Blame view

fpu/softfloat-native.c 11.4 KB
bellard authored
1
2
3
4
5
6
7
8
/* Native implementation of soft float functions. Only a single status
   context is supported */
#include "softfloat.h"
#include <math.h>

void set_float_rounding_mode(int val STATUS_PARAM)
{
    STATUS(float_rounding_mode) = val;
9
#if defined(_BSD) && !defined(__APPLE__) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
bellard authored
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
    fpsetround(val);
#elif defined(__arm__)
    /* nothing to do */
#else
    fesetround(val);
#endif
}

#ifdef FLOATX80
void set_floatx80_rounding_precision(int val STATUS_PARAM)
{
    STATUS(floatx80_rounding_precision) = val;
}
#endif
25
26
27
28
29
30
31
32
#if defined(_BSD) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
#define lrint(d)		((int32_t)rint(d))
#define llrint(d)		((int64_t)rint(d))
#define lrintf(f)		((int32_t)rint(f))
#define llrintf(f)		((int64_t)rint(f))
#define sqrtf(f)		((float)sqrt(f))
#define remainderf(fa, fb)	((float)remainder(fa, fb))
#define rintf(f)		((float)rint(f))
33
#if !defined(__sparc__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
extern long double rintl(long double);
extern long double scalbnl(long double, int);

long long
llrintl(long double x) {
	return ((long long) rintl(x));
}

long
lrintl(long double x) {
	return ((long) rintl(x));
}

long double
ldexpl(long double x, int n) {
	return (scalbnl(x, n));
}
#endif
bellard authored
52
53
#endif
54
#if defined(_ARCH_PPC)
bellard authored
55
56

/* correct (but slow) PowerPC rint() (glibc version is incorrect) */
57
static double qemu_rint(double x)
bellard authored
58
59
60
61
{
    double y = 4503599627370496.0;
    if (fabs(x) >= y)
        return x;
62
    if (x < 0)
bellard authored
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
        y = -y;
    y = (x + y) - y;
    if (y == 0.0)
        y = copysign(y, x);
    return y;
}

#define rint qemu_rint
#endif

/*----------------------------------------------------------------------------
| Software IEC/IEEE integer-to-floating-point conversion routines.
*----------------------------------------------------------------------------*/
float32 int32_to_float32(int v STATUS_PARAM)
{
    return (float32)v;
}
81
82
83
84
85
float32 uint32_to_float32(unsigned int v STATUS_PARAM)
{
    return (float32)v;
}
bellard authored
86
87
88
89
90
float64 int32_to_float64(int v STATUS_PARAM)
{
    return (float64)v;
}
91
92
93
94
95
float64 uint32_to_float64(unsigned int v STATUS_PARAM)
{
    return (float64)v;
}
bellard authored
96
97
98
99
100
101
102
103
104
105
#ifdef FLOATX80
floatx80 int32_to_floatx80(int v STATUS_PARAM)
{
    return (floatx80)v;
}
#endif
float32 int64_to_float32( int64_t v STATUS_PARAM)
{
    return (float32)v;
}
106
107
108
109
float32 uint64_to_float32( uint64_t v STATUS_PARAM)
{
    return (float32)v;
}
bellard authored
110
111
112
113
float64 int64_to_float64( int64_t v STATUS_PARAM)
{
    return (float64)v;
}
114
115
116
117
float64 uint64_to_float64( uint64_t v STATUS_PARAM)
{
    return (float64)v;
}
bellard authored
118
119
120
121
122
123
124
#ifdef FLOATX80
floatx80 int64_to_floatx80( int64_t v STATUS_PARAM)
{
    return (floatx80)v;
}
#endif
bellard authored
125
126
127
128
129
130
131
132
133
/* XXX: this code implements the x86 behaviour, not the IEEE one.  */
#if HOST_LONG_BITS == 32
static inline int long_to_int32(long a)
{
    return a;
}
#else
static inline int long_to_int32(long a)
{
134
    if (a != (int32_t)a)
bellard authored
135
136
137
138
139
        a = 0x80000000;
    return a;
}
#endif
bellard authored
140
141
142
143
144
/*----------------------------------------------------------------------------
| Software IEC/IEEE single-precision conversion routines.
*----------------------------------------------------------------------------*/
int float32_to_int32( float32 a STATUS_PARAM)
{
bellard authored
145
    return long_to_int32(lrintf(a));
bellard authored
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
}
int float32_to_int32_round_to_zero( float32 a STATUS_PARAM)
{
    return (int)a;
}
int64_t float32_to_int64( float32 a STATUS_PARAM)
{
    return llrintf(a);
}

int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM)
{
    return (int64_t)a;
}

