1
2
/*
* QEMU 8253 / 8254 interval timer emulation
ths
authored
18 years ago
3
*
4
* Copyright ( c ) 2003 - 2004 Fabrice Bellard
ths
authored
18 years ago
5
*
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
* Permission is hereby granted , free of charge , to any person obtaining a copy
* of this software and associated documentation files ( the "Software" ), to deal
* in the Software without restriction , including without limitation the rights
* to use , copy , modify , merge , publish , distribute , sublicense , and / or sell
* copies of the Software , and to permit persons to whom the Software is
* furnished to do so , subject to the following conditions :
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software .
*
* THE SOFTWARE IS PROVIDED "AS IS" , WITHOUT WARRANTY OF ANY KIND , EXPRESS OR
* IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY ,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT . IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER
* LIABILITY , WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING FROM ,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE .
*/
# include "vl.h"
26
27
// # define DEBUG_PIT
28
29
30
31
# define RW_STATE_LSB 1
# define RW_STATE_MSB 2
# define RW_STATE_WORD0 3
# define RW_STATE_WORD1 4
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
typedef struct PITChannelState {
int count ; /* can be 65536 */
uint16_t latched_count ;
uint8_t count_latched ;
uint8_t status_latched ;
uint8_t status ;
uint8_t read_state ;
uint8_t write_state ;
uint8_t write_latch ;
uint8_t rw_mode ;
uint8_t mode ;
uint8_t bcd ; /* not supported */
uint8_t gate ; /* timer start */
int64_t count_load_time ;
/* irq handling */
int64_t next_transition_time ;
QEMUTimer * irq_timer ;
50
qemu_irq irq ;
51
52
53
54
55
56
57
} PITChannelState ;
struct PITState {
PITChannelState channels [ 3 ];
};
static PITState pit_state ;
58
59
60
static void pit_irq_timer_update ( PITChannelState * s , int64_t current_time );
61
62
63
64
65
static int pit_get_count ( PITChannelState * s )
{
uint64_t d ;
int counter ;
66
d = muldiv64 ( qemu_get_clock ( vm_clock ) - s -> count_load_time , PIT_FREQ , ticks_per_sec );
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
switch ( s -> mode ) {
case 0 :
case 1 :
case 4 :
case 5 :
counter = ( s -> count - d ) & 0xffff ;
break ;
case 3 :
/* XXX: may be incorrect for odd counts */
counter = s -> count - (( 2 * d ) % s -> count );
break ;
default :
counter = s -> count - ( d % s -> count );
break ;
}
return counter ;
}
/* get pit output bit */
86
static int pit_get_out1 ( PITChannelState * s , int64_t current_time )
87
88
89
90
{
uint64_t d ;
int out ;
91
d = muldiv64 ( current_time - s -> count_load_time , PIT_FREQ , ticks_per_sec );
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
switch ( s -> mode ) {
default :
case 0 :
out = ( d >= s -> count );
break ;
case 1 :
out = ( d < s -> count );
break ;
case 2 :
if (( d % s -> count ) == 0 && d != 0 )
out = 1 ;
else
out = 0 ;
break ;
case 3 :
out = ( d % s -> count ) < (( s -> count + 1 ) >> 1 );
break ;
case 4 :
case 5 :
out = ( d == s -> count );
break ;
}
return out ;
}
117
118
119
120
121
122
int pit_get_out ( PITState * pit , int channel , int64_t current_time )
{
