
    used_usb_ports = port;
    usb_attach(port, dev);
    return 0;
}
bellard authored
5782
5783
5784
5785
5786
static int usb_device_add(const char *devname)
{
    const char *p;
    USBDevice *dev;
pbrook authored
5787
    if (!free_usb_ports)
bellard authored
5788
5789
5790
5791
5792
5793
        return -1;

    if (strstart(devname, "host:", &p)) {
        dev = usb_host_device_open(p);
    } else if (!strcmp(devname, "mouse")) {
        dev = usb_mouse_init();
5794
    } else if (!strcmp(devname, "tablet")) {
balrog authored
5795
5796
5797
        dev = usb_tablet_init();
    } else if (!strcmp(devname, "keyboard")) {
        dev = usb_keyboard_init();
5798
5799
    } else if (strstart(devname, "disk:", &p)) {
        dev = usb_msd_init(p);
5800
5801
    } else if (!strcmp(devname, "wacom-tablet")) {
        dev = usb_wacom_init();
5802
5803
    } else if (strstart(devname, "serial:", &p)) {
        dev = usb_serial_init(p);
aurel32 authored
5804
5805
5806
5807
#ifdef CONFIG_BRLAPI
    } else if (!strcmp(devname, "braille")) {
        dev = usb_baum_init();
#endif
5808
    } else if (strstart(devname, "net:", &p)) {
5809
        int nic = nb_nics;
5810
5811
        if (net_client_init("nic", p) < 0)
5812
            return -1;
5813
5814
        nd_table[nic].model = "usb";
        dev = usb_net_init(&nd_table[nic]);
bellard authored
5815
5816
5817
    } else {
        return -1;
    }
pbrook authored
5818
5819
5820
    if (!dev)
        return -1;
5821
    return usb_device_add_dev(dev);
bellard authored
5822
5823
}
5824
int usb_device_del_addr(int bus_num, int addr)
bellard authored
5825
{
pbrook authored
5826
5827
    USBPort *port;
    USBPort **lastp;
5828
    USBDevice *dev;
bellard authored
5829
pbrook authored
5830
    if (!used_usb_ports)
bellard authored
5831
5832
5833
5834
        return -1;

    if (bus_num != 0)
        return -1;
pbrook authored
5835
5836
5837
5838
5839
5840

    lastp = &used_usb_ports;
    port = used_usb_ports;
    while (port && port->dev->addr != addr) {
        lastp = &port->next;
        port = port->next;
bellard authored
5841
    }
pbrook authored
5842
5843

    if (!port)
bellard authored
5844
        return -1;
pbrook authored
5845
5846
    dev = port->dev;
pbrook authored
5847
5848
    *lastp = port->next;
    usb_attach(port, NULL);
5849
    dev->handle_destroy(dev);
pbrook authored
5850
5851
    port->next = free_usb_ports;
    free_usb_ports = port;
bellard authored
5852
5853
5854
    return 0;
}
5855
5856
5857
5858
5859
static int usb_device_del(const char *devname)
{
    int bus_num, addr;
    const char *p;
5860
5861
5862
    if (strstart(devname, "host:", &p))
        return usb_host_device_close(p);
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
    if (!used_usb_ports)
        return -1;

    p = strchr(devname, '.');
    if (!p)
        return -1;
    bus_num = strtoul(devname, NULL, 0);
    addr = strtoul(p + 1, NULL, 0);

    return usb_device_del_addr(bus_num, addr);
}
bellard authored
5875
5876
void do_usb_add(const char *devname)
{
5877
    usb_device_add(devname);
bellard authored
5878
5879
5880
5881
}

void do_usb_del(const char *devname)
{
5882
    usb_device_del(devname);
bellard authored
5883
5884
5885
5886
5887
}

void usb_info(void)
{
    USBDevice *dev;
pbrook authored
5888
    USBPort *port;
bellard authored
5889
5890
    const char *speed_str;
pbrook authored
5891
    if (!usb_enabled) {
bellard authored
5892
5893
5894
5895
        term_printf("USB support not enabled\n");
        return;
    }
pbrook authored
5896
5897
5898
5899
5900
    for (port = used_usb_ports; port; port = port->next) {
        dev = port->dev;
        if (!dev)
            continue;
        switch(dev->speed) {
5901
5902
        case USB_SPEED_LOW:
            speed_str = "1.5";
pbrook authored
5903
            break;
5904
5905
        case USB_SPEED_FULL:
            speed_str = "12";
pbrook authored
5906
            break;
5907
5908
        case USB_SPEED_HIGH:
            speed_str = "480";
pbrook authored
5909
5910
            break;
        default:
5911
            speed_str = "?";
pbrook authored
5912
            break;
bellard authored
5913
        }
5914
        term_printf("  Device %d.%d, Speed %s Mb/s, Product %s\n",
5915
                    0, dev->addr, speed_str, dev->devname);
bellard authored
5916
5917
5918
    }
}
bellard authored
5919
/***********************************************************/
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
/* PCMCIA/Cardbus */

static struct pcmcia_socket_entry_s {
    struct pcmcia_socket_s *socket;
    struct pcmcia_socket_entry_s *next;
} *pcmcia_sockets = 0;

void pcmcia_socket_register(struct pcmcia_socket_s *socket)
{
    struct pcmcia_socket_entry_s *entry;

    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
    entry->socket = socket;
    entry->next = pcmcia_sockets;
    pcmcia_sockets = entry;
}

void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
{
    struct pcmcia_socket_entry_s *entry, **ptr;

    ptr = &pcmcia_sockets;
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
        if (entry->socket == socket) {
            *ptr = entry->next;
            qemu_free(entry);
        }
}

void pcmcia_info(void)
{
    struct pcmcia_socket_entry_s *iter;
    if (!pcmcia_sockets)
        term_printf("No PCMCIA sockets\n");

    for (iter = pcmcia_sockets; iter; iter = iter->next)
        term_printf("%s: %s\n", iter->socket->slot_string,
                    iter->socket->attached ? iter->socket->card_string :
                    "Empty");
}

/***********************************************************/
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
/* dumb display */

static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
{
}

static void dumb_resize(DisplayState *ds, int w, int h)
{
}

static void dumb_refresh(DisplayState *ds)
{
#if defined(CONFIG_SDL)
    vga_hw_update();
#endif
}

static void dumb_display_init(DisplayState *ds)
{
    ds->data = NULL;
    ds->linesize = 0;
    ds->depth = 0;
    ds->dpy_update = dumb_update;
    ds->dpy_resize = dumb_resize;
    ds->dpy_refresh = dumb_refresh;
5987
5988
    ds->gui_timer_interval = 500;
    ds->idle = 1;
5989
5990
5991
}

/***********************************************************/
5992
/* I/O handling */
5993
5994
5995
5996
5997
#define MAX_IO_HANDLERS 64

typedef struct IOHandlerRecord {
    int fd;
bellard authored
5998
5999
6000
    IOCanRWHandler *fd_read_poll;
    IOHandler *fd_read;
    IOHandler *fd_write;
6001
    int deleted;
6002
6003
6004
    void *opaque;
    /* temporary data */
    struct pollfd *ufd;
6005
    struct IOHandlerRecord *next;
6006
6007
} IOHandlerRecord;
6008
static IOHandlerRecord *first_io_handler;
6009
bellard authored
6010
6011
/* XXX: fd_read_poll should be suppressed, but an API change is
   necessary in the character devices to suppress fd_can_read(). */
6012
6013
6014
6015
int qemu_set_fd_handler2(int fd,
                         IOCanRWHandler *fd_read_poll,
                         IOHandler *fd_read,
                         IOHandler *fd_write,
bellard authored
6016
                         void *opaque)
6017
{
bellard authored
6018
    IOHandlerRecord **pioh, *ioh;
6019
bellard authored
6020
6021
6022
6023
6024
6025
6026
    if (!fd_read && !fd_write) {
        pioh = &first_io_handler;
        for(;;) {
            ioh = *pioh;
            if (ioh == NULL)
                break;
            if (ioh->fd == fd) {
6027
                ioh->deleted = 1;
bellard authored
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
                break;
            }
            pioh = &ioh->next;
        }
    } else {
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
            if (ioh->fd == fd)
                goto found;
        }
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
        if (!ioh)
            return -1;
        ioh->next = first_io_handler;
        first_io_handler = ioh;
    found:
        ioh->fd = fd;
        ioh->fd_read_poll = fd_read_poll;
        ioh->fd_read = fd_read;
        ioh->fd_write = fd_write;
        ioh->opaque = opaque;
6048
        ioh->deleted = 0;
bellard authored
6049
    }
6050
6051
6052
    return 0;
}
6053
6054
6055
int qemu_set_fd_handler(int fd,
                        IOHandler *fd_read,
                        IOHandler *fd_write,
bellard authored
6056
                        void *opaque)
6057
{
bellard authored
6058
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
6059
6060
6061
}

/***********************************************************/
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
/* Polling handling */

typedef struct PollingEntry {
    PollingFunc *func;
    void *opaque;
    struct PollingEntry *next;
} PollingEntry;

static PollingEntry *first_polling_entry;

int qemu_add_polling_cb(PollingFunc *func, void *opaque)
{
    PollingEntry **ppe, *pe;
    pe = qemu_mallocz(sizeof(PollingEntry));
    if (!pe)
        return -1;
    pe->func = func;
    pe->opaque = opaque;
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
    *ppe = pe;
    return 0;
}

void qemu_del_polling_cb(PollingFunc *func, void *opaque)
{
    PollingEntry **ppe, *pe;
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
        pe = *ppe;
        if (pe->func == func && pe->opaque == opaque) {
            *ppe = pe->next;
            qemu_free(pe);
            break;
        }
    }
}
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
#ifdef _WIN32
/***********************************************************/
/* Wait objects support */
typedef struct WaitObjects {
    int num;
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
} WaitObjects;

static WaitObjects wait_objects = {0};
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
{
    WaitObjects *w = &wait_objects;

    if (w->num >= MAXIMUM_WAIT_OBJECTS)
        return -1;
    w->events[w->num] = handle;
    w->func[w->num] = func;
    w->opaque[w->num] = opaque;
    w->num++;
    return 0;
}

void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
{
    int i, found;
    WaitObjects *w = &wait_objects;

    found = 0;
    for (i = 0; i < w->num; i++) {
        if (w->events[i] == handle)
            found = 1;
        if (found) {
            w->events[i] = w->events[i + 1];
            w->func[i] = w->func[i + 1];
            w->opaque[i] = w->opaque[i + 1];
6136
        }
6137
6138
6139
6140
6141
6142
    }
    if (found)
        w->num--;
}
#endif
6143
/***********************************************************/
6144
6145
/* savevm/loadvm support */
bellard authored
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
#define IO_BUF_SIZE 32768

struct QEMUFile {
    FILE *outfile;
    BlockDriverState *bs;
    int is_file;
    int is_writable;
    int64_t base_offset;
    int64_t buf_offset; /* start of buffer when writing, end of buffer
                           when reading */
    int buf_index;
    int buf_size; /* 0 when writing */
    uint8_t buf[IO_BUF_SIZE];
};

QEMUFile *qemu_fopen(const char *filename, const char *mode)
{
    QEMUFile *f;

    f = qemu_mallocz(sizeof(QEMUFile));
    if (!f)
        return NULL;
    if (!strcmp(mode, "wb")) {
        f->is_writable = 1;
    } else if (!strcmp(mode, "rb")) {
        f->is_writable = 0;
    } else {
        goto fail;
    }
    f->outfile = fopen(filename, mode);
    if (!f->outfile)
        goto fail;
    f->is_file = 1;
    return f;
 fail:
    if (f->outfile)
        fclose(f->outfile);
    qemu_free(f);
    return NULL;
}
6187
static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
bellard authored
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
{
    QEMUFile *f;

    f = qemu_mallocz(sizeof(QEMUFile));
    if (!f)
        return NULL;
    f->is_file = 0;
    f->bs = bs;
    f->is_writable = is_writable;
    f->base_offset = offset;
    return f;
}

void qemu_fflush(QEMUFile *f)
{
    if (!f->is_writable)
        return;
    if (f->buf_index > 0) {
        if (f->is_file) {
            fseek(f->outfile, f->buf_offset, SEEK_SET);
            fwrite(f->buf, 1, f->buf_index, f->outfile);
        } else {
6210
            bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
bellard authored
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
                        f->buf, f->buf_index);
        }
        f->buf_offset += f->buf_index;
        f->buf_index = 0;
    }
}

static void qemu_fill_buffer(QEMUFile *f)
{
    int len;

    if (f->is_writable)
        return;
    if (f->is_file) {
        fseek(f->outfile, f->buf_offset, SEEK_SET);
        len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
        if (len < 0)
            len = 0;
    } else {
6230
        len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
bellard authored
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
                         f->buf, IO_BUF_SIZE);
        if (len < 0)
            len = 0;
    }
    f->buf_index = 0;
    f->buf_size = len;
    f->buf_offset += len;
}

void qemu_fclose(QEMUFile *f)
{
    if (f->is_writable)
        qemu_fflush(f);
    if (f->is_file) {
        fclose(f->outfile);
    }
    qemu_free(f);
}
6250
void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
bellard authored
6251
{
bellard authored
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
    int l;
    while (size > 0) {
        l = IO_BUF_SIZE - f->buf_index;
        if (l > size)
            l = size;
        memcpy(f->buf + f->buf_index, buf, l);
        f->buf_index += l;
        buf += l;
        size -= l;
        if (f->buf_index >= IO_BUF_SIZE)
            qemu_fflush(f);
    }
bellard authored
6264
6265
}
6266
void qemu_put_byte(QEMUFile *f, int v)
bellard authored
6267
{
bellard authored
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
    f->buf[f->buf_index++] = v;
    if (f->buf_index >= IO_BUF_SIZE)
        qemu_fflush(f);
}

int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
{
    int size, l;

    size = size1;
    while (size > 0) {
        l = f->buf_size - f->buf_index;
        if (l == 0) {
            qemu_fill_buffer(f);
            l = f->buf_size - f->buf_index;
            if (l == 0)
                break;
        }
        if (l > size)
            l = size;
        memcpy(buf, f->buf + f->buf_index, l);
        f->buf_index += l;
        buf += l;
        size -= l;
    }
    return size1 - size;
}