float64 float32_to_float64( float32 a STATUS_PARAM)
{
    return a;
}
#ifdef FLOATX80
floatx80 float32_to_floatx80( float32 a STATUS_PARAM)
{
    return a;
}
#endif
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
unsigned int float32_to_uint32( float32 a STATUS_PARAM)
{
    int64_t v;
    unsigned int res;

    v = llrintf(a);
    if (v < 0) {
        res = 0;
    } else if (v > 0xffffffff) {
        res = 0xffffffff;
    } else {
        res = v;
    }
    return res;
}
unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM)
{
    int64_t v;
    unsigned int res;

    v = (int64_t)a;
    if (v < 0) {
        res = 0;
    } else if (v > 0xffffffff) {
        res = 0xffffffff;
    } else {
        res = v;
    }
    return res;
}
bellard authored
203
204
205
206
207
208
209
210
/*----------------------------------------------------------------------------
| Software IEC/IEEE single-precision operations.
*----------------------------------------------------------------------------*/
float32 float32_round_to_int( float32 a STATUS_PARAM)
{
    return rintf(a);
}
211
212
213
214
215
float32 float32_rem( float32 a, float32 b STATUS_PARAM)
{
    return remainderf(a, b);
}
bellard authored
216
217
218
219
float32 float32_sqrt( float32 a STATUS_PARAM)
{
    return sqrtf(a);
}
220
int float32_compare( float32 a, float32 b STATUS_PARAM )
221
222
{
    if (a < b) {
223
        return float_relation_less;
224
    } else if (a == b) {
225
        return float_relation_equal;
226
    } else if (a > b) {
227
        return float_relation_greater;
228
    } else {
229
        return float_relation_unordered;
230
231
    }
}
232
int float32_compare_quiet( float32 a, float32 b STATUS_PARAM )
233
234
{
    if (isless(a, b)) {
235
        return float_relation_less;
236
    } else if (a == b) {
237
        return float_relation_equal;
238
    } else if (isgreater(a, b)) {
239
        return float_relation_greater;
240
    } else {
241
        return float_relation_unordered;
242
243
    }
}
244
int float32_is_signaling_nan( float32 a1)
bellard authored
245
246
247
248
249
250
251
252
{
    float32u u;
    uint32_t a;
    u.f = a1;
    a = u.i;
    return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
}
253
254
255
256
257
258
259
260
261
int float32_is_nan( float32 a1 )
{
    float32u u;
    uint64_t a;
    u.f = a1;
    a = u.i;
    return ( 0xFF800000 < ( a<<1 ) );
}
bellard authored
262
263
264
265
266
/*----------------------------------------------------------------------------
| Software IEC/IEEE double-precision conversion routines.
*----------------------------------------------------------------------------*/
int float64_to_int32( float64 a STATUS_PARAM)
{
bellard authored
267
    return long_to_int32(lrint(a));
bellard authored
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
}
int float64_to_int32_round_to_zero( float64 a STATUS_PARAM)
{
    return (int)a;
}
int64_t float64_to_int64( float64 a STATUS_PARAM)
{
    return llrint(a);
}
int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM)
{
    return (int64_t)a;
}
float32 float64_to_float32( float64 a STATUS_PARAM)
{
    return a;
}
#ifdef FLOATX80
floatx80 float64_to_floatx80( float64 a STATUS_PARAM)
{
    return a;
}
#endif
#ifdef FLOAT128
float128 float64_to_float128( float64 a STATUS_PARAM)
{
    return a;
}
#endif
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
unsigned int float64_to_uint32( float64 a STATUS_PARAM)
{
    int64_t v;
    unsigned int res;

    v = llrint(a);
    if (v < 0) {
        res = 0;
    } else if (v > 0xffffffff) {
        res = 0xffffffff;
    } else {
        res = v;
    }
    return res;
}
unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM)
{
    int64_t v;
    unsigned int res;

    v = (int64_t)a;
    if (v < 0) {
        res = 0;
    } else if (v > 0xffffffff) {
        res = 0xffffffff;
    } else {
        res = v;
    }
    return res;
}
uint64_t float64_to_uint64 (float64 a STATUS_PARAM)
{
    int64_t v;

    v = llrint(a + (float64)INT64_MIN);

    return v - INT64_MIN;
}
uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM)
{
    int64_t v;

    v = (int64_t)(a + (float64)INT64_MIN);

