1
2
/*
* KQEMU support
ths
authored
18 years ago
3
*
4
* Copyright ( c ) 2005 - 2008 Fabrice Bellard
5
6
7
8
9
10
11
12
13
14
15
16
17
*
* This library is free software ; you can redistribute it and / or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation ; either
* version 2 of the License , or ( at your option ) any later version .
*
* This library is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU
* Lesser General Public License for more details .
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library ; if not , write to the Free Software
18
* Foundation , Inc ., 51 Franklin Street , Fifth Floor , Boston MA 02110 - 1301 USA
19
20
21
22
*/
# include "config.h"
# ifdef _WIN32
# include < windows . h >
23
# include < winioctl . h >
24
25
26
# else
# include < sys / types . h >
# include < sys / mman . h >
27
# include < sys / ioctl . h >
28
# endif
ths
authored
18 years ago
29
# ifdef HOST_SOLARIS
ths
authored
18 years ago
30
# include < sys / ioccom . h >
ths
authored
18 years ago
31
# endif
32
33
34
35
36
37
38
39
40
41
# include < stdlib . h >
# include < stdio . h >
# include < stdarg . h >
# include < string . h >
# include < errno . h >
# include < unistd . h >
# include < inttypes . h >
# include "cpu.h"
# include "exec-all.h"
42
# include "qemu-common.h"
43
44
45
46
# ifdef USE_KQEMU
# define DEBUG
47
// # define PROFILE
48
49
50
# ifdef DEBUG
51
52
# define LOG_INT (...) qemu_log_mask ( CPU_LOG_INT , ## __VA_ARGS__ )
# define LOG_INT_STATE ( env ) log_cpu_state_mask ( CPU_LOG_INT , ( env ), 0 )
53
54
55
56
57
# else
# define LOG_INT (...) do { } while ( 0 )
# define LOG_INT_STATE ( env ) do { } while ( 0 )
# endif
58
59
# include < unistd . h >
# include < fcntl . h >
60
# include "kqemu.h"
61
62
63
64
# ifdef _WIN32
# define KQEMU_DEVICE " \\\\ . \\ kqemu"
# else
65
# define KQEMU_DEVICE "/dev/kqemu"
66
67
# endif
68
69
static void qpi_init ( void );
70
71
72
73
74
75
76
77
78
# ifdef _WIN32
# define KQEMU_INVALID_FD INVALID_HANDLE_VALUE
HANDLE kqemu_fd = KQEMU_INVALID_FD ;
# define kqemu_closefd ( x ) CloseHandle ( x )
# else
# define KQEMU_INVALID_FD - 1
int kqemu_fd = KQEMU_INVALID_FD ;
# define kqemu_closefd ( x ) close ( x )
# endif
79
80
81
82
83
/* 0 = not allowed
1 = user kqemu
2 = kernel kqemu
*/
84
int kqemu_allowed = 1 ;
85
uint64_t * pages_to_flush ;
86
unsigned int nb_pages_to_flush ;
87
uint64_t * ram_pages_to_update ;
88
unsigned int nb_ram_pages_to_update ;
89
uint64_t * modified_ram_pages ;
90
91
unsigned int nb_modified_ram_pages ;
uint8_t * modified_ram_pages_table ;
92
93
int qpi_io_memory ;
uint32_t kqemu_comm_base ; /* physical address of the QPI communication page */
94
95
96
97
98
99
# define cpuid ( index , eax , ebx , ecx , edx ) \
asm volatile ( "cpuid" \
: "=a" ( eax ), "=b" ( ebx ), "=c" ( ecx ), "=d" ( edx ) \
: "0" ( index ))
100
101
102
103
104
105
# ifdef __x86_64__
static int is_cpuid_supported ( void )
{
return 1 ;
}
# else
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
static int is_cpuid_supported ( void )
{
int v0 , v1 ;
asm volatile ( "pushf \n "
"popl %0 \n "
"movl %0, %1 \n "
"xorl $0x00200000, %0 \n "
"pushl %0 \n "
"popf \n "
"pushf \n "
"popl %0 \n "
: "=a" ( v0 ), "=d" ( v1 )
:
: "cc" );
return ( v0 != v1 );
}
122
# endif
123
124
125
static void kqemu_update_cpuid ( CPUState * env )
{
126
int critical_features_mask , features , ext_features , ext_features_mask ;
127
128
129
130
131
132
uint32_t eax , ebx , ecx , edx ;
/* the following features are kept identical on the host and
target cpus because they are important for user code . Strictly
speaking , only SSE really matters because the OS must support
it if the user code uses it . */
