|
1
2
3
4
|
/*
* QEMU KVM support
*
* Copyright IBM, Corp. 2008
|
|
5
|
* Red Hat, Inc. 2008
|
|
6
7
8
|
*
* Authors:
* Anthony Liguori <aliguori@us.ibm.com>
|
|
9
|
* Glauber Costa <gcosta@redhat.com>
|
|
10
11
12
13
14
15
16
17
18
|
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
|
|
19
|
#include <stdarg.h>
|
|
20
21
22
23
24
|
#include <linux/kvm.h>
#include "qemu-common.h"
#include "sysemu.h"
|
|
25
|
#include "hw/hw.h"
|
|
26
|
#include "gdbstub.h"
|
|
27
28
|
#include "kvm.h"
|
|
29
30
31
|
/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
#define PAGE_SIZE TARGET_PAGE_SIZE
|
|
32
33
34
35
36
37
38
39
40
41
|
//#define DEBUG_KVM
#ifdef DEBUG_KVM
#define dprintf(fmt, ...) \
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
#define dprintf(fmt, ...) \
do { } while (0)
#endif
|
|
42
43
44
45
46
47
48
49
|
typedef struct KVMSlot
{
target_phys_addr_t start_addr;
ram_addr_t memory_size;
ram_addr_t phys_offset;
int slot;
int flags;
} KVMSlot;
|
|
50
|
|
|
51
52
|
typedef struct kvm_dirty_log KVMDirtyLog;
|
|
53
54
55
56
57
58
59
|
int kvm_allowed = 0;
struct KVMState
{
KVMSlot slots[32];
int fd;
int vmfd;
|
|
60
|
int coalesced_mmio;
|
|
61
|
int broken_set_mem_region;
|
|
62
|
int migration_log;
|
|
63
64
65
|
#ifdef KVM_CAP_SET_GUEST_DEBUG
struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
#endif
|
|
66
67
68
69
70
71
72
73
74
|
};
static KVMState *kvm_state;
static KVMSlot *kvm_alloc_slot(KVMState *s)
{
int i;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
|
|
75
76
77
|
/* KVM private memory slots */
if (i >= 8 && i < 12)
continue;
|
|
78
79
80
81
|
if (s->slots[i].memory_size == 0)
return &s->slots[i];
}
|
|
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
|
fprintf(stderr, "%s: no free slot available\n", __func__);
abort();
}
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
target_phys_addr_t start_addr,
target_phys_addr_t end_addr)
{
int i;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
KVMSlot *mem = &s->slots[i];
if (start_addr == mem->start_addr &&
end_addr == mem->start_addr + mem->memory_size) {
return mem;
}
}
|
|
101
102
103
|
return NULL;
}
|
|
104
105
106
107
108
109
|
/*
* Find overlapping slot with lowest start address
*/
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
target_phys_addr_t start_addr,
target_phys_addr_t end_addr)
|
|
110
|
{
|
|
111
|
KVMSlot *found = NULL;
|
|
112
113
114
115
116
|
int i;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
KVMSlot *mem = &s->slots[i];
|
|
117
118
119
120
121
122
123
124
125
|
if (mem->memory_size == 0 ||
(found && found->start_addr < mem->start_addr)) {
continue;
}
if (end_addr > mem->start_addr &&
start_addr < mem->start_addr + mem->memory_size) {
found = mem;
}
|
|
126
127
|
}
|
|
128
|
return found;
|
|
129
130
|
}
|
|
131
132
133
134
135
136
137
|
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
{
struct kvm_userspace_memory_region mem;
mem.slot = slot->slot;
mem.guest_phys_addr = slot->start_addr;
mem.memory_size = slot->memory_size;
|
|
138
|
mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
|
|
139
|
mem.flags = slot->flags;
|
|
140
141
142
|
if (s->migration_log) {
mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
}
|
|
143
144
145
|
return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
}
|
|
146
147
148
149
150
151
152
153
154
|
static void kvm_reset_vcpu(void *opaque)
{