PITChannelState * s = & pit -> channels [ channel ];
return pit_get_out1 ( s , current_time );
}
123
/* return -1 if no transition will occur. */
ths
authored
18 years ago
124
static int64_t pit_get_next_transition_time ( PITChannelState * s ,
125
int64_t current_time )
126
{
127
128
uint64_t d , next_time , base ;
int period2 ;
129
130
d = muldiv64 ( current_time - s -> count_load_time , PIT_FREQ , ticks_per_sec );
131
132
133
134
switch ( s -> mode ) {
default :
case 0 :
case 1 :
135
136
137
138
if ( d < s -> count )
next_time = s -> count ;
else
return - 1 ;
139
140
break ;
case 2 :
141
142
143
144
145
base = ( d / s -> count ) * s -> count ;
if (( d - base ) == 0 && d != 0 )
next_time = base + s -> count ;
else
next_time = base + s -> count + 1 ;
146
147
break ;
case 3 :
148
149
base = ( d / s -> count ) * s -> count ;
period2 = (( s -> count + 1 ) >> 1 );
ths
authored
18 years ago
150
if (( d - base ) < period2 )
151
152
153
next_time = base + period2 ;
else
next_time = base + s -> count ;
154
155
156
break ;
case 4 :
case 5 :
157
158
159
160
if ( d < s -> count )
next_time = s -> count ;
else if ( d == s -> count )
next_time = s -> count + 1 ;
161
else
162
return - 1 ;
163
164
break ;
}
165
166
/* convert to timer units */
next_time = s -> count_load_time + muldiv64 ( next_time , ticks_per_sec , PIT_FREQ );
167
168
169
170
/* fix potential rounding problems */
/* XXX: better solution: use a clock at PIT_FREQ Hz */
if ( next_time <= current_time )
next_time = current_time + 1 ;
171
return next_time ;
172
173
174
}
/* val must be 0 or 1 */
175
void pit_set_gate ( PITState * pit , int channel , int val )
176
{
177
178
PITChannelState * s = & pit -> channels [ channel ];
179
180
181
182
183
184
185
186
187
188
switch ( s -> mode ) {
default :
case 0 :
case 4 :
/* XXX: just disable/enable counting */
break ;
case 1 :
case 5 :
if ( s -> gate < val ) {
/* restart counting on rising edge */
189
190
s -> count_load_time = qemu_get_clock ( vm_clock );
pit_irq_timer_update ( s , s -> count_load_time );
191
192
193
194
195
196
}
break ;
case 2 :
case 3 :
if ( s -> gate < val ) {
/* restart counting on rising edge */
197
198
s -> count_load_time = qemu_get_clock ( vm_clock );
pit_irq_timer_update ( s , s -> count_load_time );
199
200
201
202
203
204
205
}
/* XXX: disable/enable counting */
break ;
}
s -> gate = val ;
}
206
207
208
209
210
211
int pit_get_gate ( PITState * pit , int channel )
{
PITChannelState * s = & pit -> channels [ channel ];
return s -> gate ;
}
212
213
214
215
216
217
218
219
220
221
222
223
int pit_get_initial_count ( PITState * pit , int channel )
{
PITChannelState * s = & pit -> channels [ channel ];
return s -> count ;
}
int pit_get_mode ( PITState * pit , int channel )
{
PITChannelState * s = & pit -> channels [ channel ];
return s -> mode ;
}
224
225
226
227
static inline void pit_load_count ( PITChannelState * s , int val )
{
if ( val == 0 )
val = 0x10000 ;
228
s -> count_load_time = qemu_get_clock ( vm_clock );
229
s -> count = val ;
230
pit_irq_timer_update ( s , s -> count_load_time );
231
232
}
233
234
235
236
237
238
239
240
241
/* if already latched, do not latch again */
static void pit_latch_count ( PITChannelState * s )
{
if ( ! s -> count_latched ) {
s -> latched_count = pit_get_count ( s );
s -> count_latched = s -> rw_mode ;