ths
authored
18 years ago
133
134
135
critical_features_mask =
CPUID_CMOV | CPUID_CX8 |
CPUID_FXSR | CPUID_MMX | CPUID_SSE |
136
CPUID_SSE2 | CPUID_SEP ;
137
ext_features_mask = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR ;
138
139
if ( ! is_cpuid_supported ()) {
features = 0 ;
140
ext_features = 0 ;
141
142
143
} else {
cpuid ( 1 , eax , ebx , ecx , edx );
features = edx ;
144
ext_features = ecx ;
145
}
146
147
148
149
150
151
# ifdef __x86_64__
/* NOTE : on x86_64 CPUs , SYSENTER is not supported in
compatibility mode , so in order to have the best performances
it is better not to use it */
features &= ~ CPUID_SEP ;
# endif
152
153
env -> cpuid_features = ( env -> cpuid_features & ~ critical_features_mask ) |
( features & critical_features_mask );
154
155
env -> cpuid_ext_features = ( env -> cpuid_ext_features & ~ ext_features_mask ) |
( ext_features & ext_features_mask );
156
157
158
159
160
161
162
/* XXX : we could update more of the target CPUID state so that the
non accelerated code sees exactly the same CPU features as the
accelerated code */
}
int kqemu_init ( CPUState * env )
{
163
struct kqemu_init kinit ;
164
int ret , version ;
165
166
167
# ifdef _WIN32
DWORD temp ;
# endif
168
169
170
171
if ( ! kqemu_allowed )
return - 1 ;
172
173
174
175
176
# ifdef _WIN32
kqemu_fd = CreateFile ( KQEMU_DEVICE , GENERIC_WRITE | GENERIC_READ ,
FILE_SHARE_READ | FILE_SHARE_WRITE ,
NULL , OPEN_EXISTING , FILE_ATTRIBUTE_NORMAL ,
NULL );
malc
authored
17 years ago
177
178
179
180
181
if ( kqemu_fd == KQEMU_INVALID_FD ) {
fprintf ( stderr , "Could not open '%s' - QEMU acceleration layer not activated: %lu \n " ,
KQEMU_DEVICE , GetLastError ());
return - 1 ;
}
182
# else
183
kqemu_fd = open ( KQEMU_DEVICE , O_RDWR );
184
if ( kqemu_fd == KQEMU_INVALID_FD ) {
ths
authored
18 years ago
185
186
fprintf ( stderr , "Could not open '%s' - QEMU acceleration layer not activated: %s \n " ,
KQEMU_DEVICE , strerror ( errno ));
187
188
return - 1 ;
}
malc
authored
17 years ago
189
# endif
190
version = 0 ;
191
192
193
194
# ifdef _WIN32
DeviceIoControl ( kqemu_fd , KQEMU_GET_VERSION , NULL , 0 ,
& version , sizeof ( version ), & temp , NULL );
# else
195
ioctl ( kqemu_fd , KQEMU_GET_VERSION , & version );
196
# endif
197
198
199
200
201
202
if ( version != KQEMU_VERSION ) {
fprintf ( stderr , "Version mismatch between kqemu module and qemu (%08x %08x) - disabling kqemu use \n " ,
version , KQEMU_VERSION );
goto fail ;
}
ths
authored
18 years ago
203
pages_to_flush = qemu_vmalloc ( KQEMU_MAX_PAGES_TO_FLUSH *
204
sizeof ( uint64_t ));
205
206
207
if ( ! pages_to_flush )
goto fail ;
ths
authored
18 years ago
208
ram_pages_to_update = qemu_vmalloc ( KQEMU_MAX_RAM_PAGES_TO_UPDATE *
209
sizeof ( uint64_t ));
210
211
212
if ( ! ram_pages_to_update )
goto fail ;
ths
authored
18 years ago
213
modified_ram_pages = qemu_vmalloc ( KQEMU_MAX_MODIFIED_RAM_PAGES *
214
sizeof ( uint64_t ));
215
216
217
218
219
220
if ( ! modified_ram_pages )
goto fail ;
modified_ram_pages_table = qemu_mallocz ( phys_ram_size >> TARGET_PAGE_BITS );
if ( ! modified_ram_pages_table )
goto fail ;
221
222
223
224
225
226
227
memset ( & kinit , 0 , sizeof ( kinit )); /* set the paddings to zero */
kinit . ram_base = phys_ram_base ;
kinit . ram_size = phys_ram_size ;
kinit . ram_dirty = phys_ram_dirty ;
kinit . pages_to_flush = pages_to_flush ;
kinit . ram_pages_to_update = ram_pages_to_update ;
kinit . modified_ram_pages = modified_ram_pages ;
228
# ifdef _WIN32
229
ret = DeviceIoControl ( kqemu_fd , KQEMU_INIT , & kinit , sizeof ( kinit ),
230
231
NULL , 0 , & temp , NULL ) == TRUE ? 0 : - 1 ;
# else
232
ret = ioctl ( kqemu_fd , KQEMU_INIT , & kinit );
