Blame view

kvm-all.c 27.3 KB
1
2
3
4
/*
 * QEMU KVM support
 *
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
7
8
 *
 * Authors:
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
11
12
13
14
15
16
17
18
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
19
#include <stdarg.h>
20
21
22
23
24

#include <linux/kvm.h>

#include "qemu-common.h"
#include "sysemu.h"
Jan Kiszka authored
25
#include "hw/hw.h"
26
#include "gdbstub.h"
27
28
#include "kvm.h"
aliguori authored
29
30
31
/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
#define PAGE_SIZE TARGET_PAGE_SIZE
32
33
34
35
36
37
38
39
40
41
//#define DEBUG_KVM

#ifdef DEBUG_KVM
#define dprintf(fmt, ...) \
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
#define dprintf(fmt, ...) \
    do { } while (0)
#endif
42
43
44
45
46
47
48
49
typedef struct KVMSlot
{
    target_phys_addr_t start_addr;
    ram_addr_t memory_size;
    ram_addr_t phys_offset;
    int slot;
    int flags;
} KVMSlot;
50
51
52
typedef struct kvm_dirty_log KVMDirtyLog;
53
54
55
56
57
58
59
int kvm_allowed = 0;

struct KVMState
{
    KVMSlot slots[32];
    int fd;
    int vmfd;
aliguori authored
60
    int coalesced_mmio;
61
    int broken_set_mem_region;
62
    int migration_log;
63
64
65
#ifdef KVM_CAP_SET_GUEST_DEBUG
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
#endif
66
67
    int irqchip_in_kernel;
    int pit_in_kernel;
68
69
70
71
72
73
74
75
76
};

static KVMState *kvm_state;

static KVMSlot *kvm_alloc_slot(KVMState *s)
{
    int i;

    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
77
78
79
        /* KVM private memory slots */
        if (i >= 8 && i < 12)
            continue;
80
81
82
83
        if (s->slots[i].memory_size == 0)
            return &s->slots[i];
    }
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    fprintf(stderr, "%s: no free slot available\n", __func__);
    abort();
}

static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
                                         target_phys_addr_t start_addr,
                                         target_phys_addr_t end_addr)
{
    int i;

    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
        KVMSlot *mem = &s->slots[i];

        if (start_addr == mem->start_addr &&
            end_addr == mem->start_addr + mem->memory_size) {
            return mem;
        }
    }
103
104
105
    return NULL;
}
106
107
108
109
110
111
/*
 * Find overlapping slot with lowest start address
 */
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
                                            target_phys_addr_t start_addr,
                                            target_phys_addr_t end_addr)
112
{
113
    KVMSlot *found = NULL;
114
115
116
117
118
    int i;

    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
        KVMSlot *mem = &s->slots[i];
119
120
121
122
123
124
125
126
127
        if (mem->memory_size == 0 ||
            (found && found->start_addr < mem->start_addr)) {
            continue;
        }

        if (end_addr > mem->start_addr &&
            start_addr < mem->start_addr + mem->memory_size) {
            found = mem;
        }
128
129
    }
130
    return found;
131
132
}
133
134
135
136
137
138
139
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
{
    struct kvm_userspace_memory_region mem;

    mem.slot = slot->slot;
    mem.guest_phys_addr = slot->start_addr;
    mem.memory_size = slot->memory_size;
140
    mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
141
    mem.flags = slot->flags;
142
143
144
    if (s->migration_log) {
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
    }
145
146
147
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
}
148
149
150
151
152
153
154
155
156
static void kvm_reset_vcpu(void *opaque)
{
    CPUState *env = opaque;

    if (kvm_arch_put_registers(env)) {
        fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
        abort();
    }
}
157
Glauber Costa authored
158
159
160
161
162
163
164
165
166
static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
{
    if (env == cpu_single_env) {
        func(data);
        return;
    }
    abort();
}
167
168
169
170
171
172
173
174
175
176
177
int kvm_irqchip_in_kernel(void)
{
    return kvm_state->irqchip_in_kernel;
}