}
}
242
static void pit_ioport_write ( void * opaque , uint32_t addr , uint32_t val )
243
{
244
PITState * pit = opaque ;
245
246
247
248
249
250
int channel , access ;
PITChannelState * s ;
addr &= 3 ;
if ( addr == 3 ) {
channel = val >> 6 ;
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
if ( channel == 3 ) {
/* read back command */
for ( channel = 0 ; channel < 3 ; channel ++ ) {
s = & pit -> channels [ channel ];
if ( val & ( 2 << channel )) {
if ( ! ( val & 0x20 )) {
pit_latch_count ( s );
}
if ( ! ( val & 0x10 ) && ! s -> status_latched ) {
/* status latch */
/* XXX: add BCD and null count */
s -> status = ( pit_get_out1 ( s , qemu_get_clock ( vm_clock )) << 7 ) |
( s -> rw_mode << 4 ) |
( s -> mode << 1 ) |
s -> bcd ;
s -> status_latched = 1 ;
}
}
}
} else {
s = & pit -> channels [ channel ];
access = ( val >> 4 ) & 3 ;
if ( access == 0 ) {
pit_latch_count ( s );
} else {
s -> rw_mode = access ;
s -> read_state = access ;
s -> write_state = access ;
s -> mode = ( val >> 1 ) & 7 ;
s -> bcd = val & 1 ;
/* XXX: update irq timer ? */
}
284
285
}
} else {
286
287
288
s = & pit -> channels [ addr ];
switch ( s -> write_state ) {
default :
289
290
291
292
293
294
295
case RW_STATE_LSB :
pit_load_count ( s , val );
break ;
case RW_STATE_MSB :
pit_load_count ( s , val << 8 );
break ;
case RW_STATE_WORD0 :
296
297
298
s -> write_latch = val ;
s -> write_state = RW_STATE_WORD1 ;
break ;
299
case RW_STATE_WORD1 :
300
301
pit_load_count ( s , s -> write_latch | ( val << 8 ));
s -> write_state = RW_STATE_WORD0 ;
302
303
304
305
306
break ;
}
}
}
307
static uint32_t pit_ioport_read ( void * opaque , uint32_t addr )
308
{
309
PITState * pit = opaque ;
310
311
int ret , count ;
PITChannelState * s ;
ths
authored
18 years ago
312
313
addr &= 3 ;
314
315
316
317
318
319
320
321
322
323
324
325
s = & pit -> channels [ addr ];
if ( s -> status_latched ) {
s -> status_latched = 0 ;
ret = s -> status ;
} else if ( s -> count_latched ) {
switch ( s -> count_latched ) {
default :
case RW_STATE_LSB :
ret = s -> latched_count & 0xff ;
s -> count_latched = 0 ;
break ;
case RW_STATE_MSB :
326
ret = s -> latched_count >> 8 ;
327
328
329
s -> count_latched = 0 ;
break ;
case RW_STATE_WORD0 :
330
ret = s -> latched_count & 0xff ;
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
s -> count_latched = RW_STATE_MSB ;
break ;
}
} else {
switch ( s -> read_state ) {
default :
case RW_STATE_LSB :
count = pit_get_count ( s );
ret = count & 0xff ;
break ;
case RW_STATE_MSB :
count = pit_get_count ( s );
ret = ( count >> 8 ) & 0xff ;
break ;
case RW_STATE_WORD0 :
count = pit_get_count ( s );
ret = count & 0xff ;
s -> read_state = RW_STATE_WORD1 ;
break ;
case RW_STATE_WORD1 :
count = pit_get_count ( s );
ret = ( count >> 8 ) & 0xff ;
s -> read_state = RW_STATE_WORD0 ;
break ;
}
356
357
358
359
}
return ret ;
}
360
361
362
363
364
365
366
367
static void pit_irq_timer_update ( PITChannelState * s , int64_t current_time )
{
int64_t expire_time ;
int irq_level ;
if ( ! s -> irq_timer )
return ;
expire_time = pit_get_next_transition_time ( s , current_time );
368
irq_level = pit_get_out1 ( s , current_time );
369
qemu_set_irq ( s -> irq , irq_level );
370
371
# ifdef DEBUG_PIT
printf ( "irq_level=%d next_delay=%f \n " ,
ths
authored