CPUState *env = opaque;
if (kvm_arch_put_registers(env)) {
fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
abort();
}
}
|
|
155
|
|
|
156
157
158
159
160
161
162
163
|
int kvm_init_vcpu(CPUState *env)
{
KVMState *s = kvm_state;
long mmap_size;
int ret;
dprintf("kvm_init_vcpu\n");
|
|
164
|
ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
|
|
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
|
if (ret < 0) {
dprintf("kvm_create_vcpu failed\n");
goto err;
}
env->kvm_fd = ret;
env->kvm_state = s;
mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
if (mmap_size < 0) {
dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
goto err;
}
env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
env->kvm_fd, 0);
if (env->kvm_run == MAP_FAILED) {
ret = -errno;
dprintf("mmap'ing vcpu state failed\n");
goto err;
}
ret = kvm_arch_init_vcpu(env);
|
|
188
|
if (ret == 0) {
|
|
189
|
qemu_register_reset(kvm_reset_vcpu, env);
|
|
190
191
|
ret = kvm_arch_put_registers(env);
}
|
|
192
193
194
195
|
err:
return ret;
}
|
|
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
|
int kvm_put_mp_state(CPUState *env)
{
struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
}
int kvm_get_mp_state(CPUState *env)
{
struct kvm_mp_state mp_state;
int ret;
ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
if (ret < 0) {
return ret;
}
env->mp_state = mp_state.mp_state;
return 0;
}
|
|
216
217
218
|
/*
* dirty pages logging control
*/
|
|
219
|
static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
|
|
220
|
ram_addr_t size, int flags, int mask)
|
|
221
222
|
{
KVMState *s = kvm_state;
|
|
223
|
KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
|
|
224
225
|
int old_flags;
|
|
226
|
if (mem == NULL) {
|
|
227
228
229
|
fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
TARGET_FMT_plx "\n", __func__, phys_addr,
phys_addr + size - 1);
|
|
230
231
232
|
return -EINVAL;
}
|
|
233
|
old_flags = mem->flags;
|
|
234
|
|
|
235
|
flags = (mem->flags & ~mask) | flags;
|
|
236
237
|
mem->flags = flags;
|
|
238
239
240
241
242
243
244
245
|
/* If nothing changed effectively, no need to issue ioctl */
if (s->migration_log) {
flags |= KVM_MEM_LOG_DIRTY_PAGES;
}
if (flags == old_flags) {
return 0;
}
|
|
246
247
248
|
return kvm_set_user_memory_region(s, mem);
}
|
|
249
|
int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
|
|
250
|
{
|
|
251
|
return kvm_dirty_pages_log_change(phys_addr, size,
|
|
252
253
254
255
|
KVM_MEM_LOG_DIRTY_PAGES,
KVM_MEM_LOG_DIRTY_PAGES);
}
|
|
256
|
int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
|
|
257
|
{
|
|
258
|
return kvm_dirty_pages_log_change(phys_addr, size,
|
|
259
260
261
262
|
0,
KVM_MEM_LOG_DIRTY_PAGES);
}
|
|
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
|
int kvm_set_migration_log(int enable)
{
KVMState *s = kvm_state;
KVMSlot *mem;
int i, err;
s->migration_log = enable;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
mem = &s->slots[i];
if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
continue;
}
err = kvm_set_user_memory_region(s, mem);
if (err) {
return err;
}
}
return 0;
}
|
|
285
286
287
288
289
|
/**
* kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
* This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
* This means all bits are set to dirty.
*
|
|
290
|
* @start_add: start of logged region.
|
|
291
292
|
* @end_addr: end of logged region.