int qemu_get_byte(QEMUFile *f)
{
    if (f->buf_index >= f->buf_size) {
        qemu_fill_buffer(f);
        if (f->buf_index >= f->buf_size)
            return 0;
    }
    return f->buf[f->buf_index++];
}

int64_t qemu_ftell(QEMUFile *f)
{
    return f->buf_offset - f->buf_size + f->buf_index;
}

int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
{
    if (whence == SEEK_SET) {
        /* nothing to do */
    } else if (whence == SEEK_CUR) {
        pos += qemu_ftell(f);
    } else {
        /* SEEK_END not supported */
        return -1;
    }
    if (f->is_writable) {
        qemu_fflush(f);
        f->buf_offset = pos;
    } else {
        f->buf_offset = pos;
        f->buf_index = 0;
        f->buf_size = 0;
    }
    return pos;
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
}

void qemu_put_be16(QEMUFile *f, unsigned int v)
{
    qemu_put_byte(f, v >> 8);
    qemu_put_byte(f, v);
}

void qemu_put_be32(QEMUFile *f, unsigned int v)
{
    qemu_put_byte(f, v >> 24);
    qemu_put_byte(f, v >> 16);
    qemu_put_byte(f, v >> 8);
    qemu_put_byte(f, v);
}

void qemu_put_be64(QEMUFile *f, uint64_t v)
{
    qemu_put_be32(f, v >> 32);
    qemu_put_be32(f, v);
}

unsigned int qemu_get_be16(QEMUFile *f)
{
    unsigned int v;
    v = qemu_get_byte(f) << 8;
    v |= qemu_get_byte(f);
    return v;
}

unsigned int qemu_get_be32(QEMUFile *f)
{
    unsigned int v;
    v = qemu_get_byte(f) << 24;
    v |= qemu_get_byte(f) << 16;
    v |= qemu_get_byte(f) << 8;
    v |= qemu_get_byte(f);
    return v;
}

uint64_t qemu_get_be64(QEMUFile *f)
{
    uint64_t v;
    v = (uint64_t)qemu_get_be32(f) << 32;
    v |= qemu_get_be32(f);
    return v;
}

typedef struct SaveStateEntry {
    char idstr[256];
    int instance_id;
    int version_id;
    SaveStateHandler *save_state;
    LoadStateHandler *load_state;
    void *opaque;
    struct SaveStateEntry *next;
} SaveStateEntry;
bellard authored
6387
6388
6389
static SaveStateEntry *first_se;
6390
/* TODO: Individual devices generally have very little idea about the rest
6391
6392
6393
   of the system, so instance_id should be removed/replaced.
   Meanwhile pass -1 as instance_id if you do not already have a clearly
   distinguishing id for all instances of your device class. */
6394
6395
int register_savevm(const char *idstr,
                    int instance_id,
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
                    int version_id,
                    SaveStateHandler *save_state,
                    LoadStateHandler *load_state,
                    void *opaque)
{
    SaveStateEntry *se, **pse;

    se = qemu_malloc(sizeof(SaveStateEntry));
    if (!se)
        return -1;
    pstrcpy(se->idstr, sizeof(se->idstr), idstr);
6407
    se->instance_id = (instance_id == -1) ? 0 : instance_id;
6408
6409
6410
6411
6412
6413
6414
6415
    se->version_id = version_id;
    se->save_state = save_state;
    se->load_state = load_state;
    se->opaque = opaque;
    se->next = NULL;

    /* add at the end of list */
    pse = &first_se;
6416
6417
6418
6419
6420
    while (*pse != NULL) {
        if (instance_id == -1
                && strcmp(se->idstr, (*pse)->idstr) == 0
                && se->instance_id <= (*pse)->instance_id)
            se->instance_id = (*pse)->instance_id + 1;
6421
        pse = &(*pse)->next;
6422
    }
6423
6424
6425
6426
6427
    *pse = se;
    return 0;
}

#define QEMU_VM_FILE_MAGIC   0x5145564d
bellard authored
6428
#define QEMU_VM_FILE_VERSION 0x00000002
6429
6430
static int qemu_savevm_state(QEMUFile *f)
6431
6432
{
    SaveStateEntry *se;
bellard authored
6433
6434
    int len, ret;
    int64_t cur_pos, len_pos, total_len_pos;
6435
6436
6437
    qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
    qemu_put_be32(f, QEMU_VM_FILE_VERSION);
bellard authored
6438
6439
    total_len_pos = qemu_ftell(f);
    qemu_put_be64(f, 0); /* total size */
6440
6441

    for(se = first_se; se != NULL; se = se->next) {
aurel32 authored
6442
6443
6444
6445
	if (se->save_state == NULL)
	    /* this one has a loader only, for backwards compatibility */
	    continue;
6446
6447
6448
        /* ID string */
        len = strlen(se->idstr);
        qemu_put_byte(f, len);
6449
        qemu_put_buffer(f, (uint8_t *)se->idstr, len);
6450
6451
6452
6453
6454

        qemu_put_be32(f, se->instance_id);
        qemu_put_be32(f, se->version_id);

        /* record size: filled later */
bellard authored
6455
        len_pos = qemu_ftell(f);
6456
6457
6458
6459
        qemu_put_be32(f, 0);
        se->save_state(f, se->opaque);

        /* fill record size */
bellard authored
6460
6461
6462
        cur_pos = qemu_ftell(f);
        len = cur_pos - len_pos - 4;
        qemu_fseek(f, len_pos, SEEK_SET);
6463
        qemu_put_be32(f, len);
bellard authored
6464
        qemu_fseek(f, cur_pos, SEEK_SET);
6465
    }
bellard authored
6466
6467
6468
6469
    cur_pos = qemu_ftell(f);
    qemu_fseek(f, total_len_pos, SEEK_SET);
    qemu_put_be64(f, cur_pos - total_len_pos - 8);
    qemu_fseek(f, cur_pos, SEEK_SET);
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479

    ret = 0;
    return ret;
}

static SaveStateEntry *find_se(const char *idstr, int instance_id)
{
    SaveStateEntry *se;

    for(se = first_se; se != NULL; se = se->next) {
6480
        if (!strcmp(se->idstr, idstr) &&
6481
6482
6483
6484
6485
6486
            instance_id == se->instance_id)
            return se;
    }
    return NULL;
}
6487
static int qemu_loadvm_state(QEMUFile *f)
6488
6489
{
    SaveStateEntry *se;
bellard authored
6490
6491
    int len, ret, instance_id, record_len, version_id;
    int64_t total_len, end_pos, cur_pos;
6492
6493
    unsigned int v;
    char idstr[256];
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
    v = qemu_get_be32(f);
    if (v != QEMU_VM_FILE_MAGIC)
        goto fail;
    v = qemu_get_be32(f);
    if (v != QEMU_VM_FILE_VERSION) {
    fail:
        ret = -1;
        goto the_end;
    }
bellard authored
6504
6505
    total_len = qemu_get_be64(f);
    end_pos = total_len + qemu_ftell(f);
bellard authored
6506
    for(;;) {
bellard authored
6507
        if (qemu_ftell(f) >= end_pos)
6508
            break;
bellard authored
6509
        len = qemu_get_byte(f);
6510
        qemu_get_buffer(f, (uint8_t *)idstr, len);
6511
6512
6513
6514
6515
        idstr[len] = '\0';
        instance_id = qemu_get_be32(f);
        version_id = qemu_get_be32(f);
        record_len = qemu_get_be32(f);
#if 0
6516
        printf("idstr=%s instance=0x%x version=%d len=%d\n",
6517
6518
               idstr, instance_id, version_id, record_len);
#endif
bellard authored
6519
        cur_pos = qemu_ftell(f);
6520
6521
        se = find_se(idstr, instance_id);
        if (!se) {
6522
            fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
6523
6524
6525
6526
                    instance_id, idstr);
        } else {
            ret = se->load_state(f, se->opaque, version_id);
            if (ret < 0) {
6527
                fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
6528
6529
                        instance_id, idstr);
            }
6530
        }
6531
6532
6533
6534
6535
        /* always seek to exact end of record */
        qemu_fseek(f, cur_pos + record_len, SEEK_SET);
    }
    ret = 0;
 the_end:
bellard authored
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
    return ret;
}

/* device can contain snapshots */
static int bdrv_can_snapshot(BlockDriverState *bs)
{
    return (bs &&
            !bdrv_is_removable(bs) &&
            !bdrv_is_read_only(bs));
}

/* device must be snapshots in order to have a reliable snapshot */
static int bdrv_has_snapshot(BlockDriverState *bs)
{
    return (bs &&
            !bdrv_is_removable(bs) &&
            !bdrv_is_read_only(bs));
}

static BlockDriverState *get_bs_snapshots(void)
{
    BlockDriverState *bs;
    int i;

    if (bs_snapshots)
        return bs_snapshots;
6562
6563
    for(i = 0; i <= nb_drives; i++) {
        bs = drives_table[i].bdrv;
bellard authored
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
        if (bdrv_can_snapshot(bs))
            goto ok;
    }
    return NULL;
 ok:
    bs_snapshots = bs;
    return bs;
}

static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
                              const char *name)
{
    QEMUSnapshotInfo *sn_tab, *sn;
    int nb_sns, i, ret;
6578
bellard authored
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
    ret = -ENOENT;
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
    if (nb_sns < 0)
        return ret;
    for(i = 0; i < nb_sns; i++) {
        sn = &sn_tab[i];
        if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
            *sn_info = *sn;
            ret = 0;
            break;
        }
    }
    qemu_free(sn_tab);
    return ret;
}

void do_savevm(const char *name)
{
    BlockDriverState *bs, *bs1;
    QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
    int must_delete, ret, i;
    BlockDriverInfo bdi1, *bdi = &bdi1;
    QEMUFile *f;
    int saved_vm_running;
bellard authored
6603
6604
6605
#ifdef _WIN32
    struct _timeb tb;
#else
bellard authored
6606
    struct timeval tv;
bellard authored
6607
#endif
bellard authored
6608
6609
6610
6611
6612
6613
6614

    bs = get_bs_snapshots();
    if (!bs) {
        term_printf("No block device can accept snapshots\n");
        return;
    }
6615
6616
6617
    /* ??? Should this occur after vm_stop?  */
    qemu_aio_flush();
bellard authored
6618
6619
    saved_vm_running = vm_running;
    vm_stop(0);
6620
bellard authored
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
    must_delete = 0;
    if (name) {
        ret = bdrv_snapshot_find(bs, old_sn, name);
        if (ret >= 0) {
            must_delete = 1;
        }
    }
    memset(sn, 0, sizeof(*sn));
    if (must_delete) {
        pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
        pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
    } else {
        if (name)
            pstrcpy(sn->name, sizeof(sn->name), name);
    }

    /* fill auxiliary fields */
bellard authored
6638
6639
6640
6641
6642
#ifdef _WIN32
    _ftime(&tb);
    sn->date_sec = tb.time;
    sn->date_nsec = tb.millitm * 1000000;
#else
bellard authored
6643
6644
6645
    gettimeofday(&tv, NULL);
    sn->date_sec = tv.tv_sec;
    sn->date_nsec = tv.tv_usec * 1000;
bellard authored
6646
#endif
bellard authored
6647
    sn->vm_clock_nsec = qemu_get_clock(vm_clock);
6648
bellard authored
6649
6650
6651
6652
6653
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
        term_printf("Device %s does not support VM state snapshots\n",
                    bdrv_get_device_name(bs));
        goto the_end;
    }
6654
bellard authored
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
    /* save the VM state */
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
    if (!f) {
        term_printf("Could not open VM state file\n");
        goto the_end;
    }
    ret = qemu_savevm_state(f);
    sn->vm_state_size = qemu_ftell(f);
    qemu_fclose(f);
    if (ret < 0) {
        term_printf("Error %d while writing VM\n", ret);
        goto the_end;
    }
6668
bellard authored
6669
6670
    /* create the snapshots */
6671
6672
    for(i = 0; i < nb_drives; i++) {
        bs1 = drives_table[i].bdrv;
bellard authored
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
        if (bdrv_has_snapshot(bs1)) {
            if (must_delete) {
                ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
                if (ret < 0) {
                    term_printf("Error while deleting snapshot on '%s'\n",
                                bdrv_get_device_name(bs1));
                }
            }
            ret = bdrv_snapshot_create(bs1, sn);
            if (ret < 0) {
                term_printf("Error while creating snapshot on '%s'\n",
                            bdrv_get_device_name(bs1));
            }
        }
    }

 the_end:
6690
6691
    if (saved_vm_running)
        vm_start();
bellard authored
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
}

void do_loadvm(const char *name)
{
    BlockDriverState *bs, *bs1;
    BlockDriverInfo bdi1, *bdi = &bdi1;
    QEMUFile *f;
    int i, ret;
    int saved_vm_running;

    bs = get_bs_snapshots();
    if (!bs) {
        term_printf("No block device supports snapshots\n");
        return;
    }
6707
6708
6709
6710
    /* Flush all IO requests so they don't interfere with the new state.  */
    qemu_aio_flush();
bellard authored
6711
6712
6713
    saved_vm_running = vm_running;
    vm_stop(0);
6714
6715
    for(i = 0; i <= nb_drives; i++) {
        bs1 = drives_table[i].bdrv;
bellard authored
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
        if (bdrv_has_snapshot(bs1)) {
            ret = bdrv_snapshot_goto(bs1, name);
            if (ret < 0) {
                if (bs != bs1)
                    term_printf("Warning: ");
                switch(ret) {
                case -ENOTSUP:
                    term_printf("Snapshots not supported on device '%s'\n",
                                bdrv_get_device_name(bs1));
                    break;
                case -ENOENT:
                    term_printf("Could not find snapshot '%s' on device '%s'\n",
                                name, bdrv_get_device_name(bs1));
                    break;
                default:
                    term_printf("Error %d while activating snapshot on '%s'\n",
                                ret, bdrv_get_device_name(bs1));
                    break;
                }
                /* fatal on snapshot block device */
                if (bs == bs1)
                    goto the_end;
            }
        }
    }

