|
1
2
3
4
|
/*
* QEMU KVM support
*
* Copyright IBM, Corp. 2008
|
|
5
|
* Red Hat, Inc. 2008
|
|
6
7
8
|
*
* Authors:
* Anthony Liguori <aliguori@us.ibm.com>
|
|
9
|
* Glauber Costa <gcosta@redhat.com>
|
|
10
11
12
13
14
15
16
17
18
|
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
|
|
19
|
#include <stdarg.h>
|
|
20
21
22
23
24
|
#include <linux/kvm.h>
#include "qemu-common.h"
#include "sysemu.h"
|
|
25
|
#include "hw/hw.h"
|
|
26
|
#include "gdbstub.h"
|
|
27
28
|
#include "kvm.h"
|
|
29
30
31
|
/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
#define PAGE_SIZE TARGET_PAGE_SIZE
|
|
32
33
34
35
36
37
38
39
40
41
|
//#define DEBUG_KVM
#ifdef DEBUG_KVM
#define dprintf(fmt, ...) \
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
#define dprintf(fmt, ...) \
do { } while (0)
#endif
|
|
42
43
44
45
46
47
48
49
|
typedef struct KVMSlot
{
target_phys_addr_t start_addr;
ram_addr_t memory_size;
ram_addr_t phys_offset;
int slot;
int flags;
} KVMSlot;
|
|
50
|
|
|
51
52
|
typedef struct kvm_dirty_log KVMDirtyLog;
|
|
53
54
55
56
57
58
59
|
int kvm_allowed = 0;
struct KVMState
{
KVMSlot slots[32];
int fd;
int vmfd;
|
|
60
|
int coalesced_mmio;
|
|
61
|
int broken_set_mem_region;
|
|
62
|
int migration_log;
|
|
63
64
65
|
#ifdef KVM_CAP_SET_GUEST_DEBUG
struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
#endif
|
|
66
67
68
69
70
71
72
73
74
|
};
static KVMState *kvm_state;
static KVMSlot *kvm_alloc_slot(KVMState *s)
{
int i;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
|
|
75
76
77
|
/* KVM private memory slots */
if (i >= 8 && i < 12)
continue;
|
|
78
79
80
81
|
if (s->slots[i].memory_size == 0)
return &s->slots[i];
}
|
|
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
|
fprintf(stderr, "%s: no free slot available\n", __func__);
abort();
}
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
target_phys_addr_t start_addr,
target_phys_addr_t end_addr)
{
int i;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
KVMSlot *mem = &s->slots[i];
if (start_addr == mem->start_addr &&
end_addr == mem->start_addr + mem->memory_size) {
return mem;
}
}
|
|
101
102
103
|
return NULL;
}
|
|
104
105
106
107
108
109
|
/*
* Find overlapping slot with lowest start address
*/
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
target_phys_addr_t start_addr,
target_phys_addr_t end_addr)
|
|
110
|
{
|
|
111
|
KVMSlot *found = NULL;
|
|
112
113
114
115
116
|
int i;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
KVMSlot *mem = &s->slots[i];
|
|
117
118
119
120
121
122
123
124
125
|
if (mem->memory_size == 0 ||
(found && found->start_addr < mem->start_addr)) {
continue;
}
if (end_addr > mem->start_addr &&
start_addr < mem->start_addr + mem->memory_size) {
found = mem;
}
|
|
126
127
|
}
|
|
128
|
return found;
|
|
129
130
|
}
|
|
131
132
133
134
135
136
137
|
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
{
struct kvm_userspace_memory_region mem;
mem.slot = slot->slot;
mem.guest_phys_addr = slot->start_addr;
mem.memory_size = slot->memory_size;
|
|
138
|
mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
|
|
139
|
mem.flags = slot->flags;
|
|
140
141
142
|
if (s->migration_log) {
mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
}
|
|
143
144
145
|
return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
}
|
|
146
147
148
149
150
151
152
153
154
|
static void kvm_reset_vcpu(void *opaque)
{
CPUState *env = opaque;
if (kvm_arch_put_registers(env)) {
fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
abort();
}
}
|
|
155
|
|
|
156
157
158
159
160
161
162
163
164
|
static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
{
if (env == cpu_single_env) {
func(data);
return;
}
abort();
}
|
|
165
166
167
168
169
170
171
172
|
int kvm_init_vcpu(CPUState *env)
{
KVMState *s = kvm_state;
long mmap_size;
int ret;
dprintf("kvm_init_vcpu\n");
|
|
173
|
ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
|
|
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
if (ret < 0) {
dprintf("kvm_create_vcpu failed\n");
goto err;
}
env->kvm_fd = ret;
env->kvm_state = s;
mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
if (mmap_size < 0) {
dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
goto err;
}
env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
env->kvm_fd, 0);
if (env->kvm_run == MAP_FAILED) {
ret = -errno;
dprintf("mmap'ing vcpu state failed\n");
goto err;
}
ret = kvm_arch_init_vcpu(env);
|
|
197
|
if (ret == 0) {
|
|
198
|
qemu_register_reset(kvm_reset_vcpu, env);
|
|
199
200
|
ret = kvm_arch_put_registers(env);
}
|
|
201
202
203
204
|
err:
return ret;
}
|
|
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
|
int kvm_put_mp_state(CPUState *env)
{
struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
}
int kvm_get_mp_state(CPUState *env)
{
struct kvm_mp_state mp_state;
int ret;
ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
if (ret < 0) {
return ret;
}
env->mp_state = mp_state.mp_state;
return 0;
}
|
|
225
226
227
|
/*
* dirty pages logging control
*/
|
|
228
|
static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
|
|
229
|
ram_addr_t size, int flags, int mask)
|
|
230
231
|
{
KVMState *s = kvm_state;
|
|
232
|
KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
|
|
233
234
|
int old_flags;
|
|
235
|
if (mem == NULL) {
|
|
236
237
|
fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
TARGET_FMT_plx "\n", __func__, phys_addr,
|
|
238
|
(target_phys_addr_t)(phys_addr + size - 1));
|
|
239
240
241
|
return -EINVAL;
}
|
|
242
|
old_flags = mem->flags;
|
|
243
|
|
|
244
|
flags = (mem->flags & ~mask) | flags;
|
|
245
246
|
mem->flags = flags;
|
|
247
248
249
250
251
252
253
254
|
/* If nothing changed effectively, no need to issue ioctl */
if (s->migration_log) {
flags |= KVM_MEM_LOG_DIRTY_PAGES;
}
if (flags == old_flags) {
return 0;
}
|
|
255
256
257
|
return kvm_set_user_memory_region(s, mem);
}
|
|
258
|
int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
|
|
259
|
{
|
|
260
|
return kvm_dirty_pages_log_change(phys_addr, size,
|
|
261
262
263
264
|
KVM_MEM_LOG_DIRTY_PAGES,
KVM_MEM_LOG_DIRTY_PAGES);
}
|
|
265
|
int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
|
|
266
|
{
|
|
267
|
return kvm_dirty_pages_log_change(phys_addr, size,
|
|
268
269
270
271
|
0,
KVM_MEM_LOG_DIRTY_PAGES);
}
|
|
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
|
int kvm_set_migration_log(int enable)
{
KVMState *s = kvm_state;
KVMSlot *mem;
int i, err;
s->migration_log = enable;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
mem = &s->slots[i];
if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
continue;
}
err = kvm_set_user_memory_region(s, mem);
if (err) {
return err;
}
}
return 0;
}
|
|
294
295
296
297
298
|
/**
* kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
* This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
* This means all bits are set to dirty.
*
|
|
299
|
* @start_add: start of logged region.
|
|
300
301
|
* @end_addr: end of logged region.
*/
|
|
302
303
|
int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
target_phys_addr_t end_addr)
|
|
304
305
|
{
KVMState *s = kvm_state;
|
|
306
307
|
unsigned long size, allocated_size = 0;
target_phys_addr_t phys_addr;
|
|
308
|
ram_addr_t addr;
|
|
309
310
311
|
KVMDirtyLog d;
KVMSlot *mem;
int ret = 0;
|
|
312
|
int r;
|
|
313
|
|
|
314
315
316
317
318
319
|
d.dirty_bitmap = NULL;
while (start_addr < end_addr) {
mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
if (mem == NULL) {
break;
}
|
|
320
|
|
|
321
322
323
324
325
|
/* We didn't activate dirty logging? Don't care then. */
if(!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
continue;
}
|
|
326
327
328
329
330
331
332
333
|
size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
if (!d.dirty_bitmap) {
d.dirty_bitmap = qemu_malloc(size);
} else if (size > allocated_size) {
d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
}
allocated_size = size;
memset(d.dirty_bitmap, 0, allocated_size);
|
|
334
|
|
|
335
|
d.slot = mem->slot;
|
|
336
|
|
|
337
338
|
r = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
if (r == -EINVAL) {
|
|
339
340
341
342
|
dprintf("ioctl failed %d\n", errno);
ret = -1;
break;
}
|
|
343
|
|
|
344
345
346
347
348
349
350
351
352
353
|
for (phys_addr = mem->start_addr, addr = mem->phys_offset;