233
# endif
234
235
236
if ( ret < 0 ) {
fprintf ( stderr , "Error %d while initializing QEMU acceleration layer - disabling it for now \n " , ret );
fail :
237
238
kqemu_closefd ( kqemu_fd );
kqemu_fd = KQEMU_INVALID_FD ;
239
240
241
return - 1 ;
}
kqemu_update_cpuid ( env );
242
env -> kqemu_enabled = kqemu_allowed ;
243
nb_pages_to_flush = 0 ;
244
nb_ram_pages_to_update = 0 ;
245
246
qpi_init ();
247
248
249
250
251
return 0 ;
}
void kqemu_flush_page ( CPUState * env , target_ulong addr )
{
252
LOG_INT ( "kqemu_flush_page: addr=" TARGET_FMT_lx " \n " , addr );
253
254
255
256
257
258
259
260
if ( nb_pages_to_flush >= KQEMU_MAX_PAGES_TO_FLUSH )
nb_pages_to_flush = KQEMU_FLUSH_ALL ;
else
pages_to_flush [ nb_pages_to_flush ++ ] = addr ;
}
void kqemu_flush ( CPUState * env , int global )
{
261
LOG_INT ( "kqemu_flush: \n " );
262
263
264
nb_pages_to_flush = KQEMU_FLUSH_ALL ;
}
265
266
void kqemu_set_notdirty ( CPUState * env , ram_addr_t ram_addr )
{
267
LOG_INT ( "kqemu_set_notdirty: addr=%08lx \n " ,
268
( unsigned long ) ram_addr );
269
270
271
/* we only track transitions to dirty state */
if ( phys_ram_dirty [ ram_addr >> TARGET_PAGE_BITS ] != 0xff )
return ;
272
273
274
275
276
277
if ( nb_ram_pages_to_update >= KQEMU_MAX_RAM_PAGES_TO_UPDATE )
nb_ram_pages_to_update = KQEMU_RAM_PAGES_UPDATE_ALL ;
else
ram_pages_to_update [ nb_ram_pages_to_update ++ ] = ram_addr ;
}
278
279
280
281
static void kqemu_reset_modified_ram_pages ( void )
{
int i ;
unsigned long page_index ;
ths
authored
18 years ago
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
for ( i = 0 ; i < nb_modified_ram_pages ; i ++ ) {
page_index = modified_ram_pages [ i ] >> TARGET_PAGE_BITS ;
modified_ram_pages_table [ page_index ] = 0 ;
}
nb_modified_ram_pages = 0 ;
}
void kqemu_modify_page ( CPUState * env , ram_addr_t ram_addr )
{
unsigned long page_index ;
int ret ;
# ifdef _WIN32
DWORD temp ;
# endif
page_index = ram_addr >> TARGET_PAGE_BITS ;
if ( ! modified_ram_pages_table [ page_index ]) {
# if 0
printf ( "%d: modify_page=%08lx \n " , nb_modified_ram_pages , ram_addr );
# endif
modified_ram_pages_table [ page_index ] = 1 ;
modified_ram_pages [ nb_modified_ram_pages ++ ] = ram_addr ;
if ( nb_modified_ram_pages >= KQEMU_MAX_MODIFIED_RAM_PAGES ) {
/* flush */
# ifdef _WIN32
ths
authored
18 years ago
308
309
ret = DeviceIoControl ( kqemu_fd , KQEMU_MODIFY_RAM_PAGES ,
& nb_modified_ram_pages ,
310
311
312
sizeof ( nb_modified_ram_pages ),
NULL , 0 , & temp , NULL );
# else
ths
authored
18 years ago
313
ret = ioctl ( kqemu_fd , KQEMU_MODIFY_RAM_PAGES ,
314
315
316
317
318
319
320
& nb_modified_ram_pages );
# endif
kqemu_reset_modified_ram_pages ();
}
}
}
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
void kqemu_set_phys_mem ( uint64_t start_addr , ram_addr_t size ,
ram_addr_t phys_offset )
{
struct kqemu_phys_mem kphys_mem1 , * kphys_mem = & kphys_mem1 ;
uint64_t end ;
int ret , io_index ;
end = ( start_addr + size + TARGET_PAGE_SIZE - 1 ) & TARGET_PAGE_MASK ;
start_addr &= TARGET_PAGE_MASK ;
kphys_mem -> phys_addr = start_addr ;
kphys_mem -> size = end - start_addr ;
kphys_mem -> ram_addr = phys_offset & TARGET_PAGE_MASK ;
io_index = phys_offset & ~ TARGET_PAGE_MASK ;
switch ( io_index ) {
case IO_MEM_RAM :
kphys_mem -> io_index = KQEMU_IO_MEM_RAM ;
break ;
case IO_MEM_ROM :
kphys_mem -> io_index = KQEMU_IO_MEM_ROM ;
break ;
default :
if ( qpi_io_memory == io_index ) {
kphys_mem -> io_index = KQEMU_IO_MEM_COMM ;
} else {
kphys_mem -> io_index = KQEMU_IO_MEM_UNASSIGNED ;
}
break ;
}
# ifdef _WIN32
{
DWORD temp ;
ret = DeviceIoControl ( kqemu_fd , KQEMU_SET_PHYS_MEM ,
kphys_mem , sizeof ( * kphys_mem ),