    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
        term_printf("Device %s does not support VM state snapshots\n",
                    bdrv_get_device_name(bs));
        return;
    }
6747
bellard authored
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
    /* restore the VM state */
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
    if (!f) {
        term_printf("Could not open VM state file\n");
        goto the_end;
    }
    ret = qemu_loadvm_state(f);
    qemu_fclose(f);
    if (ret < 0) {
        term_printf("Error %d while loading VM state\n", ret);
    }
 the_end:
    if (saved_vm_running)
        vm_start();
}

void do_delvm(const char *name)
{
    BlockDriverState *bs, *bs1;
    int i, ret;

    bs = get_bs_snapshots();
    if (!bs) {
        term_printf("No block device supports snapshots\n");
        return;
    }
6774
6775
6776
    for(i = 0; i <= nb_drives; i++) {
        bs1 = drives_table[i].bdrv;
bellard authored
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
        if (bdrv_has_snapshot(bs1)) {
            ret = bdrv_snapshot_delete(bs1, name);
            if (ret < 0) {
                if (ret == -ENOTSUP)
                    term_printf("Snapshots not supported on device '%s'\n",
                                bdrv_get_device_name(bs1));
                else
                    term_printf("Error %d while deleting snapshot on '%s'\n",
                                ret, bdrv_get_device_name(bs1));
            }
        }
    }
}

void do_info_snapshots(void)
{
    BlockDriverState *bs, *bs1;
    QEMUSnapshotInfo *sn_tab, *sn;
    int nb_sns, i;
    char buf[256];

    bs = get_bs_snapshots();
    if (!bs) {
        term_printf("No available block device supports snapshots\n");
        return;
    }
    term_printf("Snapshot devices:");
6804
6805
    for(i = 0; i <= nb_drives; i++) {
        bs1 = drives_table[i].bdrv;
bellard authored
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
        if (bdrv_has_snapshot(bs1)) {
            if (bs == bs1)
                term_printf(" %s", bdrv_get_device_name(bs1));
        }
    }
    term_printf("\n");

    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
    if (nb_sns < 0) {
        term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
        return;
    }
    term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
    term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
    for(i = 0; i < nb_sns; i++) {
        sn = &sn_tab[i];
        term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
    }
    qemu_free(sn_tab);
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
}

/***********************************************************/
/* ram save/restore */

static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
{
    int v;

    v = qemu_get_byte(f);
    switch(v) {
    case 0:
        if (qemu_get_buffer(f, buf, len) != len)
            return -EIO;
        break;
    case 1:
        v = qemu_get_byte(f);
        memset(buf, v, len);
        break;
    default:
        return -EINVAL;
    }
    return 0;
}
6850
6851
static int ram_load_v1(QEMUFile *f, void *opaque)
{
6852
6853
    int ret;
    ram_addr_t i;
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880

    if (qemu_get_be32(f) != phys_ram_size)
        return -EINVAL;
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
        ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
        if (ret)
            return ret;
    }
    return 0;
}

#define BDRV_HASH_BLOCK_SIZE 1024
#define IOBUF_SIZE 4096
#define RAM_CBLOCK_MAGIC 0xfabe

typedef struct RamCompressState {
    z_stream zstream;
    QEMUFile *f;
    uint8_t buf[IOBUF_SIZE];
} RamCompressState;

static int ram_compress_open(RamCompressState *s, QEMUFile *f)
{
    int ret;
    memset(s, 0, sizeof(*s));
    s->f = f;
    ret = deflateInit2(&s->zstream, 1,
6881
                       Z_DEFLATED, 15,
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
                       9, Z_DEFAULT_STRATEGY);
    if (ret != Z_OK)
        return -1;
    s->zstream.avail_out = IOBUF_SIZE;
    s->zstream.next_out = s->buf;
    return 0;
}

static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
{
    qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
    qemu_put_be16(s->f, len);
    qemu_put_buffer(s->f, buf, len);
}

static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
{
    int ret;

    s->zstream.avail_in = len;
    s->zstream.next_in = (uint8_t *)buf;
    while (s->zstream.avail_in > 0) {
        ret = deflate(&s->zstream, Z_NO_FLUSH);
        if (ret != Z_OK)
            return -1;
        if (s->zstream.avail_out == 0) {
            ram_put_cblock(s, s->buf, IOBUF_SIZE);
            s->zstream.avail_out = IOBUF_SIZE;
            s->zstream.next_out = s->buf;
        }
    }
    return 0;
}

static void ram_compress_close(RamCompressState *s)
{
    int len, ret;

    /* compress last bytes */
    for(;;) {
        ret = deflate(&s->zstream, Z_FINISH);
        if (ret == Z_OK || ret == Z_STREAM_END) {
            len = IOBUF_SIZE - s->zstream.avail_out;
            if (len > 0) {
                ram_put_cblock(s, s->buf, len);
            }
            s->zstream.avail_out = IOBUF_SIZE;
            s->zstream.next_out = s->buf;
            if (ret == Z_STREAM_END)
                break;
        } else {
            goto fail;
        }
    }
fail:
    deflateEnd(&s->zstream);
}

typedef struct RamDecompressState {
    z_stream zstream;
    QEMUFile *f;
    uint8_t buf[IOBUF_SIZE];
} RamDecompressState;

static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
{
    int ret;
    memset(s, 0, sizeof(*s));
    s->f = f;
    ret = inflateInit(&s->zstream);
    if (ret != Z_OK)
        return -1;
    return 0;
}

static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
{
    int ret, clen;

    s->zstream.avail_out = len;
    s->zstream.next_out = buf;
    while (s->zstream.avail_out > 0) {
        if (s->zstream.avail_in == 0) {
            if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
                return -1;
            clen = qemu_get_be16(s->f);
            if (clen > IOBUF_SIZE)
                return -1;
            qemu_get_buffer(s->f, s->buf, clen);
            s->zstream.avail_in = clen;
            s->zstream.next_in = s->buf;
        }
        ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
        if (ret != Z_OK && ret != Z_STREAM_END) {
            return -1;
        }
    }
    return 0;
}

static void ram_decompress_close(RamDecompressState *s)
{
    inflateEnd(&s->zstream);
}
6987
6988
static void ram_save(QEMUFile *f, void *opaque)
{
6989
    ram_addr_t i;
6990
6991
    RamCompressState s1, *s = &s1;
    uint8_t buf[10];
6992
6993
    qemu_put_be32(f, phys_ram_size);
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
    if (ram_compress_open(s, f) < 0)
        return;
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
#if 0
        if (tight_savevm_enabled) {
            int64_t sector_num;
            int j;

            /* find if the memory block is available on a virtual
               block device */
            sector_num = -1;
7005
7006
7007
7008
7009
7010
            for(j = 0; j < nb_drives; j++) {
                sector_num = bdrv_hash_find(drives_table[j].bdrv,
                                            phys_ram_base + i,
					    BDRV_HASH_BLOCK_SIZE);
                if (sector_num >= 0)
                    break;
7011
            }
7012
            if (j == nb_drives)
7013
7014
7015
7016
7017
                goto normal_compress;
            buf[0] = 1;
            buf[1] = j;
            cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
            ram_compress_buf(s, buf, 10);
7018
        } else
7019
7020
7021
7022
7023
7024
7025
#endif
        {
            //        normal_compress:
            buf[0] = 0;
            ram_compress_buf(s, buf, 1);
            ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
        }
7026
    }
7027
    ram_compress_close(s);
7028
7029
7030
7031
}

static int ram_load(QEMUFile *f, void *opaque, int version_id)
{
7032
7033
    RamDecompressState s1, *s = &s1;
    uint8_t buf[10];
7034
    ram_addr_t i;
7035
7036
7037
7038
    if (version_id == 1)
        return ram_load_v1(f, opaque);
    if (version_id != 2)
7039
7040
7041
        return -EINVAL;
    if (qemu_get_be32(f) != phys_ram_size)
        return -EINVAL;
7042
7043
7044
7045
7046
7047
7048
7049
7050
    if (ram_decompress_open(s, f) < 0)
        return -EINVAL;
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
        if (ram_decompress_buf(s, buf, 1) < 0) {
            fprintf(stderr, "Error while reading ram block header\n");
            goto error;
        }
        if (buf[0] == 0) {
            if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
7051
                fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
7052
7053
                goto error;
            }
7054
        } else
7055
7056
7057
7058
7059
7060
7061
7062
#if 0
        if (buf[0] == 1) {
            int bs_index;
            int64_t sector_num;

            ram_decompress_buf(s, buf + 1, 9);
            bs_index = buf[1];
            sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
7063
            if (bs_index >= nb_drives) {
7064
7065
7066
                fprintf(stderr, "Invalid block device index %d\n", bs_index);
                goto error;
            }
7067
7068
            if (bdrv_read(drives_table[bs_index].bdrv, sector_num,
	                  phys_ram_base + i,
7069
                          BDRV_HASH_BLOCK_SIZE / 512) < 0) {
7070
                fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
7071
7072
7073
                        bs_index, sector_num);
                goto error;
            }
7074
        } else
7075
7076
7077
7078
7079
7080
#endif
        {
        error:
            printf("Error block header\n");
            return -EINVAL;
        }
7081
    }
7082
    ram_decompress_close(s);
7083
7084
7085
7086
    return 0;
}

/***********************************************************/
bellard authored
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
/* bottom halves (can be seen as timers which expire ASAP) */

struct QEMUBH {
    QEMUBHFunc *cb;
    void *opaque;
    int scheduled;
    QEMUBH *next;
};

static QEMUBH *first_bh = NULL;

QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
{
    QEMUBH *bh;
    bh = qemu_mallocz(sizeof(QEMUBH));
    if (!bh)
        return NULL;
    bh->cb = cb;
    bh->opaque = opaque;
    return bh;
}
bellard authored
7109
int qemu_bh_poll(void)
bellard authored
7110
7111
{
    QEMUBH *bh, **pbh;
bellard authored
7112
    int ret;
bellard authored
7113
bellard authored
7114
    ret = 0;
bellard authored
7115
7116
7117
7118
7119
    for(;;) {
        pbh = &first_bh;
        bh = *pbh;
        if (!bh)
            break;
bellard authored
7120
        ret = 1;
bellard authored
7121
7122
7123
7124
        *pbh = bh->next;
        bh->scheduled = 0;
        bh->cb(bh->opaque);
    }
bellard authored
7125
    return ret;
bellard authored
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
}

void qemu_bh_schedule(QEMUBH *bh)
{
    CPUState *env = cpu_single_env;
    if (bh->scheduled)
        return;
    bh->scheduled = 1;
    bh->next = first_bh;
    first_bh = bh;

    /* stop the currently executing CPU to execute the BH ASAP */
    if (env) {
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
    }
}

void qemu_bh_cancel(QEMUBH *bh)
{
    QEMUBH **pbh;
    if (bh->scheduled) {
        pbh = &first_bh;
        while (*pbh != bh)
            pbh = &(*pbh)->next;
        *pbh = bh->next;
        bh->scheduled = 0;
    }
}

void qemu_bh_delete(QEMUBH *bh)
{
    qemu_bh_cancel(bh);
    qemu_free(bh);
}

/***********************************************************/
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
/* machine registration */

QEMUMachine *first_machine = NULL;

int qemu_register_machine(QEMUMachine *m)
{
    QEMUMachine **pm;
    pm = &first_machine;
    while (*pm != NULL)
        pm = &(*pm)->next;
    m->next = NULL;
    *pm = m;
    return 0;
}
7177
static QEMUMachine *find_machine(const char *name)
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
{
    QEMUMachine *m;

    for(m = first_machine; m != NULL; m = m->next) {
        if (!strcmp(m->name, name))
            return m;
    }
    return NULL;
}

/***********************************************************/
7189
7190
/* main execution loop */
7191
static void gui_update(void *opaque)
7192
{
7193
7194
    DisplayState *ds = opaque;
    ds->dpy_refresh(ds);
aurel32 authored
7195
7196
7197
7198
7199
    qemu_mod_timer(ds->gui_timer,
        (ds->gui_timer_interval ?
	    ds->gui_timer_interval :
	    GUI_REFRESH_INTERVAL)
	+ qemu_get_clock(rt_clock));
7200
7201
}
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
struct vm_change_state_entry {
    VMChangeStateHandler *cb;
    void *opaque;
    LIST_ENTRY (vm_change_state_entry) entries;
};

static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;

VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
                                                     void *opaque)
{
    VMChangeStateEntry *e;

    e = qemu_mallocz(sizeof (*e));
    if (!e)
        return NULL;

    e->cb = cb;
    e->opaque = opaque;
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
    return e;
}

void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
{
    LIST_REMOVE (e, entries);
    qemu_free (e);
}

static void vm_state_notify(int running)
{
    VMChangeStateEntry *e;

    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
        e->cb(e->opaque, running);
    }
}
7240
/* XXX: support several handlers */
7241
7242
static VMStopHandler *vm_stop_cb;
static void *vm_stop_opaque;
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260

int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
{
    vm_stop_cb = cb;
    vm_stop_opaque = opaque;
    return 0;
}

void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
{
    vm_stop_cb = NULL;
}

void vm_start(void)
{
    if (!vm_running) {
        cpu_enable_ticks();
        vm_running = 1;
7261
        vm_state_notify(1);
7262
        qemu_rearm_alarm_timer(alarm_timer);
7263
7264
7265
    }
}
7266
void vm_stop(int reason)
7267
7268
7269
7270
7271
7272
7273
7274
{
    if (vm_running) {
        cpu_disable_ticks();
        vm_running = 0;
        if (reason != 0) {
            if (vm_stop_cb) {
                vm_stop_cb(vm_stop_opaque, reason);
            }
7275
        }
7276
        vm_state_notify(0);
7277
7278
7279
    }
}
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
/* reset/shutdown handler */

typedef struct QEMUResetEntry {
    QEMUResetHandler *func;
    void *opaque;
    struct QEMUResetEntry *next;
} QEMUResetEntry;

static QEMUResetEntry *first_reset_entry;
static int reset_requested;
static int shutdown_requested;
bellard authored
7291
static int powerdown_requested;
7292
aurel32 authored
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
int qemu_shutdown_requested(void)
{
    int r = shutdown_requested;
    shutdown_requested = 0;
    return r;
}

int qemu_reset_requested(void)
{
    int r = reset_requested;
    reset_requested = 0;
    return r;
}

int qemu_powerdown_requested(void)
{
    int r = powerdown_requested;
    powerdown_requested = 0;
    return r;
}
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
{
    QEMUResetEntry **pre, *re;

    pre = &first_reset_entry;
    while (*pre != NULL)
        pre = &(*pre)->next;
    re = qemu_mallocz(sizeof(QEMUResetEntry));
    re->func = func;
    re->opaque = opaque;
    re->next = NULL;
    *pre = re;
}
aurel32 authored
7328
void qemu_system_reset(void)
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
{
    QEMUResetEntry *re;