    return v - INT64_MIN;
}
bellard authored
345
346
347
/*----------------------------------------------------------------------------
| Software IEC/IEEE double-precision operations.
*----------------------------------------------------------------------------*/
348
#if defined(__sun__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10
349
350
351
352
353
static inline float64 trunc(float64 x)
{
    return x < 0 ? -floor(-x) : floor(x);
}
#endif
pbrook authored
354
355
356
357
358
float64 float64_trunc_to_int( float64 a STATUS_PARAM )
{
    return trunc(a);
}
bellard authored
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
float64 float64_round_to_int( float64 a STATUS_PARAM )
{
#if defined(__arm__)
    switch(STATUS(float_rounding_mode)) {
    default:
    case float_round_nearest_even:
        asm("rndd %0, %1" : "=f" (a) : "f"(a));
        break;
    case float_round_down:
        asm("rnddm %0, %1" : "=f" (a) : "f"(a));
        break;
    case float_round_up:
        asm("rnddp %0, %1" : "=f" (a) : "f"(a));
        break;
    case float_round_to_zero:
        asm("rnddz %0, %1" : "=f" (a) : "f"(a));
        break;
    }
#else
    return rint(a);
#endif
}
382
383
384
385
386
float64 float64_rem( float64 a, float64 b STATUS_PARAM)
{
    return remainder(a, b);
}
bellard authored
387
388
389
390
float64 float64_sqrt( float64 a STATUS_PARAM)
{
    return sqrt(a);
}
391
int float64_compare( float64 a, float64 b STATUS_PARAM )
392
393
{
    if (a < b) {
394
        return float_relation_less;
395
    } else if (a == b) {
396
        return float_relation_equal;
397
    } else if (a > b) {
398
        return float_relation_greater;
399
    } else {
400
        return float_relation_unordered;
401
402
    }
}
403
int float64_compare_quiet( float64 a, float64 b STATUS_PARAM )
404
405
{
    if (isless(a, b)) {
406
        return float_relation_less;
407
    } else if (a == b) {
408
        return float_relation_equal;
409
    } else if (isgreater(a, b)) {
410
        return float_relation_greater;
411
    } else {
412
        return float_relation_unordered;
413
414
    }
}
415
int float64_is_signaling_nan( float64 a1)
bellard authored
416
417
418
419
420
421
422
423
424
425
426
{
    float64u u;
    uint64_t a;
    u.f = a1;
    a = u.i;
    return
           ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
        && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );

}
427
int float64_is_nan( float64 a1 )
pbrook authored
428
429
430
431
432
433
{
    float64u u;
    uint64_t a;
    u.f = a1;
    a = u.i;
aurel32 authored
434
    return ( LIT64( 0xFFF0000000000000 ) < (bits64) ( a<<1 ) );
pbrook authored
435
436
437

}
bellard authored
438
439
440
441
442
443
444
#ifdef FLOATX80

/*----------------------------------------------------------------------------
| Software IEC/IEEE extended double-precision conversion routines.
*----------------------------------------------------------------------------*/
int floatx80_to_int32( floatx80 a STATUS_PARAM)
{
bellard authored
445
    return long_to_int32(lrintl(a));
bellard authored
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
}
int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM)
{
    return (int)a;
}
int64_t floatx80_to_int64( floatx80 a STATUS_PARAM)
{
    return llrintl(a);
}
int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM)
{
    return (int64_t)a;
}
float32 floatx80_to_float32( floatx80 a STATUS_PARAM)
{
    return a;
}
float64 floatx80_to_float64( floatx80 a STATUS_PARAM)
{
    return a;
}

/*----------------------------------------------------------------------------
| Software IEC/IEEE extended double-precision operations.
*----------------------------------------------------------------------------*/
floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM)
{
    return rintl(a);
}
475
476
477
478
floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM)
{
    return remainderl(a, b);
}
bellard authored
479
480
481
482
floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM)
{
    return sqrtl(a);
}
483
int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
484
485
{
    if (a < b) {
486
        return float_relation_less;
487
    } else if (a == b) {
488
        return float_relation_equal;
489
    } else if (a > b) {
490
        return float_relation_greater;
491
    } else {
492
        return float_relation_unordered;
493
494
    }
}
495
int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
496
497
{
    if (isless(a, b)) {
498
        return float_relation_less;
499
    } else if (a == b) {
500
        return float_relation_equal;
501
    } else if (isgreater(a, b)) {
502
        return float_relation_greater;
503
    } else {
504
        return float_relation_unordered;
505
506
    }
}
507
int floatx80_is_signaling_nan( floatx80 a1)
bellard authored
508
509
{
    floatx80u u;
aurel32 authored
510
511
512
513
514
515
516
517
518
519
520
521
522
    uint64_t aLow;
    u.f = a1;

    aLow = u.i.low & ~ LIT64( 0x4000000000000000 );
    return
           ( ( u.i.high & 0x7FFF ) == 0x7FFF )
        && (bits64) ( aLow<<1 )
        && ( u.i.low == aLow );
}

int floatx80_is_nan( floatx80 a1 )
{
    floatx80u u;
bellard authored
523
524
525
526
527
    u.f = a1;
    return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 );
}

#endif