phys_addr < mem->start_addr + mem->memory_size;
phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
unsigned long *bitmap = (unsigned long *)d.dirty_bitmap;
unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
unsigned word = nr / (sizeof(*bitmap) * 8);
unsigned bit = nr % (sizeof(*bitmap) * 8);
if ((bitmap[word] >> bit) & 1) {
cpu_physical_memory_set_dirty(addr);
|
|
354
355
356
357
|
} else if (r < 0) {
/* When our KVM implementation doesn't know about dirty logging
* we can just assume it's always dirty and be fine. */
cpu_physical_memory_set_dirty(addr);
|
|
358
359
360
|
}
}
start_addr = phys_addr;
|
|
361
362
|
}
qemu_free(d.dirty_bitmap);
|
|
363
364
|
return ret;
|
|
365
366
|
}
|
|
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
|
int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
{
int ret = -ENOSYS;
#ifdef KVM_CAP_COALESCED_MMIO
KVMState *s = kvm_state;
if (s->coalesced_mmio) {
struct kvm_coalesced_mmio_zone zone;
zone.addr = start;
zone.size = size;
ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
}
#endif
return ret;
}
int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
{
int ret = -ENOSYS;
#ifdef KVM_CAP_COALESCED_MMIO
KVMState *s = kvm_state;
if (s->coalesced_mmio) {
struct kvm_coalesced_mmio_zone zone;
zone.addr = start;
zone.size = size;
ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
}
#endif
return ret;
}
|
|
405
406
407
408
409
410
411
412
413
414
415
416
|
int kvm_check_extension(KVMState *s, unsigned int extension)
{
int ret;
ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
if (ret < 0) {
ret = 0;
}
return ret;
}
|
|
417
418
|
int kvm_init(int smp_cpus)
{
|
|
419
420
421
|
static const char upgrade_note[] =
"Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
"(see http://sourceforge.net/projects/kvm).\n";
|
|
422
423
424
425
|
KVMState *s;
int ret;
int i;
|
|
426
427
|
if (smp_cpus > 1) {
fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
|
|
428
|
return -EINVAL;
|
|
429
|
}
|
|
430
431
432
|
s = qemu_mallocz(sizeof(KVMState));
|
|
433
434
435
|
#ifdef KVM_CAP_SET_GUEST_DEBUG
TAILQ_INIT(&s->kvm_sw_breakpoints);
#endif
|
|
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
|
for (i = 0; i < ARRAY_SIZE(s->slots); i++)
s->slots[i].slot = i;
s->vmfd = -1;
s->fd = open("/dev/kvm", O_RDWR);
if (s->fd == -1) {
fprintf(stderr, "Could not access KVM kernel module: %m\n");
ret = -errno;
goto err;
}
ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
if (ret < KVM_API_VERSION) {
if (ret > 0)
ret = -EINVAL;
fprintf(stderr, "kvm version too old\n");
goto err;
}
if (ret > KVM_API_VERSION) {
ret = -EINVAL;
fprintf(stderr, "kvm version not supported\n");
goto err;
}
s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
if (s->vmfd < 0)
goto err;
/* initially, KVM allocated its own memory and we had to jump through
* hooks to make phys_ram_base point to this. Modern versions of KVM
|
|
467
|
* just use a user allocated buffer so we can use regular pages
|
|
468
469
|
* unmodified. Make sure we have a sufficiently modern version of KVM.
*/
|
|
470
471
|
if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
ret = -EINVAL;
|
|
472
473
|
fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
upgrade_note);
|
|
474
475
476
|
goto err;
}
|
|
477
478
479
|
/* There was a nasty bug in < kvm-80 that prevents memory slots from being
* destroyed properly. Since we rely on this capability, refuse to work
* with any kernel without this capability. */
|
|
480
481
|
if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
ret = -EINVAL;
|
|
482
483
|
fprintf(stderr,
|
|
484
485
|
"KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
upgrade_note);
|
|
486
487
488
|
goto err;
}
|
|
489
|
#ifdef KVM_CAP_COALESCED_MMIO
|
|
490
491
492
|
s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
#else
s->coalesced_mmio = 0;
|
|
493
494
|
#endif
|
|
495
496
497
498
499
500
501
502
|
s->broken_set_mem_region = 1;
#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
if (ret > 0) {
s->broken_set_mem_region = 0;
}
#endif
|
|
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
|
ret = kvm_arch_init(s, smp_cpus);
if (ret < 0)
goto err;
kvm_state = s;