    /* reset all devices */
    for(re = first_reset_entry; re != NULL; re = re->next) {
        re->func(re->opaque);
    }
}

void qemu_system_reset_request(void)
{
bellard authored
7340
7341
7342
7343
7344
    if (no_reboot) {
        shutdown_requested = 1;
    } else {
        reset_requested = 1;
    }
bellard authored
7345
7346
    if (cpu_single_env)
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7347
7348
7349
7350
7351
}

void qemu_system_shutdown_request(void)
{
    shutdown_requested = 1;
bellard authored
7352
7353
    if (cpu_single_env)
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7354
7355
}
bellard authored
7356
7357
7358
void qemu_system_powerdown_request(void)
{
    powerdown_requested = 1;
bellard authored
7359
7360
    if (cpu_single_env)
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7361
7362
}
bellard authored
7363
void main_loop_wait(int timeout)
7364
{
7365
    IOHandlerRecord *ioh;
7366
    fd_set rfds, wfds, xfds;
ths authored
7367
7368
7369
7370
    int ret, nfds;
#ifdef _WIN32
    int ret2, i;
#endif
bellard authored
7371
    struct timeval tv;
7372
7373
    PollingEntry *pe;
7374
7375
7376
7377
7378
7379
    /* XXX: need to suppress polling by better using win32 events */
    ret = 0;
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
        ret |= pe->func(pe->opaque);
    }
7380
#ifdef _WIN32
7381
    if (ret == 0) {
7382
7383
        int err;
        WaitObjects *w = &wait_objects;
7384
7385
7386
7387
7388
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
            if (w->func[ret - WAIT_OBJECT_0])
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
7389
7390
            /* Check for additional signaled events */
7391
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
                /* Check if event is signaled */
                ret2 = WaitForSingleObject(w->events[i], 0);
                if(ret2 == WAIT_OBJECT_0) {
                    if (w->func[i])
                        w->func[i](w->opaque[i]);
                } else if (ret2 == WAIT_TIMEOUT) {
                } else {
                    err = GetLastError();
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
7402
7403
                }
            }
7404
7405
7406
        } else if (ret == WAIT_TIMEOUT) {
        } else {
            err = GetLastError();
7407
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
7408
        }
7409
    }
bellard authored
7410
7411
7412
7413
7414
7415
#endif
    /* poll any events */
    /* XXX: separate device handlers from system ones */
    nfds = -1;
    FD_ZERO(&rfds);
    FD_ZERO(&wfds);
7416
    FD_ZERO(&xfds);
bellard authored
7417
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7418
7419
        if (ioh->deleted)
            continue;
bellard authored
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
        if (ioh->fd_read &&
            (!ioh->fd_read_poll ||
             ioh->fd_read_poll(ioh->opaque) != 0)) {
            FD_SET(ioh->fd, &rfds);
            if (ioh->fd > nfds)
                nfds = ioh->fd;
        }
        if (ioh->fd_write) {
            FD_SET(ioh->fd, &wfds);
            if (ioh->fd > nfds)
                nfds = ioh->fd;
        }
    }
7433
bellard authored
7434
7435
7436
    tv.tv_sec = 0;
#ifdef _WIN32
    tv.tv_usec = 0;
7437
#else
bellard authored
7438
7439
    tv.tv_usec = timeout * 1000;
#endif
7440
7441
7442
7443
7444
7445
#if defined(CONFIG_SLIRP)
    if (slirp_inited) {
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
    }
#endif
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
bellard authored
7446
    if (ret > 0) {
7447
7448
7449
        IOHandlerRecord **pioh;

        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7450
            if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
bellard authored
7451
                ioh->fd_read(ioh->opaque);
bellard authored
7452
            }
7453
            if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
bellard authored
7454
                ioh->fd_write(ioh->opaque);
7455
            }
bellard authored
7456
        }
7457
7458
7459
7460
7461
7462
7463
7464

	/* remove deleted IO handlers */
	pioh = &first_io_handler;
	while (*pioh) {
            ioh = *pioh;
            if (ioh->deleted) {
                *pioh = ioh->next;
                qemu_free(ioh);
7465
            } else
7466
7467
                pioh = &ioh->next;
        }
bellard authored
7468
    }
7469
#if defined(CONFIG_SLIRP)
bellard authored
7470
    if (slirp_inited) {
7471
7472
7473
7474
        if (ret < 0) {
            FD_ZERO(&rfds);
            FD_ZERO(&wfds);
            FD_ZERO(&xfds);
7475
        }
7476
        slirp_select_poll(&rfds, &wfds, &xfds);
bellard authored
7477
    }
7478
7479
#endif
bellard authored
7480
    if (vm_running) {
7481
        if (likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
7482
        qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
bellard authored
7483
7484
7485
7486
                        qemu_get_clock(vm_clock));
        /* run dma transfers, if any */
        DMA_run();
    }
7487
bellard authored
7488
    /* real time timers */
7489
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
bellard authored
7490
                    qemu_get_clock(rt_clock));
7491
7492
7493
7494
7495
    if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
        alarm_timer->flags &= ~(ALARM_FLAG_EXPIRED);
        qemu_rearm_alarm_timer(alarm_timer);
    }
7496
7497
7498
7499
    /* Check bottom-halves last in case any of the earlier events triggered
       them.  */
    qemu_bh_poll();
7500
bellard authored
7501
7502
}
7503
static int main_loop(void)
bellard authored
7504
7505
{
    int ret, timeout;
7506
7507
7508
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif
bellard authored
7509
    CPUState *env;
bellard authored
7510
bellard authored
7511
    cur_cpu = first_cpu;
7512
    next_cpu = cur_cpu->next_cpu ?: first_cpu;
bellard authored
7513
7514
    for(;;) {
        if (vm_running) {
bellard authored
7515
7516
7517

            for(;;) {
                /* get next cpu */
7518
                env = next_cpu;
7519
7520
7521
#ifdef CONFIG_PROFILER
                ti = profile_getclock();
#endif
pbrook authored
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
                if (use_icount) {
                    int64_t count;
                    int decr;
                    qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
                    env->icount_decr.u16.low = 0;
                    env->icount_extra = 0;
                    count = qemu_next_deadline();
                    count = (count + (1 << icount_time_shift) - 1)
                            >> icount_time_shift;
                    qemu_icount += count;
                    decr = (count > 0xffff) ? 0xffff : count;
                    count -= decr;
                    env->icount_decr.u16.low = decr;
                    env->icount_extra = count;
                }
bellard authored
7537
                ret = cpu_exec(env);
7538
7539
7540
#ifdef CONFIG_PROFILER
                qemu_time += profile_getclock() - ti;
#endif
pbrook authored
7541
7542
7543
7544
7545
7546
7547
7548
                if (use_icount) {
                    /* Fold pending instructions back into the
                       instruction counter, and clear the interrupt flag.  */
                    qemu_icount -= (env->icount_decr.u16.low
                                    + env->icount_extra);
                    env->icount_decr.u32 = 0;
                    env->icount_extra = 0;
                }
7549
                next_cpu = env->next_cpu ?: first_cpu;
7550
                if (event_pending && likely(ret != EXCP_DEBUG)) {
7551
7552
7553
7554
                    ret = EXCP_INTERRUPT;
                    event_pending = 0;
                    break;
                }
pbrook authored
7555
7556
7557
7558
7559
                if (ret == EXCP_HLT) {
                    /* Give the next CPU a chance to run.  */
                    cur_cpu = env;
                    continue;
                }
bellard authored
7560
7561
7562
                if (ret != EXCP_HALTED)
                    break;
                /* all CPUs are halted ? */
pbrook authored
7563
                if (env == cur_cpu)
bellard authored
7564
7565
7566
7567
                    break;
            }
            cur_cpu = env;
bellard authored
7568
            if (shutdown_requested) {
bellard authored
7569
                ret = EXCP_INTERRUPT;
aurel32 authored
7570
7571
7572
7573
7574
7575
                if (no_shutdown) {
                    vm_stop(0);
                    no_shutdown = 0;
                }
                else
                    break;
bellard authored
7576
7577
7578
7579
            }
            if (reset_requested) {
                reset_requested = 0;
                qemu_system_reset();
bellard authored
7580
7581
7582
7583
7584
7585
                ret = EXCP_INTERRUPT;
            }
            if (powerdown_requested) {
                powerdown_requested = 0;
		qemu_system_powerdown();
                ret = EXCP_INTERRUPT;
bellard authored
7586
            }
7587
            if (unlikely(ret == EXCP_DEBUG)) {
bellard authored
7588
7589
                vm_stop(EXCP_DEBUG);
            }
pbrook authored
7590
            /* If all cpus are halted then wait until the next IRQ */
bellard authored
7591
            /* XXX: use timeout computed from timers */
pbrook authored
7592
7593
7594
7595
7596
7597
7598
7599
            if (ret == EXCP_HALTED) {
                if (use_icount) {
                    int64_t add;
                    int64_t delta;
                    /* Advance virtual time to the next event.  */
                    if (use_icount == 1) {
                        /* When not using an adaptive execution frequency
                           we tend to get badly out of sync with real time,
7600
                           so just delay for a reasonable amount of time.  */
pbrook authored
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
                        delta = 0;
                    } else {
                        delta = cpu_get_icount() - cpu_get_clock();
                    }
                    if (delta > 0) {
                        /* If virtual time is ahead of real time then just
                           wait for IO.  */
                        timeout = (delta / 1000000) + 1;
                    } else {
                        /* Wait for either IO to occur or the next
                           timer event.  */
                        add = qemu_next_deadline();
                        /* We advance the timer before checking for IO.
                           Limit the amount we advance so that early IO
                           activity won't get the guest too far ahead.  */
                        if (add > 10000000)
                            add = 10000000;
                        delta += add;
                        add = (add + (1 << icount_time_shift) - 1)
                              >> icount_time_shift;
                        qemu_icount += add;
                        timeout = delta / 1000000;
                        if (timeout < 0)
                            timeout = 0;
                    }
                } else {
                    timeout = 10;
                }
            } else {
bellard authored
7630
                timeout = 0;
pbrook authored
7631
            }
bellard authored
7632
        } else {
7633
7634
            if (shutdown_requested)
                break;
bellard authored
7635
7636
            timeout = 10;
        }
7637
7638
7639
#ifdef CONFIG_PROFILER
        ti = profile_getclock();
#endif
bellard authored
7640
        main_loop_wait(timeout);
7641
7642
7643
#ifdef CONFIG_PROFILER
        dev_time += profile_getclock() - ti;
#endif
bellard authored
7644
    }
7645
7646
    cpu_disable_ticks();
    return ret;
bellard authored
7647
7648
}
7649
static void help(int exitcode)
7650
{
bellard authored
7651
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
7652
           "usage: %s [options] [disk_image]\n"
7653
           "\n"
7654
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
bellard authored
7655
           "\n"
7656
           "Standard options:\n"
7657
           "-M machine      select emulated machine (-M ? for list)\n"
pbrook authored
7658
           "-cpu cpu        select CPU (-cpu ? for list)\n"
7659
           "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n"
7660
7661
           "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n"
           "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n"
7662
           "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
7663
7664
7665
	   "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
           "       [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
           "       [,cache=on|off][,format=f]\n"
7666
	   "                use 'file' as a drive image\n"
7667
           "-mtdblock file  use 'file' as on-board Flash memory image\n"
7668
           "-sd file        use 'file' as SecureDigital card image\n"
7669
           "-pflash file    use 'file' as a parallel flash image\n"
7670
           "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
7671
7672
           "-snapshot       write to temporary files instead of disk image files\n"
#ifdef CONFIG_SDL
7673
           "-no-frame       open SDL window without a frame and window decorations\n"
7674
           "-alt-grab       use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
7675
7676
           "-no-quit        disable SDL window close capability\n"
#endif
7677
7678
7679
#ifdef TARGET_I386
           "-no-fd-bootchk  disable boot signature checking for floppy disks\n"
#endif
7680
           "-m megs         set virtual RAM size to megs MB [default=%d]\n"
7681
           "-smp n          set the number of CPUs to 'n' [default=1]\n"
7682
           "-nographic      disable graphical output and redirect serial I/Os to console\n"
7683
           "-portrait       rotate graphical output 90 deg left (only PXA LCD)\n"
7684
#ifndef _WIN32
7685
           "-k language     use keyboard layout (for example \"fr\" for French)\n"
7686
#endif
7687
7688
#ifdef HAS_AUDIO
           "-audio-help     print list of audio drivers and their options\n"
bellard authored
7689
7690
7691
           "-soundhw c1,... enable audio support\n"
           "                and only specified sound cards (comma separated list)\n"
           "                use -soundhw ? to get the list of supported cards\n"
7692
           "                use -soundhw all to enable all of them\n"
7693
#endif
bellard authored
7694
           "-localtime      set the real time clock to local time [default=utc]\n"
7695
           "-full-screen    start in full screen\n"
7696
7697
7698
#ifdef TARGET_I386
           "-win2k-hack     use it when installing Windows 2000 to avoid a disk full bug\n"
#endif
bellard authored
7699
7700
           "-usb            enable the USB driver (will be the default soon)\n"
           "-usbdevice name add the host or guest USB device 'name'\n"
bellard authored
7701
7702
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
           "-g WxH[xDEPTH]  Set the initial graphical resolution and depth\n"
7703
#endif
7704
           "-name string    set the name of the guest\n"
7705
           "-uuid %%08x-%%04x-%%04x-%%04x-%%012x specify machine UUID\n"
7706
7707
           "\n"
           "Network options:\n"
7708
           "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
bellard authored
7709
           "                create a new Network Interface Card and connect it to VLAN 'n'\n"
7710
#ifdef CONFIG_SLIRP
pbrook authored
7711
7712
7713
           "-net user[,vlan=n][,hostname=host]\n"
           "                connect the user mode network stack to VLAN 'n' and send\n"
           "                hostname 'host' to DHCP clients\n"
bellard authored
7714
#endif
bellard authored
7715
7716
7717
7718
#ifdef _WIN32
           "-net tap[,vlan=n],ifname=name\n"
           "                connect the host TAP network interface to VLAN 'n'\n"
#else
7719
7720
7721
7722
7723
           "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
           "                connect the host TAP network interface to VLAN 'n' and use the\n"
           "                network scripts 'file' (default=%s)\n"
           "                and 'dfile' (default=%s);\n"
           "                use '[down]script=no' to disable script execution;\n"
bellard authored
7724
           "                use 'fd=h' to connect to an already opened TAP interface\n"
bellard authored
7725
#endif
bellard authored
7726
           "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
bellard authored
7727
           "                connect the vlan 'n' to another VLAN using a socket connection\n"
7728
7729
           "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
           "                connect the vlan 'n' to multicast maddr and port\n"
7730
7731
7732
7733
7734
7735
7736
#ifdef CONFIG_VDE
           "-net vde[,vlan=n][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
           "                connect the vlan 'n' to port 'n' of a vde switch running\n"
           "                on host and listening for incoming connections on 'socketpath'.\n"
           "                Use group 'groupname' and mode 'octalmode' to change default\n"
           "                ownership and permissions for communication port.\n"
#endif
bellard authored
7737
7738
7739
7740
           "-net none       use it alone to have zero network devices; if no -net option\n"
           "                is provided, the default is '-net nic -net user'\n"
           "\n"
#ifdef CONFIG_SLIRP
7741
           "-tftp dir       allow tftp access to files in dir [-net user]\n"
7742
           "-bootp file     advertise file in BOOTP replies\n"
bellard authored
7743
7744
#ifndef _WIN32
           "-smb dir        allow SMB access to files in 'dir' [-net user]\n"
bellard authored
7745
#endif
bellard authored
7746
           "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
bellard authored
7747
           "                redirect TCP or UDP connections from host to guest [-net user]\n"
7748
#endif
7749
           "\n"
7750
           "Linux boot specific:\n"
7751
7752
7753
           "-kernel bzImage use 'bzImage' as kernel image\n"
           "-append cmdline use 'cmdline' as kernel command line\n"
           "-initrd file    use 'file' as initial ram disk\n"
bellard authored
7754
           "\n"
7755
           "Debug/Expert options:\n"
bellard authored
7756
7757
           "-monitor dev    redirect the monitor to char device 'dev'\n"
           "-serial dev     redirect the serial port to char device 'dev'\n"
7758
           "-parallel dev   redirect the parallel port to char device 'dev'\n"
bellard authored
7759
           "-pidfile file   Write PID to 'file'\n"
7760
           "-S              freeze CPU at startup (use 'c' to start execution)\n"
7761
7762
           "-s              wait gdb connection to port\n"
           "-p port         set gdb connection port [default=%s]\n"
7763
           "-d item1,...    output log to %s (use -d ? for a list of log items)\n"
7764
7765
           "-hdachs c,h,s[,t]  force hard disk 0 physical geometry and the optional BIOS\n"
           "                translation (t=none or lba) (usually qemu can guess them)\n"
bellard authored
7766
           "-L path         set the directory for the BIOS, VGA BIOS and keymaps\n"
bellard authored
7767
#ifdef USE_KQEMU
bellard authored
7768
           "-kernel-kqemu   enable KQEMU full virtualization (default is user mode only)\n"
bellard authored
7769
7770
           "-no-kqemu       disable KQEMU kernel module usage\n"
#endif
7771
#ifdef TARGET_I386
7772
7773
           "-std-vga        simulate a standard VGA card with VESA Bochs Extensions\n"
           "                (default is CL-GD5446 PCI VGA)\n"
bellard authored
7774
           "-no-acpi        disable ACPI\n"
7775
#endif
balrog authored
7776
7777
7778
#ifdef CONFIG_CURSES
           "-curses         use a curses/ncurses interface instead of SDL\n"
#endif
bellard authored
7779
           "-no-reboot      exit instead of rebooting\n"
aurel32 authored
7780
           "-no-shutdown    stop before shutdown\n"
7781
           "-loadvm [tag|id]  start right away with a saved state (loadvm in monitor)\n"
bellard authored
7782
	   "-vnc display    start a VNC server on display\n"
7783
7784
7785
#ifndef _WIN32
	   "-daemonize      daemonize QEMU after initializing\n"
#endif
7786
	   "-option-rom rom load a file, rom, into the option ROM space\n"
7787
7788
7789
#ifdef TARGET_SPARC
           "-prom-env variable=value  set OpenBIOS nvram variables\n"
#endif
7790
           "-clock          force the use of the given methods for timer alarm.\n"
7791
           "                To see what timers are available use -clock ?\n"
7792
           "-startdate      select initial date of the clock\n"
pbrook authored
7793
           "-icount [N|auto]\n"
7794
           "                Enable virtual instruction counter with 2^N clock ticks per instruction\n"
7795
           "\n"
bellard authored
7796
           "During emulation, the following keys are useful:\n"
bellard authored
7797
7798
7799
           "ctrl-alt-f      toggle full screen\n"
           "ctrl-alt-n      switch to virtual console 'n'\n"
           "ctrl-alt        toggle mouse and keyboard grab\n"
bellard authored
7800
7801
7802
           "\n"
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
           ,
7803
           "qemu",
7804
           DEFAULT_RAM_SIZE,
bellard authored
7805
#ifndef _WIN32
7806
           DEFAULT_NETWORK_SCRIPT,
7807
           DEFAULT_NETWORK_DOWN_SCRIPT,
bellard authored
7808
#endif
7809
           DEFAULT_GDBSTUB_PORT,
7810
           "/tmp/qemu.log");
7811
    exit(exitcode);
7812
7813
}
7814
7815
7816
7817
7818
#define HAS_ARG 0x0001