NULL , 0 , & temp , NULL ) == TRUE ? 0 : - 1 ;
}
# else
ret = ioctl ( kqemu_fd , KQEMU_SET_PHYS_MEM , kphys_mem );
# endif
if ( ret < 0 ) {
fprintf ( stderr , "kqemu: KQEMU_SET_PHYS_PAGE error=%d: start_addr=0x%016" PRIx64 " size=0x%08lx phys_offset=0x%08lx \n " ,
ret , start_addr ,
( unsigned long ) size , ( unsigned long ) phys_offset );
}
}
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
struct fpstate {
uint16_t fpuc ;
uint16_t dummy1 ;
uint16_t fpus ;
uint16_t dummy2 ;
uint16_t fptag ;
uint16_t dummy3 ;
uint32_t fpip ;
uint32_t fpcs ;
uint32_t fpoo ;
uint32_t fpos ;
uint8_t fpregs1 [ 8 * 10 ];
};
struct fpxstate {
uint16_t fpuc ;
uint16_t fpus ;
uint16_t fptag ;
uint16_t fop ;
uint32_t fpuip ;
uint16_t cs_sel ;
uint16_t dummy0 ;
uint32_t fpudp ;
uint16_t ds_sel ;
uint16_t dummy1 ;
uint32_t mxcsr ;
uint32_t mxcsr_mask ;
uint8_t fpregs1 [ 8 * 16 ];
395
396
uint8_t xmm_regs [ 16 * 16 ];
uint8_t dummy2 [ 96 ];
397
398
399
400
401
402
403
404
};
static struct fpxstate fpx1 __attribute__ (( aligned ( 16 )));
static void restore_native_fp_frstor ( CPUState * env )
{
int fptag , i , j ;
struct fpstate fp1 , * fp = & fp1 ;
ths
authored
18 years ago
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
fp -> fpuc = env -> fpuc ;
fp -> fpus = ( env -> fpus & ~ 0x3800 ) | ( env -> fpstt & 0x7 ) << 11 ;
fptag = 0 ;
for ( i = 7 ; i >= 0 ; i -- ) {
fptag <<= 2 ;
if ( env -> fptags [ i ]) {
fptag |= 3 ;
} else {
/* the FPU automatically computes it */
}
}
fp -> fptag = fptag ;
j = env -> fpstt ;
for ( i = 0 ; i < 8 ; i ++ ) {
memcpy ( & fp -> fpregs1 [ i * 10 ], & env -> fpregs [ j ]. d , 10 );
j = ( j + 1 ) & 7 ;
}
asm volatile ( "frstor %0" : "=m" ( * fp ));
}
ths
authored
18 years ago
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
static void save_native_fp_fsave ( CPUState * env )
{
int fptag , i , j ;
uint16_t fpuc ;
struct fpstate fp1 , * fp = & fp1 ;
asm volatile ( "fsave %0" : : "m" ( * fp ));
env -> fpuc = fp -> fpuc ;
env -> fpstt = ( fp -> fpus >> 11 ) & 7 ;
env -> fpus = fp -> fpus & ~ 0x3800 ;
fptag = fp -> fptag ;
for ( i = 0 ; i < 8 ; i ++ ) {
env -> fptags [ i ] = (( fptag & 3 ) == 3 );
fptag >>= 2 ;
}
j = env -> fpstt ;
for ( i = 0 ; i < 8 ; i ++ ) {
memcpy ( & env -> fpregs [ j ]. d , & fp -> fpregs1 [ i * 10 ], 10 );
j = ( j + 1 ) & 7 ;
}
/* we must restore the default rounding state */
fpuc = 0x037f | ( env -> fpuc & ( 3 << 10 ));
asm volatile ( "fldcw %0" : : "m" ( fpuc ));
}
static void restore_native_fp_fxrstor ( CPUState * env )
{
struct fpxstate * fp = & fpx1 ;
int i , j , fptag ;
fp -> fpuc = env -> fpuc ;
fp -> fpus = ( env -> fpus & ~ 0x3800 ) | ( env -> fpstt & 0x7 ) << 11 ;
fptag = 0 ;
for ( i = 0 ; i < 8 ; i ++ )
fptag |= ( env -> fptags [ i ] << i );
fp -> fptag = fptag ^ 0xff ;
j = env -> fpstt ;
for ( i = 0 ; i < 8 ; i ++ ) {
memcpy ( & fp -> fpregs1 [ i * 16 ], & env -> fpregs [ j ]. d , 10 );
j = ( j + 1 ) & 7 ;
}
if ( env -> cpuid_features & CPUID_SSE ) {
fp -> mxcsr = env -> mxcsr ;
/* XXX: check if DAZ is not available */
fp -> mxcsr_mask = 0xffff ;
472
memcpy ( fp -> xmm_regs , env -> xmm_regs , CPU_NB_REGS * 16 );
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
}
asm volatile ( "fxrstor %0" : "=m" ( * fp ));
}
static void save_native_fp_fxsave ( CPUState * env )
{
struct fpxstate * fp = & fpx1 ;
int fptag , i , j ;
uint16_t fpuc ;
asm volatile ( "fxsave %0" : : "m" ( * fp ));
env -> fpuc = fp -> fpuc ;
env -> fpstt = ( fp -> fpus >> 11 ) & 7 ;
env -> fpus = fp -> fpus & ~ 0x3800 ;
fptag = fp -> fptag ^ 0xff ;
for ( i = 0 ; i < 8 ; i ++ ) {
env -> fptags [ i ] = ( fptag >> i ) & 1 ;
}
j = env -> fpstt ;
for ( i = 0 ; i < 8 ; i ++ ) {