18 years ago
372
irq_level ,
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
( double )( expire_time - current_time ) / ticks_per_sec );
# endif
s -> next_transition_time = expire_time ;
if ( expire_time != - 1 )
qemu_mod_timer ( s -> irq_timer , expire_time );
else
qemu_del_timer ( s -> irq_timer );
}
static void pit_irq_timer ( void * opaque )
{
PITChannelState * s = opaque ;
pit_irq_timer_update ( s , s -> next_transition_time );
}
static void pit_save ( QEMUFile * f , void * opaque )
{
391
PITState * pit = opaque ;
392
393
PITChannelState * s ;
int i ;
ths
authored
18 years ago
394
395
for ( i = 0 ; i < 3 ; i ++ ) {
396
s = & pit -> channels [ i ];
397
398
qemu_put_be32s ( f , & s -> count );
qemu_put_be16s ( f , & s -> latched_count );
399
400
401
402
403
404
405
qemu_put_8s ( f , & s -> count_latched );
qemu_put_8s ( f , & s -> status_latched );
qemu_put_8s ( f , & s -> status );
qemu_put_8s ( f , & s -> read_state );
qemu_put_8s ( f , & s -> write_state );
qemu_put_8s ( f , & s -> write_latch );
qemu_put_8s ( f , & s -> rw_mode );
406
407
408
409
410
411
412
413
414
415
416
417
418
qemu_put_8s ( f , & s -> mode );
qemu_put_8s ( f , & s -> bcd );
qemu_put_8s ( f , & s -> gate );
qemu_put_be64s ( f , & s -> count_load_time );
if ( s -> irq_timer ) {
qemu_put_be64s ( f , & s -> next_transition_time );
qemu_put_timer ( f , s -> irq_timer );
}
}
}
static int pit_load ( QEMUFile * f , void * opaque , int version_id )
{
419
PITState * pit = opaque ;
420
421
PITChannelState * s ;
int i ;
ths
authored
18 years ago
422
423
424
425
426
if ( version_id != 1 )
return - EINVAL ;
for ( i = 0 ; i < 3 ; i ++ ) {
427
s = & pit -> channels [ i ];
428
429
qemu_get_be32s ( f , & s -> count );
qemu_get_be16s ( f , & s -> latched_count );
430
431
432
433
434
435
436
qemu_get_8s ( f , & s -> count_latched );
qemu_get_8s ( f , & s -> status_latched );
qemu_get_8s ( f , & s -> status );
qemu_get_8s ( f , & s -> read_state );
qemu_get_8s ( f , & s -> write_state );
qemu_get_8s ( f , & s -> write_latch );
qemu_get_8s ( f , & s -> rw_mode );
437
438
439
440
441
442
443
444
445
446
447
448
qemu_get_8s ( f , & s -> mode );
qemu_get_8s ( f , & s -> bcd );
qemu_get_8s ( f , & s -> gate );
qemu_get_be64s ( f , & s -> count_load_time );
if ( s -> irq_timer ) {
qemu_get_be64s ( f , & s -> next_transition_time );
qemu_get_timer ( f , s -> irq_timer );
}
}
return 0 ;
}
449
static void pit_reset ( void * opaque )
450
{
451
PITState * pit = opaque ;
452
453
454
455
PITChannelState * s ;
int i ;
for ( i = 0 ; i < 3 ; i ++ ) {
456
s = & pit -> channels [ i ];
457
458
459
460
s -> mode = 3 ;
s -> gate = ( i != 2 );
pit_load_count ( s , 0 );
}
461
462
}
463
PITState * pit_init ( int base , qemu_irq irq )
464
465
466
467
468
469
470
471
{
PITState * pit = & pit_state ;
PITChannelState * s ;
s = & pit -> channels [ 0 ];
/* the timer 0 is connected to an IRQ */
s -> irq_timer = qemu_new_timer ( vm_clock , pit_irq_timer , s );
s -> irq = irq ;
472
473
register_savevm ( "i8254" , base , 1 , pit_save , pit_load , pit );
474
475
qemu_register_reset ( pit_reset , pit );
476
477
register_ioport_write ( base , 4 , 1 , pit_ioport_write , pit );
register_ioport_read ( base , 3 , 1 , pit_ioport_read , pit );
478
479
480
pit_reset ( pit );
481
return pit ;
482
}