int kvm_pit_in_kernel(void)
{
    return kvm_state->pit_in_kernel;
}
178
179
180
181
182
183
184
185
int kvm_init_vcpu(CPUState *env)
{
    KVMState *s = kvm_state;
    long mmap_size;
    int ret;

    dprintf("kvm_init_vcpu\n");
186
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    if (ret < 0) {
        dprintf("kvm_create_vcpu failed\n");
        goto err;
    }

    env->kvm_fd = ret;
    env->kvm_state = s;

    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
    if (mmap_size < 0) {
        dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
        goto err;
    }

    env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
                        env->kvm_fd, 0);
    if (env->kvm_run == MAP_FAILED) {
        ret = -errno;
        dprintf("mmap'ing vcpu state failed\n");
        goto err;
    }

    ret = kvm_arch_init_vcpu(env);
210
    if (ret == 0) {
211
        qemu_register_reset(kvm_reset_vcpu, env);
212
213
        ret = kvm_arch_put_registers(env);
    }
214
215
216
217
err:
    return ret;
}
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
int kvm_put_mp_state(CPUState *env)
{
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };

    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
}

int kvm_get_mp_state(CPUState *env)
{
    struct kvm_mp_state mp_state;
    int ret;

    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
    if (ret < 0) {
        return ret;
    }
    env->mp_state = mp_state.mp_state;
    return 0;
}
238
239
240
/*
 * dirty pages logging control
 */
241
static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
242
                                      ram_addr_t size, int flags, int mask)
243
244
{
    KVMState *s = kvm_state;
245
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
246
247
    int old_flags;
248
    if (mem == NULL)  {
249
250
            fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
                    TARGET_FMT_plx "\n", __func__, phys_addr,
251
                    (target_phys_addr_t)(phys_addr + size - 1));
252
253
254
            return -EINVAL;
    }
255
    old_flags = mem->flags;
256
257
    flags = (mem->flags & ~mask) | flags;
258
259
    mem->flags = flags;
260
261
262
263
264
265
266
267
    /* If nothing changed effectively, no need to issue ioctl */
    if (s->migration_log) {
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
    }
    if (flags == old_flags) {
            return 0;
    }
268
269
270
    return kvm_set_user_memory_region(s, mem);
}
271
int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
272
{
273
        return kvm_dirty_pages_log_change(phys_addr, size,
274
275
276
277
                                          KVM_MEM_LOG_DIRTY_PAGES,
                                          KVM_MEM_LOG_DIRTY_PAGES);
}
278
int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
279
{
280
        return kvm_dirty_pages_log_change(phys_addr, size,
281
282
283
284
                                          0,
                                          KVM_MEM_LOG_DIRTY_PAGES);
}
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
int kvm_set_migration_log(int enable)
{
    KVMState *s = kvm_state;
    KVMSlot *mem;
    int i, err;

    s->migration_log = enable;

    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
        mem = &s->slots[i];