memcpy ( & env -> fpregs [ j ]. d , & fp -> fpregs1 [ i * 16 ], 10 );
j = ( j + 1 ) & 7 ;
}
if ( env -> cpuid_features & CPUID_SSE ) {
env -> mxcsr = fp -> mxcsr ;
498
memcpy ( env -> xmm_regs , fp -> xmm_regs , CPU_NB_REGS * 16 );
499
500
501
502
503
504
505
506
}
/* we must restore the default rounding state */
asm volatile ( "fninit" );
fpuc = 0x037f | ( env -> fpuc & ( 3 << 10 ));
asm volatile ( "fldcw %0" : : "m" ( fpuc ));
}
507
508
509
510
static int do_syscall ( CPUState * env ,
struct kqemu_cpu_state * kenv )
{
int selector ;
ths
authored
18 years ago
511
512
selector = ( env -> star >> 32 ) & 0xffff ;
513
# ifdef TARGET_X86_64
514
if ( env -> hflags & HF_LMA_MASK ) {
515
516
int code64 ;
517
518
519
env -> regs [ R_ECX ] = kenv -> next_eip ;
env -> regs [ 11 ] = env -> eflags ;
520
521
code64 = env -> hflags & HF_CS64_MASK ;
522
cpu_x86_set_cpl ( env , 0 );
ths
authored
18 years ago
523
524
cpu_x86_load_seg_cache ( env , R_CS , selector & 0xfffc ,
0 , 0xffffffff ,
525
DESC_G_MASK | DESC_P_MASK |
526
527
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK );
ths
authored
18 years ago
528
cpu_x86_load_seg_cache ( env , R_SS , ( selector + 8 ) & 0xfffc ,
529
530
531
532
533
0 , 0xffffffff ,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_W_MASK | DESC_A_MASK );
env -> eflags &= ~ env -> fmask ;
534
if ( code64 )
535
536
537
env -> eip = env -> lstar ;
else
env -> eip = env -> cstar ;
ths
authored
18 years ago
538
} else
539
540
541
# endif
{
env -> regs [ R_ECX ] = ( uint32_t ) kenv -> next_eip ;
ths
authored
18 years ago
542
543
cpu_x86_set_cpl ( env , 0 );
ths
authored
18 years ago
544
545
cpu_x86_load_seg_cache ( env , R_CS , selector & 0xfffc ,
0 , 0xffffffff ,
546
547
548
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK );
ths
authored
18 years ago
549
cpu_x86_load_seg_cache ( env , R_SS , ( selector + 8 ) & 0xfffc ,
550
551
552
553
554
555
556
557
558
559
0 , 0xffffffff ,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_W_MASK | DESC_A_MASK );
env -> eflags &= ~ ( IF_MASK | RF_MASK | VM_MASK );
env -> eip = ( uint32_t ) env -> star ;
}
return 2 ;
}
560
# ifdef CONFIG_PROFILER
561
562
563
564
565
566
567
568
569
570
571
# define PC_REC_SIZE 1
# define PC_REC_HASH_BITS 16
# define PC_REC_HASH_SIZE ( 1 << PC_REC_HASH_BITS )
typedef struct PCRecord {
unsigned long pc ;
int64_t count ;
struct PCRecord * next ;
} PCRecord ;
572
573
static PCRecord * pc_rec_hash [ PC_REC_HASH_SIZE ];
static int nb_pc_records ;
574
575
static void kqemu_record_pc ( unsigned long pc )
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
{
unsigned long h ;
PCRecord ** pr , * r ;
h = pc / PC_REC_SIZE ;
h = h ^ ( h >> PC_REC_HASH_BITS );
h &= ( PC_REC_HASH_SIZE - 1 );
pr = & pc_rec_hash [ h ];
for (;;) {
r = * pr ;
if ( r == NULL )
break ;
if ( r -> pc == pc ) {
r -> count ++ ;
return ;
}
pr = & r -> next ;
}
r = malloc ( sizeof ( PCRecord ));
r -> count = 1 ;
r -> pc = pc ;
r -> next = NULL ;
* pr = r ;
nb_pc_records ++ ;
}
602
static int pc_rec_cmp ( const void * p1 , const void * p2 )
603
604
605
606
607
608
609
610
611
612
613
{
PCRecord * r1 = * ( PCRecord ** ) p1 ;
PCRecord * r2 = * ( PCRecord ** ) p2 ;
if ( r1 -> count < r2 -> count )
return 1 ;
else if ( r1 -> count == r2 -> count )
return 0 ;
else
return - 1 ;
}
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
static void kqemu_record_flush ( void )
{
PCRecord * r , * r_next ;
int h ;
for ( h = 0 ; h < PC_REC_HASH_SIZE ; h ++ ) {
for ( r = pc_rec_hash [ h ]; r != NULL ; r = r_next ) {
r_next = r -> next ;
free ( r );
}
pc_rec_hash [ h ] = NULL ;
}
nb_pc_records = 0 ;
}
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
void kqemu_record_dump ( void )
{