enum {
    QEMU_OPTION_h,
7819
    QEMU_OPTION_M,
7820
    QEMU_OPTION_cpu,
7821
7822
7823
7824
7825
7826
    QEMU_OPTION_fda,
    QEMU_OPTION_fdb,
    QEMU_OPTION_hda,
    QEMU_OPTION_hdb,
    QEMU_OPTION_hdc,
    QEMU_OPTION_hdd,
7827
    QEMU_OPTION_drive,
7828
    QEMU_OPTION_cdrom,
7829
    QEMU_OPTION_mtdblock,
7830
    QEMU_OPTION_sd,
7831
    QEMU_OPTION_pflash,
7832
7833
    QEMU_OPTION_boot,
    QEMU_OPTION_snapshot,
7834
7835
7836
#ifdef TARGET_I386
    QEMU_OPTION_no_fd_bootchk,
#endif
7837
7838
    QEMU_OPTION_m,
    QEMU_OPTION_nographic,
7839
    QEMU_OPTION_portrait,
7840
7841
7842
7843
#ifdef HAS_AUDIO
    QEMU_OPTION_audio_help,
    QEMU_OPTION_soundhw,
#endif
7844
bellard authored
7845
    QEMU_OPTION_net,
bellard authored
7846
    QEMU_OPTION_tftp,
7847
    QEMU_OPTION_bootp,
bellard authored
7848
    QEMU_OPTION_smb,
bellard authored
7849
    QEMU_OPTION_redir,
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860

    QEMU_OPTION_kernel,
    QEMU_OPTION_append,
    QEMU_OPTION_initrd,

    QEMU_OPTION_S,
    QEMU_OPTION_s,
    QEMU_OPTION_p,
    QEMU_OPTION_d,
    QEMU_OPTION_hdachs,
    QEMU_OPTION_L,
7861
    QEMU_OPTION_bios,
7862
    QEMU_OPTION_k,
bellard authored
7863
    QEMU_OPTION_localtime,
bellard authored
7864
    QEMU_OPTION_cirrusvga,
7865
    QEMU_OPTION_vmsvga,
7866
    QEMU_OPTION_g,
7867
    QEMU_OPTION_std_vga,
7868
    QEMU_OPTION_echr,
bellard authored
7869
7870
    QEMU_OPTION_monitor,
    QEMU_OPTION_serial,
7871
    QEMU_OPTION_parallel,
7872
7873
    QEMU_OPTION_loadvm,
    QEMU_OPTION_full_screen,
7874
    QEMU_OPTION_no_frame,
7875
    QEMU_OPTION_alt_grab,
7876
    QEMU_OPTION_no_quit,
bellard authored
7877
    QEMU_OPTION_pidfile,
bellard authored
7878
    QEMU_OPTION_no_kqemu,
7879
    QEMU_OPTION_kernel_kqemu,
7880
    QEMU_OPTION_win2k_hack,
bellard authored
7881
    QEMU_OPTION_usb,
bellard authored
7882
    QEMU_OPTION_usbdevice,
bellard authored
7883
    QEMU_OPTION_smp,
bellard authored
7884
    QEMU_OPTION_vnc,
bellard authored
7885
    QEMU_OPTION_no_acpi,
balrog authored
7886
    QEMU_OPTION_curses,
bellard authored
7887
    QEMU_OPTION_no_reboot,
aurel32 authored
7888
    QEMU_OPTION_no_shutdown,
7889
    QEMU_OPTION_show_cursor,
7890
    QEMU_OPTION_daemonize,
7891
    QEMU_OPTION_option_rom,
7892
7893
    QEMU_OPTION_semihosting,
    QEMU_OPTION_name,
7894
    QEMU_OPTION_prom_env,
7895
    QEMU_OPTION_old_param,
7896
    QEMU_OPTION_clock,
bellard authored
7897
    QEMU_OPTION_startdate,
7898
    QEMU_OPTION_tb_size,
pbrook authored
7899
    QEMU_OPTION_icount,
7900
    QEMU_OPTION_uuid,
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
};

typedef struct QEMUOption {
    const char *name;
    int flags;
    int index;
} QEMUOption;

const QEMUOption qemu_options[] = {
    { "h", 0, QEMU_OPTION_h },
pbrook authored
7911
    { "help", 0, QEMU_OPTION_h },
7912
7913
    { "M", HAS_ARG, QEMU_OPTION_M },
7914
    { "cpu", HAS_ARG, QEMU_OPTION_cpu },
7915
7916
7917
7918
7919
7920
    { "fda", HAS_ARG, QEMU_OPTION_fda },
    { "fdb", HAS_ARG, QEMU_OPTION_fdb },
    { "hda", HAS_ARG, QEMU_OPTION_hda },
    { "hdb", HAS_ARG, QEMU_OPTION_hdb },
    { "hdc", HAS_ARG, QEMU_OPTION_hdc },
    { "hdd", HAS_ARG, QEMU_OPTION_hdd },
7921
    { "drive", HAS_ARG, QEMU_OPTION_drive },
7922
    { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
7923
    { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
7924
    { "sd", HAS_ARG, QEMU_OPTION_sd },
7925
    { "pflash", HAS_ARG, QEMU_OPTION_pflash },
7926
7927
    { "boot", HAS_ARG, QEMU_OPTION_boot },
    { "snapshot", 0, QEMU_OPTION_snapshot },
7928
7929
7930
#ifdef TARGET_I386
    { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
#endif
7931
7932
    { "m", HAS_ARG, QEMU_OPTION_m },
    { "nographic", 0, QEMU_OPTION_nographic },
7933
    { "portrait", 0, QEMU_OPTION_portrait },
7934
    { "k", HAS_ARG, QEMU_OPTION_k },
7935
7936
7937
7938
#ifdef HAS_AUDIO
    { "audio-help", 0, QEMU_OPTION_audio_help },
    { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
#endif
7939
bellard authored
7940
    { "net", HAS_ARG, QEMU_OPTION_net},
7941
#ifdef CONFIG_SLIRP
bellard authored
7942
    { "tftp", HAS_ARG, QEMU_OPTION_tftp },
7943
    { "bootp", HAS_ARG, QEMU_OPTION_bootp },
bellard authored
7944
#ifndef _WIN32
bellard authored
7945
    { "smb", HAS_ARG, QEMU_OPTION_smb },
bellard authored
7946
#endif
bellard authored
7947
    { "redir", HAS_ARG, QEMU_OPTION_redir },
7948
#endif
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959

    { "kernel", HAS_ARG, QEMU_OPTION_kernel },
    { "append", HAS_ARG, QEMU_OPTION_append },
    { "initrd", HAS_ARG, QEMU_OPTION_initrd },