*/
|
|
293
294
|
int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
target_phys_addr_t end_addr)
|
|
295
296
|
{
KVMState *s = kvm_state;
|
|
297
298
|
unsigned long size, allocated_size = 0;
target_phys_addr_t phys_addr;
|
|
299
|
ram_addr_t addr;
|
|
300
301
302
|
KVMDirtyLog d;
KVMSlot *mem;
int ret = 0;
|
|
303
|
|
|
304
305
306
307
308
309
|
d.dirty_bitmap = NULL;
while (start_addr < end_addr) {
mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
if (mem == NULL) {
break;
}
|
|
310
|
|
|
311
312
313
314
315
316
317
318
|
size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
if (!d.dirty_bitmap) {
d.dirty_bitmap = qemu_malloc(size);
} else if (size > allocated_size) {
d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
}
allocated_size = size;
memset(d.dirty_bitmap, 0, allocated_size);
|
|
319
|
|
|
320
|
d.slot = mem->slot;
|
|
321
|
|
|
322
323
324
325
326
|
if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
dprintf("ioctl failed %d\n", errno);
ret = -1;
break;
}
|
|
327
|
|
|
328
329
330
331
332
333
334
335
336
337
338
339
340
|
for (phys_addr = mem->start_addr, addr = mem->phys_offset;
phys_addr < mem->start_addr + mem->memory_size;
phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
unsigned long *bitmap = (unsigned long *)d.dirty_bitmap;
unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
unsigned word = nr / (sizeof(*bitmap) * 8);
unsigned bit = nr % (sizeof(*bitmap) * 8);
if ((bitmap[word] >> bit) & 1) {
cpu_physical_memory_set_dirty(addr);
}
}
start_addr = phys_addr;
|
|
341
342
|
}
qemu_free(d.dirty_bitmap);
|
|
343
344
|
return ret;
|
|
345
346
|
}
|
|
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
|
int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
{
int ret = -ENOSYS;
#ifdef KVM_CAP_COALESCED_MMIO
KVMState *s = kvm_state;
if (s->coalesced_mmio) {
struct kvm_coalesced_mmio_zone zone;
zone.addr = start;
zone.size = size;
ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
}
#endif
return ret;
}
int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
{
int ret = -ENOSYS;
#ifdef KVM_CAP_COALESCED_MMIO
KVMState *s = kvm_state;
if (s->coalesced_mmio) {
struct kvm_coalesced_mmio_zone zone;
zone.addr = start;
zone.size = size;
ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
}
#endif
return ret;
}
|
|
385
386
387
388
389
390
391
392
393
394
395
396
|
int kvm_check_extension(KVMState *s, unsigned int extension)
{
int ret;
ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
if (ret < 0) {
ret = 0;
}
return ret;
}
|
|
397
398
|
int kvm_init(int smp_cpus)
{
|
|
399
400
401
|
static const char upgrade_note[] =
"Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
"(see http://sourceforge.net/projects/kvm).\n";
|
|
402
403
404
405
|
KVMState *s;
int ret;
int i;
|
|
406
407
|
if (smp_cpus > 1) {
fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
|
|
408
|
return -EINVAL;
|
|
409
|
}
|
|
410
411
412
|
s = qemu_mallocz(sizeof(KVMState));
|
|
413
414
415
|
#ifdef KVM_CAP_SET_GUEST_DEBUG
TAILQ_INIT(&s->kvm_sw_breakpoints);
#endif
|
|
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
|
for (i = 0; i < ARRAY_SIZE(s->slots); i++)
s->slots[i].slot = i;
s->vmfd = -1;
s->fd = open("/dev/kvm", O_RDWR);
if (s->fd == -1) {
fprintf(stderr, "Could not access KVM kernel module: %m\n");
ret = -errno;
goto err;
}
ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
if (ret < KVM_API_VERSION) {
if (ret > 0)
ret = -EINVAL;
fprintf(stderr, "kvm version too old\n");
goto err;
}
if (ret > KVM_API_VERSION) {
ret = -EINVAL;
fprintf(stderr, "kvm version not supported\n");
goto err;
}
s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
if (s->vmfd < 0)
goto err;
/* initially, KVM allocated its own memory and we had to jump through
* hooks to make phys_ram_base point to this. Modern versions of KVM
|
|
447
|
* just use a user allocated buffer so we can use regular pages
|
|
448
449
|
* unmodified. Make sure we have a sufficiently modern version of KVM.
*/
|
|
450
451
|
if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
ret = -EINVAL;
|
|
452
453
|
fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
upgrade_note);
|
|
454
455
456
|
goto err;
}
|
|
457
458
459
|