        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
            continue;
        }
        err = kvm_set_user_memory_region(s, mem);
        if (err) {
            return err;
        }
    }
    return 0;
}
307
308
309
310
311
static int test_le_bit(unsigned long nr, unsigned char *addr)
{
    return (addr[nr >> 3] >> (nr & 7)) & 1;
}
312
313
314
315
316
/**
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
 * This means all bits are set to dirty.
 *
317
 * @start_add: start of logged region.
318
319
 * @end_addr: end of logged region.
 */
320
321
int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
                                   target_phys_addr_t end_addr)
322
323
{
    KVMState *s = kvm_state;
324
325
    unsigned long size, allocated_size = 0;
    target_phys_addr_t phys_addr;
326
    ram_addr_t addr;
327
328
329
    KVMDirtyLog d;
    KVMSlot *mem;
    int ret = 0;
330
    int r;
331
332
333
334
335
336
337
    d.dirty_bitmap = NULL;
    while (start_addr < end_addr) {
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
        if (mem == NULL) {
            break;
        }
338
339
340
341
342
343
        /* We didn't activate dirty logging? Don't care then. */
        if(!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
            continue;
        }
344
345
346
347
348
349
350
351
        size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
        if (!d.dirty_bitmap) {
            d.dirty_bitmap = qemu_malloc(size);
        } else if (size > allocated_size) {
            d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
        }
        allocated_size = size;
        memset(d.dirty_bitmap, 0, allocated_size);
352
353
        d.slot = mem->slot;
354
355
356
        r = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
        if (r == -EINVAL) {
357
358
359
360
            dprintf("ioctl failed %d\n", errno);
            ret = -1;
            break;
        }
361
362
363
364
        for (phys_addr = mem->start_addr, addr = mem->phys_offset;
             phys_addr < mem->start_addr + mem->memory_size;
             phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
365
            unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
366
367
            unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
368
            if (test_le_bit(nr, bitmap)) {
369
                cpu_physical_memory_set_dirty(addr);
370
371
372
373
            } else if (r < 0) {
                /* When our KVM implementation doesn't know about dirty logging
                 * we can just assume it's always dirty and be fine. */
                cpu_physical_memory_set_dirty(addr);
374
375
376
            }
        }
        start_addr = phys_addr;
377
378
    }
    qemu_free(d.dirty_bitmap);
379
380

    return ret;
381
382
}
aliguori authored
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
{
    int ret = -ENOSYS;
#ifdef KVM_CAP_COALESCED_MMIO
    KVMState *s = kvm_state;

    if (s->coalesced_mmio) {
        struct kvm_coalesced_mmio_zone zone;

        zone.addr = start;
        zone.size = size;

        ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
    }
#endif

    return ret;
}

int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
{
    int ret = -ENOSYS;
#ifdef KVM_CAP_COALESCED_MMIO
    KVMState *s = kvm_state;

    if (s->coalesced_mmio) {
        struct kvm_coalesced_mmio_zone zone;

        zone.addr = start;
        zone.size = size;

        ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
    }
#endif

    return ret;
}
421
422
423
424
425
426
427
428
429
430
431
432
int kvm_check_extension(KVMState *s, unsigned int extension)
{
    int ret;

    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
    if (ret < 0) {
        ret = 0;
    }

    return ret;
}
433
434
int kvm_init(int smp_cpus)
{
435
436
437
    static const char upgrade_note[] =
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
        "(see http://sourceforge.net/projects/kvm).\n";
438
439
440
441
    KVMState *s;
    int ret;
    int i;
442
443
    if (smp_cpus > 1) {
        fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
444
        return -EINVAL;
445
    }
446
447
448

    s = qemu_mallocz(sizeof(KVMState));
449
450
451
#ifdef KVM_CAP_SET_GUEST_DEBUG
    TAILQ_INIT(&s->kvm_sw_breakpoints);
#endif
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
    for (i = 0; i < ARRAY_SIZE(s->slots); i++)
        s->slots[i].slot = i;

    s->vmfd = -1;
    s->fd = open("/dev/kvm", O_RDWR);
    if (s->fd == -1) {
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
        ret = -errno;
        goto err;
    }

    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
    if (ret < KVM_API_VERSION) {
        if (ret > 0)
            ret = -EINVAL;
        fprintf(stderr, "kvm version too old\n");
        goto err;
    }

    if (ret > KVM_API_VERSION) {
        ret = -EINVAL;
        fprintf(stderr, "kvm version not supported\n");
        goto err;
    }

    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
    if (s->vmfd < 0)
        goto err;