    { "S", 0, QEMU_OPTION_S },
    { "s", 0, QEMU_OPTION_s },
    { "p", HAS_ARG, QEMU_OPTION_p },
    { "d", HAS_ARG, QEMU_OPTION_d },
    { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
    { "L", HAS_ARG, QEMU_OPTION_L },
7960
    { "bios", HAS_ARG, QEMU_OPTION_bios },
bellard authored
7961
7962
#ifdef USE_KQEMU
    { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
7963
    { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
bellard authored
7964
#endif
bellard authored
7965
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
7966
    { "g", 1, QEMU_OPTION_g },
7967
#endif
bellard authored
7968
    { "localtime", 0, QEMU_OPTION_localtime },
7969
    { "std-vga", 0, QEMU_OPTION_std_vga },
7970
7971
7972
7973
    { "echr", HAS_ARG, QEMU_OPTION_echr },
    { "monitor", HAS_ARG, QEMU_OPTION_monitor },
    { "serial", HAS_ARG, QEMU_OPTION_serial },
    { "parallel", HAS_ARG, QEMU_OPTION_parallel },
7974
7975
    { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
    { "full-screen", 0, QEMU_OPTION_full_screen },
7976
#ifdef CONFIG_SDL
7977
    { "no-frame", 0, QEMU_OPTION_no_frame },
7978
    { "alt-grab", 0, QEMU_OPTION_alt_grab },
7979
7980
    { "no-quit", 0, QEMU_OPTION_no_quit },
#endif
bellard authored
7981
    { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
7982
    { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
bellard authored
7983
    { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
bellard authored
7984
    { "smp", HAS_ARG, QEMU_OPTION_smp },
bellard authored
7985
    { "vnc", HAS_ARG, QEMU_OPTION_vnc },
balrog authored
7986
7987
7988
#ifdef CONFIG_CURSES
    { "curses", 0, QEMU_OPTION_curses },
#endif
7989
    { "uuid", HAS_ARG, QEMU_OPTION_uuid },
7990
bellard authored
7991
    /* temporary options */
bellard authored
7992
    { "usb", 0, QEMU_OPTION_usb },
bellard authored
7993
    { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
7994
    { "vmwarevga", 0, QEMU_OPTION_vmsvga },
bellard authored
7995
    { "no-acpi", 0, QEMU_OPTION_no_acpi },
bellard authored
7996
    { "no-reboot", 0, QEMU_OPTION_no_reboot },
aurel32 authored
7997
    { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
7998
    { "show-cursor", 0, QEMU_OPTION_show_cursor },
7999
    { "daemonize", 0, QEMU_OPTION_daemonize },
8000
    { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
pbrook authored
8001
#if defined(TARGET_ARM) || defined(TARGET_M68K)
8002
8003
    { "semihosting", 0, QEMU_OPTION_semihosting },
#endif
8004
    { "name", HAS_ARG, QEMU_OPTION_name },
8005
8006
8007
#if defined(TARGET_SPARC)
    { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
#endif
8008
8009
8010
#if defined(TARGET_ARM)
    { "old-param", 0, QEMU_OPTION_old_param },
#endif
8011
    { "clock", HAS_ARG, QEMU_OPTION_clock },
bellard authored
8012
    { "startdate", HAS_ARG, QEMU_OPTION_startdate },
8013
    { "tb-size", HAS_ARG, QEMU_OPTION_tb_size },
pbrook authored
8014
    { "icount", HAS_ARG, QEMU_OPTION_icount },
8015
    { NULL },
bellard authored
8016
8017
};
bellard authored
8018
8019
/* password input */
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
int qemu_key_check(BlockDriverState *bs, const char *name)
{
    char password[256];
    int i;

    if (!bdrv_is_encrypted(bs))
        return 0;

    term_printf("%s is encrypted.\n", name);
    for(i = 0; i < 3; i++) {
        monitor_readline("Password: ", 1, password, sizeof(password));
        if (bdrv_set_key(bs, password) == 0)
            return 0;
        term_printf("invalid password\n");
    }
    return -EPERM;
}
8038
8039
8040
8041
8042
8043
8044
static BlockDriverState *get_bdrv(int index)
{
    if (index > nb_drives)
        return NULL;
    return drives_table[index].bdrv;
}
bellard authored
8045
8046
8047
static void read_passwords(void)
{
    BlockDriverState *bs;
8048
    int i;
bellard authored
8049
8050
8051
8052
8053
    for(i = 0; i < 6; i++) {
        bs = get_bdrv(i);
        if (bs)
            qemu_key_check(bs, bdrv_get_device_name(bs));
bellard authored
8054
8055
8056
    }
}
8057
#ifdef HAS_AUDIO
8058
struct soundhw soundhw[] = {
8059
#ifdef HAS_AUDIO_CHOICE
aurel32 authored
8060
#if defined(TARGET_I386) || defined(TARGET_MIPS)
8061
8062
8063
8064
8065
8066
8067
8068
    {
        "pcspk",
        "PC speaker",
        0,
        1,
        { .init_isa = pcspk_audio_init }
    },
#endif
8069
8070
8071
8072
8073
8074
8075
8076
    {
        "sb16",
        "Creative Sound Blaster 16",
        0,
        1,
        { .init_isa = SB16_init }
    },
malc authored
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
#ifdef CONFIG_CS4231A
    {
        "cs4231a",
        "CS4231A",
        0,
        1,
        { .init_isa = cs4231a_init }
    },
#endif
8087
#ifdef CONFIG_ADLIB
8088
8089
    {
        "adlib",
8090
#ifdef HAS_YMF262
8091
        "Yamaha YMF262 (OPL3)",
8092
#else
8093
        "Yamaha YM3812 (OPL2)",
8094
#endif
8095
8096
8097
8098
        0,
        1,
        { .init_isa = Adlib_init }
    },
8099
#endif
8100
8101
#ifdef CONFIG_GUS
8102
8103
8104
8105
8106
8107
8108
    {
        "gus",
        "Gravis Ultrasound GF1",
        0,
        1,
        { .init_isa = GUS_init }
    },
8109
#endif
8110
balrog authored
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
#ifdef CONFIG_AC97
    {
        "ac97",
        "Intel 82801AA AC97 Audio",
        0,
        0,
        { .init_pci = ac97_init }
    },
#endif
8121
8122
8123
8124
8125
8126
8127
    {
        "es1370",
        "ENSONIQ AudioPCI ES1370",
        0,
        0,
        { .init_pci = es1370_init }
    },
8128
#endif
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144

    { NULL, NULL, 0, 0, { NULL } }
};

static void select_soundhw (const char *optarg)
{
    struct soundhw *c;

    if (*optarg == '?') {
    show_valid_cards:

        printf ("Valid sound card names (comma separated):\n");
        for (c = soundhw; c->name; ++c) {
            printf ("%-11s %s\n", c->name, c->descr);
        }
        printf ("\n-soundhw all will enable all of the above\n");
8145
8146
8147
        exit (*optarg != '?');
    }
    else {
8148
        size_t l;
8149
8150
8151
8152
        const char *p;
        char *e;
        int bad_card = 0;
8153
8154
8155
8156
8157
8158
        if (!strcmp (optarg, "all")) {
            for (c = soundhw; c->name; ++c) {
                c->enabled = 1;
            }
            return;
        }
8159
8160
        p = optarg;
8161
8162
8163
        while (*p) {
            e = strchr (p, ',');
            l = !e ? strlen (p) : (size_t) (e - p);
8164
8165
8166
8167

            for (c = soundhw; c->name; ++c) {
                if (!strncmp (c->name, p, l)) {
                    c->enabled = 1;
8168
8169
8170
                    break;
                }
            }
8171
8172

            if (!c->name) {
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
                if (l > 80) {
                    fprintf (stderr,
                             "Unknown sound card name (too big to show)\n");
                }
                else {
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
                             (int) l, p);
                }
                bad_card = 1;
            }
            p += l + (e != NULL);
        }

        if (bad_card)
            goto show_valid_cards;
    }
}
#endif
8192
8193
8194
8195
8196
8197
8198
8199
#ifdef _WIN32
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
{
    exit(STATUS_CONTROL_C_EXIT);
    return TRUE;
}
#endif
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
static int qemu_uuid_parse(const char *str, uint8_t *uuid)
{
    int ret;

    if(strlen(str) != 36)
        return -1;

    ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
            &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
            &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);

    if(ret != 16)
        return -1;

    return 0;
}
bellard authored
8217
#define MAX_NET_CLIENTS 32
8218
8219
8220
8221
8222
8223
8224
8225
#ifndef _WIN32

static void termsig_handler(int signal)
{
    qemu_system_shutdown_request();
}
blueswir1 authored
8226
static void termsig_setup(void)
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
{
    struct sigaction act;

    memset(&act, 0, sizeof(act));
    act.sa_handler = termsig_handler;
    sigaction(SIGINT,  &act, NULL);
    sigaction(SIGHUP,  &act, NULL);
    sigaction(SIGTERM, &act, NULL);
}

#endif
8239
8240
int main(int argc, char **argv)
{
8241
#ifdef CONFIG_GDBSTUB
8242
8243
    int use_gdbstub;
    const char *gdbstub_port;
8244
#endif
8245
    uint32_t boot_devices_bitmap = 0;
8246
    int i;
8247
    int snapshot, linux_boot, net_boot;
8248
    const char *initrd_filename;
8249
    const char *kernel_filename, *kernel_cmdline;
8250
    const char *boot_devices = "";
8251
    DisplayState *ds = &display_state;
8252
    int cyls, heads, secs, translation;
8253
    const char *net_clients[MAX_NET_CLIENTS];
bellard authored
8254
    int nb_net_clients;
8255
    int hda_index;
8256
8257
    int optind;
    const char *r, *optarg;
bellard authored
8258
    CharDriverState *monitor_hd;
8259
8260
    const char *monitor_device;
    const char *serial_devices[MAX_SERIAL_PORTS];
8261
    int serial_device_index;
8262
    const char *parallel_devices[MAX_PARALLEL_PORTS];
8263
    int parallel_device_index;
8264
    const char *loadvm = NULL;
8265
    QEMUMachine *machine;
8266
    const char *cpu_model;
8267
    const char *usb_devices[MAX_USB_CMDLINE];
bellard authored
8268
    int usb_devices_index;
8269
    int fds[2];
8270
    int tb_size;
8271
    const char *pid_file = NULL;
8272
    VLANState *vlan;
8273
8274

    LIST_INIT (&vm_change_state_head);
8275
8276
8277
8278
8279
8280
8281
8282
#ifndef _WIN32
    {
        struct sigaction act;
        sigfillset(&act.sa_mask);
        act.sa_flags = 0;
        act.sa_handler = SIG_IGN;
        sigaction(SIGPIPE, &act, NULL);
    }
8283
8284
#else
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
       QEMU to run on a single CPU */
    {
        HANDLE h;
        DWORD mask, smask;
        int i;
        h = GetCurrentProcess();
        if (GetProcessAffinityMask(h, &mask, &smask)) {
            for(i = 0; i < 32; i++) {
                if (mask & (1 << i))
                    break;
            }
            if (i != 32) {
                mask = 1 << i;
                SetProcessAffinityMask(h, mask);
            }
        }
    }
8303
#endif
8304
8305
8306
    register_machines();
    machine = first_machine;
8307
    cpu_model = NULL;
bellard authored
8308
    initrd_filename = NULL;
8309
    ram_size = 0;
8310
    vga_ram_size = VGA_RAM_SIZE;
8311
#ifdef CONFIG_GDBSTUB
bellard authored
8312
    use_gdbstub = 0;
bellard authored
8313
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
8314
#endif
8315
    snapshot = 0;
8316
    nographic = 0;
balrog authored
8317
    curses = 0;
8318
8319
    kernel_filename = NULL;
    kernel_cmdline = "";
8320
    cyls = heads = secs = 0;
8321
    translation = BIOS_ATA_TRANSLATION_AUTO;
8322
    monitor_device = "vc";
8323
aurel32 authored
8324
    serial_devices[0] = "vc:80Cx24C";
8325
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
8326
        serial_devices[i] = NULL;
8327
    serial_device_index = 0;
8328
aurel32 authored
8329
    parallel_devices[0] = "vc:640x480";
8330
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
8331
        parallel_devices[i] = NULL;
8332
    parallel_device_index = 0;
8333
bellard authored
8334
    usb_devices_index = 0;
8335
bellard authored
8336
    nb_net_clients = 0;
8337
8338
8339
    nb_drives = 0;
    nb_drives_opt = 0;
    hda_index = -1;
bellard authored
8340
8341

    nb_nics = 0;
8342
8343
8344
    tb_size = 0;
8345
    optind = 1;
8346
    for(;;) {
8347
        if (optind >= argc)
8348
            break;
8349
8350
        r = argv[optind];
        if (r[0] != '-') {
8351
	    hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
8352
8353
8354
8355
        } else {
            const QEMUOption *popt;

            optind++;
8356
8357
8358
            /* Treat --foo the same as -foo.  */
            if (r[1] == '-')
                r++;
8359
8360
8361
            popt = qemu_options;
            for(;;) {
                if (!popt->name) {
8362
                    fprintf(stderr, "%s: invalid option -- '%s'\n",
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
                            argv[0], r);
                    exit(1);
                }
                if (!strcmp(popt->name, r + 1))
                    break;
                popt++;
            }
            if (popt->flags & HAS_ARG) {
                if (optind >= argc) {
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
                            argv[0], r);
                    exit(1);
                }
                optarg = argv[optind++];
            } else {
                optarg = NULL;
            }