/* There was a nasty bug in < kvm-80 that prevents memory slots from being
* destroyed properly. Since we rely on this capability, refuse to work
* with any kernel without this capability. */
|
|
460
461
|
if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
ret = -EINVAL;
|
|
462
463
|
fprintf(stderr,
|
|
464
465
|
"KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
upgrade_note);
|
|
466
467
468
|
goto err;
}
|
|
469
|
#ifdef KVM_CAP_COALESCED_MMIO
|
|
470
471
472
|
s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
#else
s->coalesced_mmio = 0;
|
|
473
474
|
#endif
|
|
475
476
477
478
479
480
481
482
|
s->broken_set_mem_region = 1;
#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
if (ret > 0) {
s->broken_set_mem_region = 0;
}
#endif
|
|
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
|
ret = kvm_arch_init(s, smp_cpus);
if (ret < 0)
goto err;
kvm_state = s;
return 0;
err:
if (s) {
if (s->vmfd != -1)
close(s->vmfd);
if (s->fd != -1)
close(s->fd);
}
qemu_free(s);
return ret;
}
static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
int direction, int size, uint32_t count)
{
int i;
uint8_t *ptr = data;
for (i = 0; i < count; i++) {
if (direction == KVM_EXIT_IO_IN) {
switch (size) {
case 1:
stb_p(ptr, cpu_inb(env, port));
break;
case 2:
stw_p(ptr, cpu_inw(env, port));
break;
case 4:
stl_p(ptr, cpu_inl(env, port));
break;
}
} else {
switch (size) {
case 1:
cpu_outb(env, port, ldub_p(ptr));
break;
case 2:
cpu_outw(env, port, lduw_p(ptr));
break;
case 4:
cpu_outl(env, port, ldl_p(ptr));
break;
}
}
ptr += size;
}
return 1;
}
|
|
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
|
static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
{
#ifdef KVM_CAP_COALESCED_MMIO
KVMState *s = kvm_state;
if (s->coalesced_mmio) {
struct kvm_coalesced_mmio_ring *ring;
ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
while (ring->first != ring->last) {
struct kvm_coalesced_mmio *ent;
ent = &ring->coalesced_mmio[ring->first];
cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
/* FIXME smp_wmb() */
ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
}
}
#endif
}
|
|
563
564
565
566
567
568
569
570
|
int kvm_cpu_exec(CPUState *env)
{
struct kvm_run *run = env->kvm_run;
int ret;
dprintf("kvm_cpu_exec()\n");
do {
|
|
571
|
if (env->exit_request) {
|
|
572
573
574
575
576
|
dprintf("interrupt exit requested\n");
ret = 0;
break;
}
|
|
577
|
kvm_arch_pre_run(env, run);
|
|
578
579
580
581
582
583
584
585
586
587
588
589
590
591
|
ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
kvm_arch_post_run(env, run);
if (ret == -EINTR || ret == -EAGAIN) {
dprintf("io window exit\n");
ret = 0;
break;
}
if (ret < 0) {
dprintf("kvm run failed %s\n", strerror(-ret));
abort();
}
|
|
592
593
|
kvm_run_coalesced_mmio(env, run);
|
|
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
|
ret = 0; /* exit loop */
switch (run->exit_reason) {
case KVM_EXIT_IO:
dprintf("handle_io\n");
ret = kvm_handle_io(env, run->io.port,
(uint8_t *)run + run->io.data_offset,
run->io.direction,
run->io.size,
run->io.count);
break;
case KVM_EXIT_MMIO:
dprintf("handle_mmio\n");
cpu_physical_memory_rw(run->mmio.phys_addr,
run->mmio.data,
run->mmio.len,
run->mmio.is_write);
ret = 1;
break;
case KVM_EXIT_IRQ_WINDOW_OPEN:
dprintf("irq_window_open\n");
break;
case KVM_EXIT_SHUTDOWN:
dprintf("shutdown\n");
qemu_system_reset_request();
ret = 1;
break;
case KVM_EXIT_UNKNOWN:
dprintf("kvm_exit_unknown\n");
break;
case KVM_EXIT_FAIL_ENTRY:
dprintf("kvm_exit_fail_entry\n");
break;
case KVM_EXIT_EXCEPTION:
dprintf("kvm_exit_exception\n");
break;
case KVM_EXIT_DEBUG:
dprintf("kvm_exit_debug\n");
|
|
631
632
633
634
635
636
637
638
639
640
|
#ifdef KVM_CAP_SET_GUEST_DEBUG
if (kvm_arch_debug(&run->debug.arch)) {
gdb_set_stop_cpu(env);
vm_stop(EXCP_DEBUG);
env->exception_index = EXCP_DEBUG;
return 0;
}
/* re-enter, this exception was guest-internal */
ret = 1;
#endif /* KVM_CAP_SET_GUEST_DEBUG */
|
|
641
642
643
644
645
646
647
648
|
break;
default:
dprintf("kvm_arch_handle_exit\n");
ret = kvm_arch_handle_exit(env, run);
break;
}
} while (ret > 0);
|
|
649
650
|
if (env->exit_request) {
env->exit_request = 0;
|
|
651
652
653
|
env->exception_index = EXCP_INTERRUPT;
}
|
|
654
655