    /* initially, KVM allocated its own memory and we had to jump through
     * hooks to make phys_ram_base point to this.  Modern versions of KVM
483
     * just use a user allocated buffer so we can use regular pages
484
485
     * unmodified.  Make sure we have a sufficiently modern version of KVM.
     */
486
487
    if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
        ret = -EINVAL;
488
489
        fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
                upgrade_note);
490
491
492
        goto err;
    }
493
494
495
    /* There was a nasty bug in < kvm-80 that prevents memory slots from being
     * destroyed properly.  Since we rely on this capability, refuse to work
     * with any kernel without this capability. */
496
497
    if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
        ret = -EINVAL;
498
499

        fprintf(stderr,
500
501
                "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
                upgrade_note);
502
503
504
        goto err;
    }
aliguori authored
505
#ifdef KVM_CAP_COALESCED_MMIO
506
507
508
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
#else
    s->coalesced_mmio = 0;
aliguori authored
509
510
#endif
511
512
513
514
515
516
517
518
    s->broken_set_mem_region = 1;
#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
    if (ret > 0) {
        s->broken_set_mem_region = 0;
    }
#endif
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
    ret = kvm_arch_init(s, smp_cpus);
    if (ret < 0)
        goto err;

    kvm_state = s;

    return 0;

err:
    if (s) {
        if (s->vmfd != -1)
            close(s->vmfd);
        if (s->fd != -1)
            close(s->fd);
    }
    qemu_free(s);

    return ret;
}

static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
                         int direction, int size, uint32_t count)
{
    int i;
    uint8_t *ptr = data;

    for (i = 0; i < count; i++) {
        if (direction == KVM_EXIT_IO_IN) {
            switch (size) {
            case 1:
                stb_p(ptr, cpu_inb(env, port));
                break;
            case 2:
                stw_p(ptr, cpu_inw(env, port));
                break;
            case 4:
                stl_p(ptr, cpu_inl(env, port));
                break;
            }
        } else {
            switch (size) {
            case 1:
                cpu_outb(env, port, ldub_p(ptr));
                break;
            case 2:
                cpu_outw(env, port, lduw_p(ptr));
                break;
            case 4:
                cpu_outl(env, port, ldl_p(ptr));
                break;
            }
        }

        ptr += size;
    }

    return 1;
}
aliguori authored
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
{
#ifdef KVM_CAP_COALESCED_MMIO
    KVMState *s = kvm_state;
    if (s->coalesced_mmio) {
        struct kvm_coalesced_mmio_ring *ring;

        ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
        while (ring->first != ring->last) {
            struct kvm_coalesced_mmio *ent;

            ent = &ring->coalesced_mmio[ring->first];

            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
            /* FIXME smp_wmb() */
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
        }
    }
#endif
}
599
600
601
602
603
604
605
606
int kvm_cpu_exec(CPUState *env)
{
    struct kvm_run *run = env->kvm_run;
    int ret;

    dprintf("kvm_cpu_exec()\n");

    do {
607
        if (env->exit_request) {
608
609
610
611
612
            dprintf("interrupt exit requested\n");
            ret = 0;
            break;
        }
613
        kvm_arch_pre_run(env, run);
614
615
616
617
618
619
620
621
622
623
624
625
626
627
        ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
        kvm_arch_post_run(env, run);

        if (ret == -EINTR || ret == -EAGAIN) {
            dprintf("io window exit\n");
            ret = 0;
            break;
        }