PCRecord ** pr , * r ;
int i , h ;
FILE * f ;
int64_t total , sum ;
pr = malloc ( sizeof ( PCRecord * ) * nb_pc_records );
i = 0 ;
total = 0 ;
for ( h = 0 ; h < PC_REC_HASH_SIZE ; h ++ ) {
for ( r = pc_rec_hash [ h ]; r != NULL ; r = r -> next ) {
pr [ i ++ ] = r ;
total += r -> count ;
}
}
qsort ( pr , nb_pc_records , sizeof ( PCRecord * ), pc_rec_cmp );
ths
authored
18 years ago
646
647
648
649
650
651
f = fopen ( "/tmp/kqemu.stats" , "w" );
if ( ! f ) {
perror ( "/tmp/kqemu.stats" );
exit ( 1 );
}
652
fprintf ( f , "total: %" PRId64 " \n " , total );
653
654
655
656
sum = 0 ;
for ( i = 0 ; i < nb_pc_records ; i ++ ) {
r = pr [ i ];
sum += r -> count ;
ths
authored
18 years ago
657
658
659
fprintf ( f , "%08lx: %" PRId64 " %0.2f%% %0.2f%% \n " ,
r -> pc ,
r -> count ,
660
661
662
663
664
( double ) r -> count / ( double ) total * 100 . 0 ,
( double ) sum / ( double ) total * 100 . 0 );
}
fclose ( f );
free ( pr );
665
666
kqemu_record_flush ();
667
668
669
}
# endif
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
static inline void kqemu_load_seg ( struct kqemu_segment_cache * ksc ,
const SegmentCache * sc )
{
ksc -> selector = sc -> selector ;
ksc -> flags = sc -> flags ;
ksc -> limit = sc -> limit ;
ksc -> base = sc -> base ;
}
static inline void kqemu_save_seg ( SegmentCache * sc ,
const struct kqemu_segment_cache * ksc )
{
sc -> selector = ksc -> selector ;
sc -> flags = ksc -> flags ;
sc -> limit = ksc -> limit ;
sc -> base = ksc -> base ;
}
688
689
690
int kqemu_cpu_exec ( CPUState * env )
{
struct kqemu_cpu_state kcpu_state , * kenv = & kcpu_state ;
691
692
693
694
int ret , cpl , i ;
# ifdef CONFIG_PROFILER
int64_t ti ;
# endif
695
696
697
# ifdef _WIN32
DWORD temp ;
# endif
698
699
700
701
# ifdef CONFIG_PROFILER
ti = profile_getclock ();
# endif
702
703
LOG_INT ( "kqemu: cpu_exec: enter \n " );
LOG_INT_STATE ( env );
704
705
for ( i = 0 ; i < CPU_NB_REGS ; i ++ )
kenv -> regs [ i ] = env -> regs [ i ];
706
707
kenv -> eip = env -> eip ;
kenv -> eflags = env -> eflags ;
708
709
710
711
712
713
for ( i = 0 ; i < 6 ; i ++ )
kqemu_load_seg ( & kenv -> segs [ i ], & env -> segs [ i ]);
kqemu_load_seg ( & kenv -> ldt , & env -> ldt );
kqemu_load_seg ( & kenv -> tr , & env -> tr );
kqemu_load_seg ( & kenv -> gdt , & env -> gdt );
kqemu_load_seg ( & kenv -> idt , & env -> idt );
714
715
716
717
718
kenv -> cr0 = env -> cr [ 0 ];
kenv -> cr2 = env -> cr [ 2 ];
kenv -> cr3 = env -> cr [ 3 ];
kenv -> cr4 = env -> cr [ 4 ];
kenv -> a20_mask = env -> a20_mask ;
719
kenv -> efer = env -> efer ;
720
721
722
723
724
kenv -> tsc_offset = 0 ;
kenv -> star = env -> star ;
kenv -> sysenter_cs = env -> sysenter_cs ;
kenv -> sysenter_esp = env -> sysenter_esp ;
kenv -> sysenter_eip = env -> sysenter_eip ;
725
# ifdef TARGET_X86_64
726
727
728
729
730
kenv -> lstar = env -> lstar ;
kenv -> cstar = env -> cstar ;
kenv -> fmask = env -> fmask ;
kenv -> kernelgsbase = env -> kernelgsbase ;
# endif
731
732
733
734
735
736
737
738
739
740
if ( env -> dr [ 7 ] & 0xff ) {
kenv -> dr7 = env -> dr [ 7 ];
kenv -> dr0 = env -> dr [ 0 ];
kenv -> dr1 = env -> dr [ 1 ];
kenv -> dr2 = env -> dr [ 2 ];
kenv -> dr3 = env -> dr [ 3 ];
} else {
kenv -> dr7 = 0 ;
}
kenv -> dr6 = env -> dr [ 6 ];
741
742
cpl = ( env -> hflags & HF_CPL_MASK );
kenv -> cpl = cpl ;
743
kenv -> nb_pages_to_flush = nb_pages_to_flush ;
744
kenv -> user_only = ( env -> kqemu_enabled == 1 );
745
746
kenv -> nb_ram_pages_to_update = nb_ram_pages_to_update ;
nb_ram_pages_to_update = 0 ;
747
kenv -> nb_modified_ram_pages = nb_modified_ram_pages ;
748
749
750
751
752
753
754
kqemu_reset_modified_ram_pages ();
if ( env -> cpuid_features & CPUID_FXSR )