656
657
658
659
660
661
662
|
return ret;
}
void kvm_set_phys_mem(target_phys_addr_t start_addr,
ram_addr_t size,
ram_addr_t phys_offset)
{
KVMState *s = kvm_state;
ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
|
|
663
664
|
KVMSlot *mem, old;
int err;
|
|
665
|
|
|
666
|
if (start_addr & ~TARGET_PAGE_MASK) {
|
|
667
668
669
670
671
672
673
674
675
|
if (flags >= IO_MEM_UNASSIGNED) {
if (!kvm_lookup_overlapping_slot(s, start_addr,
start_addr + size)) {
return;
}
fprintf(stderr, "Unaligned split of a KVM memory slot\n");
} else {
fprintf(stderr, "Only page-aligned memory slots supported\n");
}
|
|
676
677
678
|
abort();
}
|
|
679
680
681
|
/* KVM does not support read-only slots */
phys_offset &= ~IO_MEM_ROM;
|
|
682
683
684
685
686
|
while (1) {
mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
if (!mem) {
break;
}
|
|
687
|
|
|
688
689
690
691
692
|
if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
(start_addr + size <= mem->start_addr + mem->memory_size) &&
(phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
/* The new slot fits into the existing one and comes with
* identical parameters - nothing to be done. */
|
|
693
|
return;
|
|
694
695
696
697
698
699
700
701
702
703
|
}
old = *mem;
/* unregister the overlapping slot */
mem->memory_size = 0;
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
__func__, strerror(-err));
|
|
704
705
|
abort();
}
|
|
706
707
708
709
710
711
712
713
714
|
/* Workaround for older KVM versions: we can't join slots, even not by
* unregistering the previous ones and then registering the larger
* slot. We have to maintain the existing fragmentation. Sigh.
*
* This workaround assumes that the new slot starts at the same
* address as the first existing one. If not or if some overlapping
* slot comes around later, we will fail (not seen in practice so far)
* - and actually require a recent KVM version. */
|
|
715
716
|
if (s->broken_set_mem_region &&
old.start_addr == start_addr && old.memory_size < size &&
|
|
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
|
flags < IO_MEM_UNASSIGNED) {
mem = kvm_alloc_slot(s);
mem->memory_size = old.memory_size;
mem->start_addr = old.start_addr;
mem->phys_offset = old.phys_offset;
mem->flags = 0;
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error updating slot: %s\n", __func__,
strerror(-err));
abort();
}
start_addr += old.memory_size;
phys_offset += old.memory_size;
size -= old.memory_size;
continue;
}
/* register prefix slot */
if (old.start_addr < start_addr) {
mem = kvm_alloc_slot(s);
mem->memory_size = start_addr - old.start_addr;
mem->start_addr = old.start_addr;
mem->phys_offset = old.phys_offset;
mem->flags = 0;
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error registering prefix slot: %s\n",
__func__, strerror(-err));
abort();
}
}
/* register suffix slot */
if (old.start_addr + old.memory_size > start_addr + size) {
ram_addr_t size_delta;
mem = kvm_alloc_slot(s);
mem->start_addr = start_addr + size;
size_delta = mem->start_addr - old.start_addr;
mem->memory_size = old.memory_size - size_delta;
mem->phys_offset = old.phys_offset + size_delta;
mem->flags = 0;
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error registering suffix slot: %s\n",
__func__, strerror(-err));
abort();
}
}
|
|
771
|
}
|
|
772
773
774
775
776
|
/* in case the KVM bug workaround already "consumed" the new slot */
if (!size)
return;
|
|
777
778
779
780
781
782
|
/* KVM does not need to know about this memory */
if (flags >= IO_MEM_UNASSIGNED)
return;
mem = kvm_alloc_slot(s);
mem->memory_size = size;
|
|
783
784
|
mem->start_addr = start_addr;
mem->phys_offset = phys_offset;
|
|
785
786
|
mem->flags = 0;
|
|
787
788
789
790
791
792
|
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error registering slot: %s\n", __func__,
strerror(-err));
abort();
}
|
|
793
794
|
}
|
|
795
|
int kvm_ioctl(KVMState *s, int type, ...)
|
|
796
797
|
{
int ret;
|
|
798
799
|
void *arg;
va_list ap;
|
|
800
|
|
|
801
802
803
804
805
|
va_start(ap, type);
arg = va_arg(ap, void *);
va_end(ap);
ret = ioctl(s->fd, type, arg);
|
|
806
807
808
809
810
811
|
if (ret == -1)
ret = -errno;
return ret;
}
|
|
812
|
int kvm_vm_ioctl(KVMState *s, int type, ...)