        if (ret < 0) {
            dprintf("kvm run failed %s\n", strerror(-ret));
            abort();
        }
aliguori authored
628
629
        kvm_run_coalesced_mmio(env, run);
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
        ret = 0; /* exit loop */
        switch (run->exit_reason) {
        case KVM_EXIT_IO:
            dprintf("handle_io\n");
            ret = kvm_handle_io(env, run->io.port,
                                (uint8_t *)run + run->io.data_offset,
                                run->io.direction,
                                run->io.size,
                                run->io.count);
            break;
        case KVM_EXIT_MMIO:
            dprintf("handle_mmio\n");
            cpu_physical_memory_rw(run->mmio.phys_addr,
                                   run->mmio.data,
                                   run->mmio.len,
                                   run->mmio.is_write);
            ret = 1;
            break;
        case KVM_EXIT_IRQ_WINDOW_OPEN:
            dprintf("irq_window_open\n");
            break;
        case KVM_EXIT_SHUTDOWN:
            dprintf("shutdown\n");
            qemu_system_reset_request();
            ret = 1;
            break;
        case KVM_EXIT_UNKNOWN:
            dprintf("kvm_exit_unknown\n");
            break;
        case KVM_EXIT_FAIL_ENTRY:
            dprintf("kvm_exit_fail_entry\n");
            break;
        case KVM_EXIT_EXCEPTION:
            dprintf("kvm_exit_exception\n");
            break;
        case KVM_EXIT_DEBUG:
            dprintf("kvm_exit_debug\n");
667
668
669
670
671
672
673
674
675
676
#ifdef KVM_CAP_SET_GUEST_DEBUG
            if (kvm_arch_debug(&run->debug.arch)) {
                gdb_set_stop_cpu(env);
                vm_stop(EXCP_DEBUG);
                env->exception_index = EXCP_DEBUG;
                return 0;
            }
            /* re-enter, this exception was guest-internal */
            ret = 1;
#endif /* KVM_CAP_SET_GUEST_DEBUG */
677
678
679
680
681
682
683
684
            break;
        default:
            dprintf("kvm_arch_handle_exit\n");
            ret = kvm_arch_handle_exit(env, run);
            break;
        }
    } while (ret > 0);
685
686
    if (env->exit_request) {
        env->exit_request = 0;
687
688
689
        env->exception_index = EXCP_INTERRUPT;
    }
690
691
692
693
694
695
696
697
698
    return ret;
}

void kvm_set_phys_mem(target_phys_addr_t start_addr,
                      ram_addr_t size,
                      ram_addr_t phys_offset)
{
    KVMState *s = kvm_state;
    ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
699
700
    KVMSlot *mem, old;
    int err;
701
702
    if (start_addr & ~TARGET_PAGE_MASK) {
703
704
705
706
707
708
709
710
711
        if (flags >= IO_MEM_UNASSIGNED) {
            if (!kvm_lookup_overlapping_slot(s, start_addr,
                                             start_addr + size)) {
                return;
            }
            fprintf(stderr, "Unaligned split of a KVM memory slot\n");
        } else {
            fprintf(stderr, "Only page-aligned memory slots supported\n");
        }
712
713
714
        abort();
    }
715
716
717
    /* KVM does not support read-only slots */
    phys_offset &= ~IO_MEM_ROM;
718
719
720
721
722
    while (1) {
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
        if (!mem) {
            break;
        }
723
724
725
726
727
728
        if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
            (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
            /* The new slot fits into the existing one and comes with
             * identical parameters - nothing to be done. */
729
            return;
730
731
732
733
734
735
736
737
738
739
        }

        old = *mem;

        /* unregister the overlapping slot */
        mem->memory_size = 0;
        err = kvm_set_user_memory_region(s, mem);
        if (err) {
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
                    __func__, strerror(-err));
740
741
            abort();
        }
742
743
744
745
746
747
748
749
750

        /* Workaround for older KVM versions: we can't join slots, even not by
         * unregistering the previous ones and then registering the larger
         * slot. We have to maintain the existing fragmentation. Sigh.
         *
         * This workaround assumes that the new slot starts at the same
         * address as the first existing one. If not or if some overlapping
         * slot comes around later, we will fail (not seen in practice so far)
         * - and actually require a recent KVM version. */
751
752
        if (s->broken_set_mem_region &&
            old.start_addr == start_addr && old.memory_size < size &&
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
            flags < IO_MEM_UNASSIGNED) {
            mem = kvm_alloc_slot(s);
            mem->memory_size = old.memory_size;
            mem->start_addr = old.start_addr;
            mem->phys_offset = old.phys_offset;
            mem->flags = 0;

            err = kvm_set_user_memory_region(s, mem);
            if (err) {
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
                        strerror(-err));
                abort();
            }

            start_addr += old.memory_size;
            phys_offset += old.memory_size;
            size -= old.memory_size;
            continue;
        }