restore_native_fp_fxrstor ( env );
else
restore_native_fp_frstor ( env );
755
756
# ifdef _WIN32
757
758
759
760
761
762
763
764
if ( DeviceIoControl ( kqemu_fd , KQEMU_EXEC ,
kenv , sizeof ( struct kqemu_cpu_state ),
kenv , sizeof ( struct kqemu_cpu_state ),
& temp , NULL )) {
ret = kenv -> retval ;
} else {
ret = - 1 ;
}
765
766
767
768
# else
ioctl ( kqemu_fd , KQEMU_EXEC , kenv );
ret = kenv -> retval ;
# endif
769
770
771
772
if ( env -> cpuid_features & CPUID_FXSR )
save_native_fp_fxsave ( env );
else
save_native_fp_fsave ( env );
773
774
775
for ( i = 0 ; i < CPU_NB_REGS ; i ++ )
env -> regs [ i ] = kenv -> regs [ i ];
776
777
env -> eip = kenv -> eip ;
env -> eflags = kenv -> eflags ;
778
779
for ( i = 0 ; i < 6 ; i ++ )
kqemu_save_seg ( & env -> segs [ i ], & kenv -> segs [ i ]);
780
cpu_x86_set_cpl ( env , kenv -> cpl );
781
kqemu_save_seg ( & env -> ldt , & kenv -> ldt );
782
783
784
env -> cr [ 0 ] = kenv -> cr0 ;
env -> cr [ 4 ] = kenv -> cr4 ;
env -> cr [ 3 ] = kenv -> cr3 ;
785
786
env -> cr [ 2 ] = kenv -> cr2 ;
env -> dr [ 6 ] = kenv -> dr6 ;
787
# ifdef TARGET_X86_64
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
env -> kernelgsbase = kenv -> kernelgsbase ;
# endif
/* flush pages as indicated by kqemu */
if ( kenv -> nb_pages_to_flush >= KQEMU_FLUSH_ALL ) {
tlb_flush ( env , 1 );
} else {
for ( i = 0 ; i < kenv -> nb_pages_to_flush ; i ++ ) {
tlb_flush_page ( env , pages_to_flush [ i ]);
}
}
nb_pages_to_flush = 0 ;
# ifdef CONFIG_PROFILER
kqemu_time += profile_getclock () - ti ;
kqemu_exec_count ++ ;
# endif
805
806
807
808
809
if ( kenv -> nb_ram_pages_to_update > 0 ) {
cpu_tlb_update_dirty ( env );
}
810
811
812
813
814
815
816
817
if ( kenv -> nb_modified_ram_pages > 0 ) {
for ( i = 0 ; i < kenv -> nb_modified_ram_pages ; i ++ ) {
unsigned long addr ;
addr = modified_ram_pages [ i ];
tb_invalidate_phys_page_range ( addr , addr + TARGET_PAGE_SIZE , 0 );
}
}
818
819
820
821
/* restore the hidden flags */
{
unsigned int new_hflags ;
# ifdef TARGET_X86_64
ths
authored
18 years ago
822
if (( env -> hflags & HF_LMA_MASK ) &&
823
824
825
826
827
828
829
830
831
832
833
( env -> segs [ R_CS ]. flags & DESC_L_MASK )) {
/* long mode */
new_hflags = HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK ;
} else
# endif
{
/* legacy / compatibility case */
new_hflags = ( env -> segs [ R_CS ]. flags & DESC_B_MASK )
>> ( DESC_B_SHIFT - HF_CS32_SHIFT );
new_hflags |= ( env -> segs [ R_SS ]. flags & DESC_B_MASK )
>> ( DESC_B_SHIFT - HF_SS32_SHIFT );
ths
authored
18 years ago
834
if ( ! ( env -> cr [ 0 ] & CR0_PE_MASK ) ||
835
836
837
838
839
840
841
842
843
( env -> eflags & VM_MASK ) ||
! ( env -> hflags & HF_CS32_MASK )) {
/* XXX : try to avoid this test . The problem comes from the
fact that is real mode or vm86 mode we only modify the
' base ' and ' selector ' fields of the segment cache to go
faster . A solution may be to force addseg to one in
translate - i386 . c . */
new_hflags |= HF_ADDSEG_MASK ;
} else {
ths
authored
18 years ago
844
new_hflags |= (( env -> segs [ R_DS ]. base |
845
env -> segs [ R_ES ]. base |
ths
authored
18 years ago
846
env -> segs [ R_SS ]. base ) != 0 ) <<
847
848
849
HF_ADDSEG_SHIFT ;
}
}
ths
authored
18 years ago
850
env -> hflags = ( env -> hflags &
851
852
853
~ ( HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK )) |
new_hflags ;
}
854
855
856
857
858
859
860
/* update FPU flags */
env -> hflags = ( env -> hflags & ~ ( HF_MP_MASK | HF_EM_MASK | HF_TS_MASK )) |
(( env -> cr [ 0 ] << ( HF_MP_SHIFT - 1 )) & ( HF_MP_MASK | HF_EM_MASK | HF_TS_MASK ));
if ( env -> cr [ 4 ] & CR4_OSFXSR_MASK )
env -> hflags |= HF_OSFXSR_MASK ;
else
env -> hflags &= ~ HF_OSFXSR_MASK ;