            switch(popt->index) {
8382
8383
8384
8385
8386
8387
8388
            case QEMU_OPTION_M:
                machine = find_machine(optarg);
                if (!machine) {
                    QEMUMachine *m;
                    printf("Supported machines are:\n");
                    for(m = first_machine; m != NULL; m = m->next) {
                        printf("%-10s %s%s\n",
8389
                               m->name, m->desc,
8390
8391
                               m == first_machine ? " (default)" : "");
                    }
8392
                    exit(*optarg != '?');
8393
8394
                }
                break;
8395
8396
            case QEMU_OPTION_cpu:
                /* hw initialization will check this */
8397
                if (*optarg == '?') {
j_mayer authored
8398
8399
8400
/* XXX: implement xxx_cpu_list for targets that still miss it */
#if defined(cpu_list)
                    cpu_list(stdout, &fprintf);
8401
#endif
8402
                    exit(0);
8403
8404
8405
8406
                } else {
                    cpu_model = optarg;
                }
                break;
8407
            case QEMU_OPTION_initrd:
bellard authored
8408
8409
                initrd_filename = optarg;
                break;
8410
            case QEMU_OPTION_hda:
8411
                if (cyls == 0)
8412
                    hda_index = drive_add(optarg, HD_ALIAS, 0);
8413
                else
8414
                    hda_index = drive_add(optarg, HD_ALIAS
8415
			     ",cyls=%d,heads=%d,secs=%d%s",
8416
                             0, cyls, heads, secs,
8417
8418
8419
8420
8421
                             translation == BIOS_ATA_TRANSLATION_LBA ?
                                 ",trans=lba" :
                             translation == BIOS_ATA_TRANSLATION_NONE ?
                                 ",trans=none" : "");
                 break;
8422
            case QEMU_OPTION_hdb:
8423
8424
            case QEMU_OPTION_hdc:
            case QEMU_OPTION_hdd:
8425
                drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
bellard authored
8426
                break;
8427
            case QEMU_OPTION_drive:
8428
                drive_add(NULL, "%s", optarg);
8429
	        break;
8430
            case QEMU_OPTION_mtdblock:
8431
                drive_add(optarg, MTD_ALIAS);
8432
                break;
8433
            case QEMU_OPTION_sd:
8434
                drive_add(optarg, SD_ALIAS);
8435
                break;
8436
            case QEMU_OPTION_pflash:
8437
                drive_add(optarg, PFLASH_ALIAS);
8438
                break;
8439
            case QEMU_OPTION_snapshot:
8440
8441
                snapshot = 1;
                break;
8442
            case QEMU_OPTION_hdachs:
8443
8444
8445
8446
                {
                    const char *p;
                    p = optarg;
                    cyls = strtol(p, (char **)&p, 0);
8447
8448
                    if (cyls < 1 || cyls > 16383)
                        goto chs_fail;
8449
8450
8451
8452
                    if (*p != ',')
                        goto chs_fail;
                    p++;
                    heads = strtol(p, (char **)&p, 0);
8453
8454
                    if (heads < 1 || heads > 16)
                        goto chs_fail;
8455
8456
8457
8458
                    if (*p != ',')
                        goto chs_fail;
                    p++;
                    secs = strtol(p, (char **)&p, 0);
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
                    if (secs < 1 || secs > 63)
                        goto chs_fail;
                    if (*p == ',') {
                        p++;
                        if (!strcmp(p, "none"))
                            translation = BIOS_ATA_TRANSLATION_NONE;
                        else if (!strcmp(p, "lba"))
                            translation = BIOS_ATA_TRANSLATION_LBA;
                        else if (!strcmp(p, "auto"))
                            translation = BIOS_ATA_TRANSLATION_AUTO;
                        else
                            goto chs_fail;
                    } else if (*p != '\0') {
8472
                    chs_fail:
8473
8474
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
                        exit(1);
8475
                    }
8476
		    if (hda_index != -1)
8477
8478
8479
8480
                        snprintf(drives_opt[hda_index].opt,
                                 sizeof(drives_opt[hda_index].opt),
                                 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
                                 0, cyls, heads, secs,
8481
8482
8483
8484
			         translation == BIOS_ATA_TRANSLATION_LBA ?
			     	    ",trans=lba" :
			         translation == BIOS_ATA_TRANSLATION_NONE ?
			             ",trans=none" : "");
8485
8486
                }
                break;
8487
            case QEMU_OPTION_nographic:
8488
8489
                nographic = 1;
                break;
balrog authored
8490
8491
8492
8493
8494
#ifdef CONFIG_CURSES
            case QEMU_OPTION_curses:
                curses = 1;
                break;
#endif
8495
8496
8497
            case QEMU_OPTION_portrait:
                graphic_rotate = 1;
                break;
8498
            case QEMU_OPTION_kernel:
8499
8500
                kernel_filename = optarg;
                break;
8501
            case QEMU_OPTION_append:
8502
                kernel_cmdline = optarg;
8503
                break;
8504
            case QEMU_OPTION_cdrom:
8505
                drive_add(optarg, CDROM_ALIAS);
8506
                break;
8507
            case QEMU_OPTION_boot:
8508
8509
8510
8511
                boot_devices = optarg;
                /* We just do some generic consistency checks */
                {
                    /* Could easily be extended to 64 devices if needed */
8512
                    const char *p;
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535

                    boot_devices_bitmap = 0;
                    for (p = boot_devices; *p != '\0'; p++) {
                        /* Allowed boot devices are:
                         * a b     : floppy disk drives
                         * c ... f : IDE disk drives
                         * g ... m : machine implementation dependant drives
                         * n ... p : network devices
                         * It's up to each machine implementation to check
                         * if the given boot devices match the actual hardware
                         * implementation and firmware features.
                         */
                        if (*p < 'a' || *p > 'q') {
                            fprintf(stderr, "Invalid boot device '%c'\n", *p);
                            exit(1);
                        }
                        if (boot_devices_bitmap & (1 << (*p - 'a'))) {
                            fprintf(stderr,
                                    "Boot device '%c' was given twice\n",*p);
                            exit(1);
                        }
                        boot_devices_bitmap |= 1 << (*p - 'a');
                    }
8536
8537
                }
                break;
8538
8539
            case QEMU_OPTION_fda:
            case QEMU_OPTION_fdb:
8540
                drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
8541
                break;
8542
8543
8544
8545
8546
#ifdef TARGET_I386
            case QEMU_OPTION_no_fd_bootchk:
                fd_bootchk = 0;
                break;
#endif
bellard authored
8547
8548
8549
            case QEMU_OPTION_net:
                if (nb_net_clients >= MAX_NET_CLIENTS) {
                    fprintf(stderr, "qemu: too many network clients\n");
8550
8551
                    exit(1);
                }
8552
                net_clients[nb_net_clients] = optarg;
bellard authored
8553
                nb_net_clients++;
bellard authored
8554
                break;
bellard authored
8555
8556
8557
#ifdef CONFIG_SLIRP
            case QEMU_OPTION_tftp:
		tftp_prefix = optarg;
bellard authored
8558
                break;
8559
8560
8561
            case QEMU_OPTION_bootp:
                bootp_filename = optarg;
                break;
bellard authored
8562
#ifndef _WIN32
bellard authored
8563
8564
8565
            case QEMU_OPTION_smb:
		net_slirp_smb(optarg);
                break;
bellard authored
8566
#endif
bellard authored
8567
            case QEMU_OPTION_redir:
8568
                net_slirp_redir(optarg);
bellard authored
8569
                break;
bellard authored
8570
#endif
8571
8572
8573
8574
8575
8576
8577
8578
8579
#ifdef HAS_AUDIO
            case QEMU_OPTION_audio_help:
                AUD_help ();
                exit (0);
                break;
            case QEMU_OPTION_soundhw:
                select_soundhw (optarg);
                break;
#endif
8580
            case QEMU_OPTION_h:
8581
                help(0);
8582
                break;
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
            case QEMU_OPTION_m: {
                uint64_t value;
                char *ptr;

                value = strtoul(optarg, &ptr, 10);
                switch (*ptr) {
                case 0: case 'M': case 'm':
                    value <<= 20;
                    break;
                case 'G': case 'g':
                    value <<= 30;
                    break;
                default:
                    fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
8597
8598
                    exit(1);
                }
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613

                /* On 32-bit hosts, QEMU is limited by virtual address space */
                if (value > (2047 << 20)
#ifndef USE_KQEMU
                    && HOST_LONG_BITS == 32
#endif
                    ) {
                    fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
                    exit(1);
                }
                if (value != (uint64_t)(ram_addr_t)value) {
                    fprintf(stderr, "qemu: ram size too large\n");
                    exit(1);
                }
                ram_size = value;
8614
                break;
8615
            }
8616
8617
8618
8619
            case QEMU_OPTION_d:
                {
                    int mask;
                    CPULogItem *item;
8620
8621
8622
8623
                    mask = cpu_str_to_log_mask(optarg);
                    if (!mask) {
                        printf("Log items (comma separated):\n");
8624
8625
8626
8627
                    for(item = cpu_log_items; item->mask != 0; item++) {
                        printf("%-10s %s\n", item->name, item->help);
                    }
                    exit(1);
8628
8629
                    }
                    cpu_set_log(mask);
8630
                }
8631
                break;
8632
#ifdef CONFIG_GDBSTUB
8633
8634
8635
8636
            case QEMU_OPTION_s:
                use_gdbstub = 1;
                break;
            case QEMU_OPTION_p:
8637
                gdbstub_port = optarg;
8638
                break;
8639
#endif
8640
8641
8642
            case QEMU_OPTION_L:
                bios_dir = optarg;
                break;
8643
8644
8645
            case QEMU_OPTION_bios:
                bios_name = optarg;
                break;
8646
            case QEMU_OPTION_S:
8647
                autostart = 0;
8648
                break;
8649
8650
8651
	    case QEMU_OPTION_k:
		keyboard_layout = optarg;
		break;
bellard authored
8652
8653
8654
            case QEMU_OPTION_localtime:
                rtc_utc = 0;
                break;
bellard authored
8655
8656
            case QEMU_OPTION_cirrusvga:
                cirrus_vga_enabled = 1;
8657
8658
8659
8660
8661
                vmsvga_enabled = 0;
                break;
            case QEMU_OPTION_vmsvga:
                cirrus_vga_enabled = 0;
                vmsvga_enabled = 1;
bellard authored
8662
                break;
8663
8664
            case QEMU_OPTION_std_vga:
                cirrus_vga_enabled = 0;
8665
                vmsvga_enabled = 0;
8666
                break;
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
            case QEMU_OPTION_g:
                {
                    const char *p;
                    int w, h, depth;
                    p = optarg;
                    w = strtol(p, (char **)&p, 10);
                    if (w <= 0) {
                    graphic_error:
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
                        exit(1);
                    }
                    if (*p != 'x')
                        goto graphic_error;
                    p++;
                    h = strtol(p, (char **)&p, 10);
                    if (h <= 0)
                        goto graphic_error;
                    if (*p == 'x') {
                        p++;
                        depth = strtol(p, (char **)&p, 10);
8687
                        if (depth != 8 && depth != 15 && depth != 16 &&
8688
8689
8690
8691
8692
8693
8694
                            depth != 24 && depth != 32)
                            goto graphic_error;
                    } else if (*p == '\0') {
                        depth = graphic_depth;
                    } else {
                        goto graphic_error;
                    }
8695
8696
8697
8698
8699
8700
                    graphic_width = w;
                    graphic_height = h;
                    graphic_depth = depth;
                }
                break;
8701
8702
8703
8704
8705
8706
8707
8708
            case QEMU_OPTION_echr:
                {
                    char *r;
                    term_escape_char = strtol(optarg, &r, 0);
                    if (r == optarg)
                        printf("Bad argument to echr\n");
                    break;
                }
bellard authored
8709
            case QEMU_OPTION_monitor:
8710
                monitor_device = optarg;
bellard authored
8711
8712
                break;
            case QEMU_OPTION_serial:
8713
8714
8715
8716
                if (serial_device_index >= MAX_SERIAL_PORTS) {
                    fprintf(stderr, "qemu: too many serial ports\n");
                    exit(1);
                }
8717
                serial_devices[serial_device_index] = optarg;
8718
                serial_device_index++;
bellard authored
8719
                break;
8720
8721
8722
8723
8724
            case QEMU_OPTION_parallel:
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
                    fprintf(stderr, "qemu: too many parallel ports\n");
                    exit(1);
                }
8725
                parallel_devices[parallel_device_index] = optarg;
8726
8727
                parallel_device_index++;
                break;
8728
8729
8730
8731
8732
8733
	    case QEMU_OPTION_loadvm:
		loadvm = optarg;
		break;
            case QEMU_OPTION_full_screen:
                full_screen = 1;
                break;
8734
#ifdef CONFIG_SDL
8735
8736
8737
            case QEMU_OPTION_no_frame:
                no_frame = 1;
                break;
8738
8739
8740
            case QEMU_OPTION_alt_grab:
                alt_grab = 1;
                break;
8741
8742
8743
8744
            case QEMU_OPTION_no_quit:
                no_quit = 1;
                break;
#endif
bellard authored
8745
            case QEMU_OPTION_pidfile:
8746
                pid_file = optarg;
bellard authored
8747
                break;
8748
8749
8750
8751
8752
#ifdef TARGET_I386
            case QEMU_OPTION_win2k_hack:
                win2k_install_hack = 1;
                break;
#endif
bellard authored
8753
8754
8755
8756
#ifdef USE_KQEMU
            case QEMU_OPTION_no_kqemu:
                kqemu_allowed = 0;
                break;
8757
8758
8759
            case QEMU_OPTION_kernel_kqemu:
                kqemu_allowed = 2;
                break;
bellard authored
8760
#endif
bellard authored
8761
8762
8763
            case QEMU_OPTION_usb:
                usb_enabled = 1;
                break;
bellard authored
8764
8765
            case QEMU_OPTION_usbdevice:
                usb_enabled = 1;
pbrook authored
8766
                if (usb_devices_index >= MAX_USB_CMDLINE) {
bellard authored
8767
8768
8769
                    fprintf(stderr, "Too many USB devices\n");
                    exit(1);
                }
8770
                usb_devices[usb_devices_index] = optarg;
bellard authored
8771
8772
                usb_devices_index++;
                break;
bellard authored
8773
8774
            case QEMU_OPTION_smp:
                smp_cpus = atoi(optarg);
8775
                if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
bellard authored
8776
8777
8778
8779
                    fprintf(stderr, "Invalid number of CPUs\n");
                    exit(1);
                }
                break;
bellard authored
8780
	    case QEMU_OPTION_vnc:
8781
		vnc_display = optarg;
bellard authored
8782
		break;
bellard authored
8783
8784
8785
            case QEMU_OPTION_no_acpi:
                acpi_enabled = 0;
                break;
bellard authored
8786
8787
8788
            case QEMU_OPTION_no_reboot:
                no_reboot = 1;
                break;
aurel32 authored
8789
8790
8791
            case QEMU_OPTION_no_shutdown:
                no_shutdown = 1;
                break;
8792
8793
8794
            case QEMU_OPTION_show_cursor:
                cursor_hide = 0;
                break;
8795
8796
8797
8798
8799
8800
8801
            case QEMU_OPTION_uuid:
                if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
                    fprintf(stderr, "Fail to parse UUID string."
                            " Wrong format.\n");
                    exit(1);
                }
                break;
8802
8803
8804
	    case QEMU_OPTION_daemonize:
		daemonize = 1;
		break;
8805
8806
8807
8808
8809
8810
8811
8812
	    case QEMU_OPTION_option_rom:
		if (nb_option_roms >= MAX_OPTION_ROMS) {
		    fprintf(stderr, "Too many option ROMs\n");
		    exit(1);
		}
		option_rom[nb_option_roms] = optarg;
		nb_option_roms++;
		break;
8813
8814
8815
            case QEMU_OPTION_semihosting:
                semihosting_enabled = 1;
                break;
8816
8817
8818
            case QEMU_OPTION_name:
                qemu_name = optarg;
                break;
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
#ifdef TARGET_SPARC
            case QEMU_OPTION_prom_env:
                if (nb_prom_envs >= MAX_PROM_ENVS) {
                    fprintf(stderr, "Too many prom variables\n");
                    exit(1);
                }
                prom_envs[nb_prom_envs] = optarg;
                nb_prom_envs++;
                break;
#endif
8829
8830
8831
#ifdef TARGET_ARM
            case QEMU_OPTION_old_param:
                old_param = 1;
8832
                break;
8833
#endif
8834
8835
8836
            case QEMU_OPTION_clock:
                configure_alarms(optarg);
                break;
bellard authored
8837
8838
8839
            case QEMU_OPTION_startdate:
                {
                    struct tm tm;
8840
                    time_t rtc_start_date;
bellard authored
8841
                    if (!strcmp(optarg, "now")) {
8842
                        rtc_date_offset = -1;
bellard authored
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
                    } else {
                        if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
                               &tm.tm_year,
                               &tm.tm_mon,
                               &tm.tm_mday,
                               &tm.tm_hour,
                               &tm.tm_min,
                               &tm.tm_sec) == 6) {
                            /* OK */
                        } else if (sscanf(optarg, "%d-%d-%d",
                                          &tm.tm_year,
                                          &tm.tm_mon,
                                          &tm.tm_mday) == 3) {
                            tm.tm_hour = 0;
                            tm.tm_min = 0;
                            tm.tm_sec = 0;
                        } else {
                            goto date_fail;
                        }
                        tm.tm_year -= 1900;
                        tm.tm_mon--;
bellard authored
8864
                        rtc_start_date = mktimegm(&tm);
bellard authored
8865
8866
8867
8868
8869
8870
                        if (rtc_start_date == -1) {
                        date_fail:
                            fprintf(stderr, "Invalid date format. Valid format are:\n"
                                    "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
                            exit(1);
                        }
8871
                        rtc_date_offset = time(NULL) - rtc_start_date;
bellard authored
8872
8873
8874
                    }
                }
                break;
8875
8876
8877
8878
8879
            case QEMU_OPTION_tb_size:
                tb_size = strtol(optarg, NULL, 0);
                if (tb_size < 0)
                    tb_size = 0;
                break;
pbrook authored
8880
8881
8882
8883
8884
8885
8886
8887
            case QEMU_OPTION_icount:
                use_icount = 1;
                if (strcmp(optarg, "auto") == 0) {
                    icount_time_shift = -1;
                } else {
                    icount_time_shift = strtol(optarg, NULL, 0);
                }
                break;
8888
            }
8889
8890
        }
    }
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
    if (nographic) {
       if (serial_device_index == 0)
           serial_devices[0] = "stdio";
       if (parallel_device_index == 0)
           parallel_devices[0] = "null";
       if (strncmp(monitor_device, "vc", 2) == 0)
           monitor_device = "stdio";
    }
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
#ifndef _WIN32
    if (daemonize) {
	pid_t pid;