        /* register prefix slot */
        if (old.start_addr < start_addr) {
            mem = kvm_alloc_slot(s);
            mem->memory_size = start_addr - old.start_addr;
            mem->start_addr = old.start_addr;
            mem->phys_offset = old.phys_offset;
            mem->flags = 0;

            err = kvm_set_user_memory_region(s, mem);
            if (err) {
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
                        __func__, strerror(-err));
                abort();
            }
        }

        /* register suffix slot */
        if (old.start_addr + old.memory_size > start_addr + size) {
            ram_addr_t size_delta;

            mem = kvm_alloc_slot(s);
            mem->start_addr = start_addr + size;
            size_delta = mem->start_addr - old.start_addr;
            mem->memory_size = old.memory_size - size_delta;
            mem->phys_offset = old.phys_offset + size_delta;
            mem->flags = 0;

            err = kvm_set_user_memory_region(s, mem);
            if (err) {
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
                        __func__, strerror(-err));
                abort();
            }
        }
807
    }
808
809
810
811
812

    /* in case the KVM bug workaround already "consumed" the new slot */
    if (!size)
        return;
813
814
815
816
817
818
    /* KVM does not need to know about this memory */
    if (flags >= IO_MEM_UNASSIGNED)
        return;

    mem = kvm_alloc_slot(s);
    mem->memory_size = size;
819
820
    mem->start_addr = start_addr;
    mem->phys_offset = phys_offset;
821
822
    mem->flags = 0;
823
824
825
826
827
828
    err = kvm_set_user_memory_region(s, mem);
    if (err) {
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
                strerror(-err));
        abort();
    }
829
830
}
831
int kvm_ioctl(KVMState *s, int type, ...)
832
833
{
    int ret;
834
835
    void *arg;
    va_list ap;
836
837
838
839
840
841
    va_start(ap, type);
    arg = va_arg(ap, void *);
    va_end(ap);

    ret = ioctl(s->fd, type, arg);
842
843
844
845
846
847
    if (ret == -1)
        ret = -errno;

    return ret;
}
848
int kvm_vm_ioctl(KVMState *s, int type, ...)
849
850
{
    int ret;
851
852
853
854
855
856
    void *arg;
    va_list ap;

    va_start(ap, type);
    arg = va_arg(ap, void *);
    va_end(ap);
857
858
    ret = ioctl(s->vmfd, type, arg);
859
860
861
862
863
864
    if (ret == -1)
        ret = -errno;

    return ret;
}
865
int kvm_vcpu_ioctl(CPUState *env, int type, ...)
866
867
{
    int ret;
868
869
870
871
872
873
    void *arg;
    va_list ap;

    va_start(ap, type);
    arg = va_arg(ap, void *);
    va_end(ap);
874
875
    ret = ioctl(env->kvm_fd, type, arg);
876
877
878
879
880
    if (ret == -1)
        ret = -errno;

    return ret;
}
aliguori authored
881
882
883

int kvm_has_sync_mmu(void)
{
884
#ifdef KVM_CAP_SYNC_MMU
aliguori authored
885
886
    KVMState *s = kvm_state;
887
888
    return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
#else
aliguori authored
889
    return 0;
890
#endif
aliguori authored
891
}
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
void kvm_setup_guest_memory(void *start, size_t size)
{
    if (!kvm_has_sync_mmu()) {
#ifdef MADV_DONTFORK
        int ret = madvise(start, size, MADV_DONTFORK);

        if (ret) {
            perror("madvice");
            exit(1);
        }
#else
        fprintf(stderr,
                "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
        exit(1);
#endif
    }
}
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
#ifdef KVM_CAP_SET_GUEST_DEBUG
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
                                                 target_ulong pc)
{
    struct kvm_sw_breakpoint *bp;

    TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
        if (bp->pc == pc)
            return bp;
    }
    return NULL;
}

int kvm_sw_breakpoints_active(CPUState *env)
{
    return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
}
Glauber Costa authored
929
930
931
932
933
934
935
936
937
938
939
940
struct kvm_set_guest_debug_data {
    struct kvm_guest_debug dbg;
    CPUState *env;
    int err;
};

static void kvm_invoke_set_guest_debug(void *data)
{
    struct kvm_set_guest_debug_data *dbg_data = data;
    dbg_data->err = kvm_vcpu_ioctl(dbg_data->env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
}
941
942
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
{
Glauber Costa authored
943
    struct kvm_set_guest_debug_data data;
944
Glauber Costa authored
945
    data.dbg.control = 0;
946
    if (env->singlestep_enabled)
Glauber Costa authored
947
        data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
948
Glauber Costa authored
949
950
951
    kvm_arch_update_guest_debug(env, &data.dbg);
    data.dbg.control |= reinject_trap;
    data.env = env;
952
Glauber Costa authored
953
954
    on_vcpu(env, kvm_invoke_set_guest_debug, &data);
    return data.err;
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
}

int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
                          target_ulong len, int type)
{
    struct kvm_sw_breakpoint *bp;
    CPUState *env;
    int err;

    if (type == GDB_BREAKPOINT_SW) {
        bp = kvm_find_sw_breakpoint(current_env, addr);
        if (bp) {
            bp->use_count++;
            return 0;
        }

        bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
        if (!bp)
            return -ENOMEM;

        bp->pc = addr;
        bp->use_count = 1;
        err = kvm_arch_insert_sw_breakpoint(current_env, bp);
        if (err) {
            free(bp);
            return err;
        }

        TAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
                          bp, entry);
    } else {
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
        if (err)
            return err;
    }

    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        err = kvm_update_guest_debug(env, 0);
        if (err)
            return err;
    }
    return 0;
}

int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
                          target_ulong len, int type)
{
    struct kvm_sw_breakpoint *bp;
    CPUState *env;
    int err;

    if (type == GDB_BREAKPOINT_SW) {
        bp = kvm_find_sw_breakpoint(current_env, addr);
        if (!bp)
            return -ENOENT;

        if (bp->use_count > 1) {
            bp->use_count--;
            return 0;
        }

        err = kvm_arch_remove_sw_breakpoint(current_env, bp);
        if (err)
            return err;

        TAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
        qemu_free(bp);
    } else {
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
        if (err)
            return err;
    }

    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        err = kvm_update_guest_debug(env, 0);
        if (err)
            return err;
    }
    return 0;
}

void kvm_remove_all_breakpoints(CPUState *current_env)
{
    struct kvm_sw_breakpoint *bp, *next;
    KVMState *s = current_env->kvm_state;
    CPUState *env;

    TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
        if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
            /* Try harder to find a CPU that currently sees the breakpoint. */
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
                if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
                    break;
            }
        }
    }
    kvm_arch_remove_all_hw_breakpoints();

    for (env = first_cpu; env != NULL; env = env->next_cpu)
        kvm_update_guest_debug(env, 0);
}

#else /* !KVM_CAP_SET_GUEST_DEBUG */

int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
{
    return -EINVAL;
}

int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
                          target_ulong len, int type)
{
    return -EINVAL;
}

int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
                          target_ulong len, int type)
{
    return -EINVAL;
}

void kvm_remove_all_breakpoints(CPUState *current_env)
{
}
#endif /* !KVM_CAP_SET_GUEST_DEBUG */