ths
authored
18 years ago
861
862
LOG_INT ( "kqemu: kqemu_cpu_exec: ret=0x%x \n " , ret );
863
864
865
if ( ret == KQEMU_RET_SYSCALL ) {
/* syscall instruction */
return do_syscall ( env , kenv );
ths
authored
18 years ago
866
} else
867
868
869
870
871
if (( ret & 0xff00 ) == KQEMU_RET_INT ) {
env -> exception_index = ret & 0xff ;
env -> error_code = 0 ;
env -> exception_is_int = 1 ;
env -> exception_next_eip = kenv -> next_eip ;
872
873
874
# ifdef CONFIG_PROFILER
kqemu_ret_int_count ++ ;
# endif
875
876
LOG_INT ( "kqemu: interrupt v=%02x: \n " , env -> exception_index );
LOG_INT_STATE ( env );
877
878
879
880
881
882
return 1 ;
} else if (( ret & 0xff00 ) == KQEMU_RET_EXCEPTION ) {
env -> exception_index = ret & 0xff ;
env -> error_code = kenv -> error_code ;
env -> exception_is_int = 0 ;
env -> exception_next_eip = 0 ;
883
884
885
# ifdef CONFIG_PROFILER
kqemu_ret_excp_count ++ ;
# endif
886
LOG_INT ( "kqemu: exception v=%02x e=%04x: \n " ,
887
env -> exception_index , env -> error_code );
888
LOG_INT_STATE ( env );
889
890
return 1 ;
} else if ( ret == KQEMU_RET_INTR ) {
891
892
893
# ifdef CONFIG_PROFILER
kqemu_ret_intr_count ++ ;
# endif
894
LOG_INT_STATE ( env );
895
return 0 ;
ths
authored
18 years ago
896
} else if ( ret == KQEMU_RET_SOFTMMU ) {
897
898
899
900
901
# ifdef CONFIG_PROFILER
{
unsigned long pc = env -> eip + env -> segs [ R_CS ]. base ;
kqemu_record_pc ( pc );
}
902
# endif
903
LOG_INT_STATE ( env );
904
905
906
907
908
909
910
911
912
return 2 ;
} else {
cpu_dump_state ( env , stderr , fprintf , 0 );
fprintf ( stderr , "Unsupported return value: 0x%x \n " , ret );
exit ( 1 );
}
return 0 ;
}
913
914
void kqemu_cpu_interrupt ( CPUState * env )
{
915
# if defined ( _WIN32 )
ths
authored
18 years ago
916
/* cancelling the I / O request causes KQEMU to finish executing the
917
918
919
920
921
current block and successfully returning . */
CancelIo ( kqemu_fd );
# endif
}
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
/*
QEMU paravirtualization interface . The current interface only
allows to modify the IF and IOPL flags when running in
kqemu .
At this point it is not very satisfactory . I leave it for reference
as it adds little complexity .
*/
# define QPI_COMM_PAGE_PHYS_ADDR 0xff000000
static uint32_t qpi_mem_readb ( void * opaque , target_phys_addr_t addr )
{
return 0 ;
}
static uint32_t qpi_mem_readw ( void * opaque , target_phys_addr_t addr )
{
return 0 ;
}
static void qpi_mem_writeb ( void * opaque , target_phys_addr_t addr , uint32_t val )
{
}
static void qpi_mem_writew ( void * opaque , target_phys_addr_t addr , uint32_t val )
{
}
static uint32_t qpi_mem_readl ( void * opaque , target_phys_addr_t addr )
{
CPUState * env ;
env = cpu_single_env ;
if ( ! env )
return 0 ;
return env -> eflags & ( IF_MASK | IOPL_MASK );
}
/* Note : after writing to this address , the guest code must make sure
it is exiting the current TB . pushf / popf can be used for that
purpose . */
static void qpi_mem_writel ( void * opaque , target_phys_addr_t addr , uint32_t val )
{
CPUState * env ;
env = cpu_single_env ;
if ( ! env )
return ;
env -> eflags = ( env -> eflags & ~ ( IF_MASK | IOPL_MASK )) |
( val & ( IF_MASK | IOPL_MASK ));
}
static CPUReadMemoryFunc * qpi_mem_read [ 3 ] = {
qpi_mem_readb ,
qpi_mem_readw ,
qpi_mem_readl ,
};
static CPUWriteMemoryFunc * qpi_mem_write [ 3 ] = {
qpi_mem_writeb ,
qpi_mem_writew ,
qpi_mem_writel ,
};
static void qpi_init ( void )
{
kqemu_comm_base = 0xff000000 | 1 ;
qpi_io_memory = cpu_register_io_memory ( 0 ,
qpi_mem_read ,
qpi_mem_write , NULL );
cpu_register_physical_memory ( kqemu_comm_base & ~ 0xfff ,
0x1000 , qpi_io_memory );
}
996
# endif