	if (pipe(fds) == -1)
	    exit(1);

	pid = fork();
	if (pid > 0) {
	    uint8_t status;
	    ssize_t len;

	    close(fds[1]);

	again:
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
            len = read(fds[0], &status, 1);
            if (len == -1 && (errno == EINTR))
                goto again;

            if (len != 1)
                exit(1);
            else if (status == 1) {
                fprintf(stderr, "Could not acquire pidfile\n");
                exit(1);
            } else
                exit(0);
8927
	} else if (pid < 0)
8928
            exit(1);
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945

	setsid();

	pid = fork();
	if (pid > 0)
	    exit(0);
	else if (pid < 0)
	    exit(1);

	umask(027);

        signal(SIGTSTP, SIG_IGN);
        signal(SIGTTOU, SIG_IGN);
        signal(SIGTTIN, SIG_IGN);
    }
#endif
8946
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
8947
8948
8949
8950
8951
8952
8953
8954
        if (daemonize) {
            uint8_t status = 1;
            write(fds[1], &status, 1);
        } else
            fprintf(stderr, "Could not acquire pid file\n");
        exit(1);
    }
8955
8956
8957
8958
#ifdef USE_KQEMU
    if (smp_cpus > 1)
        kqemu_allowed = 0;
#endif
8959
    linux_boot = (kernel_filename != NULL);
balrog authored
8960
    net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
8961
8962
    if (!linux_boot && net_boot == 0 &&
8963
        !machine->nodisk_ok && nb_drives_opt == 0)
8964
        help(1);
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
    if (!linux_boot && *kernel_cmdline != '\0') {
        fprintf(stderr, "-append only allowed with -kernel option\n");
        exit(1);
    }

    if (!linux_boot && initrd_filename != NULL) {
        fprintf(stderr, "-initrd only allowed with -kernel option\n");
        exit(1);
    }
8976
    /* boot to floppy or the default cd if no hard disk defined yet */
8977
    if (!boot_devices[0]) {
8978
        boot_devices = "cad";
8979
    }
bellard authored
8980
    setvbuf(stdout, NULL, _IOLBF, 0);
8981
8982
8983
    init_timers();
    init_timer_alarm();
bellard authored
8984
    qemu_aio_init();
pbrook authored
8985
8986
8987
8988
8989
8990
8991
    if (use_icount && icount_time_shift < 0) {
        use_icount = 2;
        /* 125MIPS seems a reasonable initial guess at the guest speed.
           It will be corrected fairly quickly anyway.  */
        icount_time_shift = 3;
        init_icount_adjust();
    }
8992
bellard authored
8993
8994
8995
8996
#ifdef _WIN32
    socket_init();
#endif
bellard authored
8997
8998
8999
    /* init network clients */
    if (nb_net_clients == 0) {
        /* if no clients, we use a default config */
9000
9001
9002
9003
        net_clients[nb_net_clients++] = "nic";
#ifdef CONFIG_SLIRP
        net_clients[nb_net_clients++] = "user";
#endif
9004
9005
    }
bellard authored
9006
    for(i = 0;i < nb_net_clients; i++) {
9007
        if (net_client_parse(net_clients[i]) < 0)
bellard authored
9008
            exit(1);
bellard authored
9009
    }
9010
9011
9012
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
        if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
            continue;
9013
9014
        if (vlan->nb_guest_devs == 0)
            fprintf(stderr, "Warning: vlan %d with no nics\n", vlan->id);
9015
9016
9017
9018
9019
        if (vlan->nb_host_devs == 0)
            fprintf(stderr,
                    "Warning: vlan %d is not connected to host network\n",
                    vlan->id);
    }
bellard authored
9020
9021
#ifdef TARGET_I386
9022
    /* XXX: this should be moved in the PC machine instantiation code */
9023
9024
9025
    if (net_boot != 0) {
        int netroms = 0;
	for (i = 0; i < nb_nics && i < 4; i++) {
9026
9027
	    const char *model = nd_table[i].model;
	    char buf[1024];
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
            if (net_boot & (1 << i)) {
                if (model == NULL)
                    model = "ne2k_pci";
                snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
                if (get_image_size(buf) > 0) {
                    if (nb_option_roms >= MAX_OPTION_ROMS) {
                        fprintf(stderr, "Too many option ROMs\n");
                        exit(1);
                    }
                    option_rom[nb_option_roms] = strdup(buf);
                    nb_option_roms++;
                    netroms++;
                }
            }
9042
	}
9043
	if (netroms == 0) {
9044
9045
9046
9047
9048
9049
	    fprintf(stderr, "No valid PXE rom found for network device\n");
	    exit(1);
	}
    }
#endif
9050
    /* init the memory */
9051
9052
9053
9054
9055
    phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;

    if (machine->ram_require & RAMSIZE_FIXED) {
        if (ram_size > 0) {
            if (ram_size < phys_ram_size) {
9056
9057
                fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
                                machine->name, (unsigned long long) phys_ram_size);
9058
9059
9060
9061
9062
9063
9064
                exit(-1);
            }

            phys_ram_size = ram_size;
        } else
            ram_size = phys_ram_size;
    } else {
9065
        if (ram_size == 0)
9066
9067
9068
9069
            ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;

        phys_ram_size += ram_size;
    }
9070
bellard authored
9071
    phys_ram_base = qemu_vmalloc(phys_ram_size);
9072
9073
    if (!phys_ram_base) {
        fprintf(stderr, "Could not allocate physical memory\n");
9074
9075
9076
        exit(1);
    }
9077
9078
9079
    /* init the dynamic translator */
    cpu_exec_init_all(tb_size * 1024 * 1024);
bellard authored
9080
    bdrv_init();
9081
9082
    /* we always create the cdrom drive, even if no disk is there */
9083
9084
    if (nb_drives_opt < MAX_DRIVES)
9085
        drive_add(NULL, CDROM_ALIAS);
9086
9087
    /* we always create at least one floppy */
9088
9089
    if (nb_drives_opt < MAX_DRIVES)
9090
        drive_add(NULL, FD_ALIAS, 0);
9091
9092
9093
9094
    /* we always create one sd slot, even if no card is in it */

    if (nb_drives_opt < MAX_DRIVES)
9095
        drive_add(NULL, SD_ALIAS);
9096
9097
9098
9099
    /* open the virtual block devices */

    for(i = 0; i < nb_drives_opt; i++)
9100
        if (drive_init(&drives_opt[i], snapshot, machine) == -1)
9101
	    exit(1);
9102
9103
9104
    register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
    register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
9105
9106
    /* terminal init */
9107
    memset(&display_state, 0, sizeof(display_state));
9108
    if (nographic) {
balrog authored
9109
9110
9111
9112
        if (curses) {
            fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
            exit(1);
        }
9113
9114
        /* nearly nothing to do */
        dumb_display_init(ds);
9115
    } else if (vnc_display != NULL) {
9116
9117
9118
        vnc_display_init(ds);
        if (vnc_display_open(ds, vnc_display) < 0)
            exit(1);
balrog authored
9119
9120
9121
9122
9123
9124
9125
    } else
#if defined(CONFIG_CURSES)
    if (curses) {
        curses_display_init(ds, full_screen);
    } else
#endif
    {
9126
#if defined(CONFIG_SDL)
9127
        sdl_display_init(ds, full_screen, no_frame);
9128
9129
#elif defined(CONFIG_COCOA)
        cocoa_display_init(ds, full_screen);
9130
9131
#else
        dumb_display_init(ds);
9132
9133
#endif
    }
9134
9135
9136
9137
9138
9139
#ifndef _WIN32
    /* must be after terminal init, SDL library changes signal handlers */
    termsig_setup();
#endif
9140
9141
9142
    /* Maintain compatibility with multiple stdio monitors */
    if (!strcmp(monitor_device,"stdio")) {
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
9143
9144
9145
            const char *devname = serial_devices[i];
            if (devname && !strcmp(devname,"mon:stdio")) {
                monitor_device = NULL;
9146
                break;
9147
9148
9149
            } else if (devname && !strcmp(devname,"stdio")) {
                monitor_device = NULL;
                serial_devices[i] = "mon:stdio";
9150
9151
9152
9153
                break;
            }
        }
    }
9154
    if (monitor_device) {
9155
9156
9157
9158
9159
9160
        monitor_hd = qemu_chr_open(monitor_device);
        if (!monitor_hd) {
            fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
            exit(1);
        }
        monitor_init(monitor_hd, !nographic);
bellard authored
9161
9162
    }
9163
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
9164
        const char *devname = serial_devices[i];
9165
        if (devname && strcmp(devname, "none")) {
9166
            serial_hds[i] = qemu_chr_open(devname);
9167
            if (!serial_hds[i]) {
9168
                fprintf(stderr, "qemu: could not open serial device '%s'\n",
9169
                        devname);
9170
9171
                exit(1);
            }
9172
            if (strstart(devname, "vc", 0))
bellard authored
9173
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
9174
        }
bellard authored
9175
9176
    }
9177
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
9178
        const char *devname = parallel_devices[i];
9179
        if (devname && strcmp(devname, "none")) {
9180
            parallel_hds[i] = qemu_chr_open(devname);
9181
            if (!parallel_hds[i]) {
9182
                fprintf(stderr, "qemu: could not open parallel device '%s'\n",
9183
                        devname);
9184
9185
                exit(1);
            }
9186
            if (strstart(devname, "vc", 0))
bellard authored
9187
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
9188
9189
9190
        }
    }
9191
    machine->init(ram_size, vga_ram_size, boot_devices, ds,
9192
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
bellard authored
9193
pbrook authored
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
    /* init USB devices */
    if (usb_enabled) {
        for(i = 0; i < usb_devices_index; i++) {
            if (usb_device_add(usb_devices[i]) < 0) {
                fprintf(stderr, "Warning: could not add USB device %s\n",
                        usb_devices[i]);
            }
        }
    }
9204
9205
9206
9207
    if (display_state.dpy_refresh) {
        display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
        qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
    }
9208
9209
#ifdef CONFIG_GDBSTUB
bellard authored
9210
    if (use_gdbstub) {
bellard authored
9211
9212
        /* XXX: use standard host:port notation and modify options
           accordingly. */
9213
9214
        if (gdbserver_start(gdbstub_port) < 0) {
            fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
bellard authored
9215
                    gdbstub_port);
9216
9217
            exit(1);
        }
9218
    }
9219
#endif
9220
9221
    if (loadvm)
bellard authored
9222
        do_loadvm(loadvm);
9223
9224
    {
bellard authored
9225
        /* XXX: simplify init */
9226
        read_passwords();
9227
        if (autostart) {
bellard authored
9228
9229
            vm_start();
        }
9230
    }
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
    if (daemonize) {
	uint8_t status = 0;
	ssize_t len;
	int fd;

    again1:
	len = write(fds[1], &status, 1);
	if (len == -1 && (errno == EINTR))
	    goto again1;

	if (len != 1)
	    exit(1);
aliguori authored
9245
	chdir("/");
9246
	TFR(fd = open("/dev/null", O_RDWR));
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
	if (fd == -1)
	    exit(1);

	dup2(fd, 0);
	dup2(fd, 1);
	dup2(fd, 2);

	close(fd);
    }
9257
    main_loop();
bellard authored
9258
    quit_timers();
9259
9260
#if !defined(_WIN32)
9261
9262
9263
9264
    /* close network clients */
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
        VLANClientState *vc;
9265
        for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
9266
9267
9268
9269
9270
9271
9272
9273
            if (vc->fd_read == tap_receive) {
                char ifname[64];
                TAPState *s = vc->opaque;

                if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
                    s->down_script[0])
                    launch_script(s->down_script, ifname, s->fd);
            }
9274
9275
9276
9277
9278
9279
#if defined(CONFIG_VDE)
            if (vc->fd_read == vde_from_qemu) {
                VDEState *s = vc->opaque;
                vde_close(s->vde);
            }
#endif
9280
        }
9281
9282
    }
#endif
9283
9284
    return 0;
}