|
|
813
814
|
{
int ret;
|
|
815
816
817
818
819
820
|
void *arg;
va_list ap;
va_start(ap, type);
arg = va_arg(ap, void *);
va_end(ap);
|
|
821
|
|
|
822
|
ret = ioctl(s->vmfd, type, arg);
|
|
823
824
825
826
827
828
|
if (ret == -1)
ret = -errno;
return ret;
}
|
|
829
|
int kvm_vcpu_ioctl(CPUState *env, int type, ...)
|
|
830
831
|
{
int ret;
|
|
832
833
834
835
836
837
|
void *arg;
va_list ap;
va_start(ap, type);
arg = va_arg(ap, void *);
va_end(ap);
|
|
838
|
|
|
839
|
ret = ioctl(env->kvm_fd, type, arg);
|
|
840
841
842
843
844
|
if (ret == -1)
ret = -errno;
return ret;
}
|
|
845
846
847
|
int kvm_has_sync_mmu(void)
{
|
|
848
|
#ifdef KVM_CAP_SYNC_MMU
|
|
849
850
|
KVMState *s = kvm_state;
|
|
851
852
|
return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
#else
|
|
853
|
return 0;
|
|
854
|
#endif
|
|
855
|
}
|
|
856
|
|
|
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
|
void kvm_setup_guest_memory(void *start, size_t size)
{
if (!kvm_has_sync_mmu()) {
#ifdef MADV_DONTFORK
int ret = madvise(start, size, MADV_DONTFORK);
if (ret) {
perror("madvice");
exit(1);
}
#else
fprintf(stderr,
"Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
exit(1);
#endif
}
}
|
|
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
|
#ifdef KVM_CAP_SET_GUEST_DEBUG
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
target_ulong pc)
{
struct kvm_sw_breakpoint *bp;
TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
if (bp->pc == pc)
return bp;
}
return NULL;
}
int kvm_sw_breakpoints_active(CPUState *env)
{
return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
}
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
{
struct kvm_guest_debug dbg;
dbg.control = 0;
if (env->singlestep_enabled)
dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
kvm_arch_update_guest_debug(env, &dbg);
dbg.control |= reinject_trap;
return kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg);
}
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
target_ulong len, int type)
{
struct kvm_sw_breakpoint *bp;
CPUState *env;
int err;
if (type == GDB_BREAKPOINT_SW) {
bp = kvm_find_sw_breakpoint(current_env, addr);
if (bp) {
bp->use_count++;
return 0;
}
bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
if (!bp)
return -ENOMEM;
bp->pc = addr;
bp->use_count = 1;
err = kvm_arch_insert_sw_breakpoint(current_env, bp);
if (err) {
free(bp);
return err;
}
TAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints,
bp, entry);
} else {
err = kvm_arch_insert_hw_breakpoint(addr, len, type);
if (err)
return err;
}
for (env = first_cpu; env != NULL; env = env->next_cpu) {
err = kvm_update_guest_debug(env, 0);
if (err)
return err;
}
return 0;
}
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
target_ulong len, int type)
{
struct kvm_sw_breakpoint *bp;
CPUState *env;
int err;
if (type == GDB_BREAKPOINT_SW) {
bp = kvm_find_sw_breakpoint(current_env, addr);
if (!bp)
return -ENOENT;
if (bp->use_count > 1) {
bp->use_count--;
return 0;
}
err = kvm_arch_remove_sw_breakpoint(current_env, bp);
if (err)
return err;
TAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry);
qemu_free(bp);
} else {
err = kvm_arch_remove_hw_breakpoint(addr, len, type);
if (err)
return err;
}
for (env = first_cpu; env != NULL; env = env->next_cpu) {
err = kvm_update_guest_debug(env, 0);
if (err)
return err;
}
return 0;
}
void kvm_remove_all_breakpoints(CPUState *current_env)
{
struct kvm_sw_breakpoint *bp, *next;
KVMState *s = current_env->kvm_state;
CPUState *env;
TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
/* Try harder to find a CPU that currently sees the breakpoint. */
for (env = first_cpu; env != NULL; env = env->next_cpu) {
if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
break;
}
}
}
kvm_arch_remove_all_hw_breakpoints();
for (env = first_cpu; env != NULL; env = env->next_cpu)
kvm_update_guest_debug(env, 0);
}
#else /* !KVM_CAP_SET_GUEST_DEBUG */
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
{
return -EINVAL;
}
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
target_ulong len, int type)
{
return -EINVAL;
}
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
target_ulong len, int type)
{
return -EINVAL;
}
void kvm_remove_all_breakpoints(CPUState *current_env)
{
}
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
|