return 0;
err:
if (s) {
if (s->vmfd != -1)
close(s->vmfd);
if (s->fd != -1)
close(s->fd);
}
qemu_free(s);
return ret;
}
static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
int direction, int size, uint32_t count)
{
int i;
uint8_t *ptr = data;
for (i = 0; i < count; i++) {
if (direction == KVM_EXIT_IO_IN) {
switch (size) {
case 1:
stb_p(ptr, cpu_inb(env, port));
break;
case 2:
stw_p(ptr, cpu_inw(env, port));
break;
case 4:
stl_p(ptr, cpu_inl(env, port));
break;
}
} else {
switch (size) {
case 1:
cpu_outb(env, port, ldub_p(ptr));
break;
case 2:
cpu_outw(env, port, lduw_p(ptr));
break;
case 4:
cpu_outl(env, port, ldl_p(ptr));
break;
}
}
ptr += size;
}
return 1;
}
|
|
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
|
static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
{
#ifdef KVM_CAP_COALESCED_MMIO
KVMState *s = kvm_state;
if (s->coalesced_mmio) {
struct kvm_coalesced_mmio_ring *ring;
ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
while (ring->first != ring->last) {
struct kvm_coalesced_mmio *ent;
ent = &ring->coalesced_mmio[ring->first];
cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
/* FIXME smp_wmb() */
ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
}
}
#endif
}
|
|
583
584
585
586
587
588
589
590
|
int kvm_cpu_exec(CPUState *env)
{
struct kvm_run *run = env->kvm_run;
int ret;
dprintf("kvm_cpu_exec()\n");
do {
|
|
591
|
if (env->exit_request) {
|
|
592
593
594
595
596
|
dprintf("interrupt exit requested\n");
ret = 0;
break;
}
|
|
597
|
kvm_arch_pre_run(env, run);
|
|
598
599
600
601
602
603
604
605
606
607
608
609
610
611
|
ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
kvm_arch_post_run(env, run);
if (ret == -EINTR || ret == -EAGAIN) {
dprintf("io window exit\n");
ret = 0;
break;
}
if (ret < 0) {
dprintf("kvm run failed %s\n", strerror(-ret));
abort();
}
|
|
612
613
|
kvm_run_coalesced_mmio(env, run);
|
|
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
|
ret = 0; /* exit loop */
switch (run->exit_reason) {
case KVM_EXIT_IO:
dprintf("handle_io\n");
ret = kvm_handle_io(env, run->io.port,
(uint8_t *)run + run->io.data_offset,
run->io.direction,
run->io.size,
run->io.count);
break;
case KVM_EXIT_MMIO:
dprintf("handle_mmio\n");
cpu_physical_memory_rw(run->mmio.phys_addr,
run->mmio.data,
run->mmio.len,
run->mmio.is_write);
ret = 1;
break;
case KVM_EXIT_IRQ_WINDOW_OPEN:
dprintf("irq_window_open\n");
break;
case KVM_EXIT_SHUTDOWN:
dprintf("shutdown\n");
qemu_system_reset_request();
ret = 1;
break;
case KVM_EXIT_UNKNOWN:
dprintf("kvm_exit_unknown\n");
break;
case KVM_EXIT_FAIL_ENTRY:
dprintf("kvm_exit_fail_entry\n");
break;
case KVM_EXIT_EXCEPTION:
dprintf("kvm_exit_exception\n");
break;
case KVM_EXIT_DEBUG:
dprintf("kvm_exit_debug\n");
|
|
651
652
653
654
655
656
657
658
659
660
|
#ifdef KVM_CAP_SET_GUEST_DEBUG
if (kvm_arch_debug(&run->debug.arch)) {
gdb_set_stop_cpu(env);
vm_stop(EXCP_DEBUG);
env->exception_index = EXCP_DEBUG;
return 0;
}
/* re-enter, this exception was guest-internal */
ret = 1;
#endif /* KVM_CAP_SET_GUEST_DEBUG */
|
|
661
662
663
664
665
666
667
668
|
break;
default:
dprintf("kvm_arch_handle_exit\n");
ret = kvm_arch_handle_exit(env, run);
break;
}
} while (ret > 0);
|
|
669
670
|
if (env->exit_request) {
env->exit_request = 0;
|
|
671
672
673
|
env->exception_index = EXCP_INTERRUPT;
}
|
|
674
675
676
677
678
679
680
681
682
|
return ret;
}
void kvm_set_phys_mem(target_phys_addr_t start_addr,
ram_addr_t size,
ram_addr_t phys_offset)
{
KVMState *s = kvm_state;
ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
|
|
683
684
|
KVMSlot *mem, old;
int err;
|
|
685
|
|
|
686
|
if (start_addr & ~TARGET_PAGE_MASK) {
|
|
687
688
689
690
691
692
693
694
695
|
if (flags >= IO_MEM_UNASSIGNED) {
if (!kvm_lookup_overlapping_slot(s, start_addr,
start_addr + size)) {
return;
}
fprintf(stderr, "Unaligned split of a KVM memory slot\n");
} else {
fprintf(stderr, "Only page-aligned memory slots supported\n");
}
|
|
696
697
698
|
abort();
}
|
|
699
700
701
|
/* KVM does not support read-only slots */
phys_offset &= ~IO_MEM_ROM;
|
|
702
703
704
705
706
|
while (1) {
mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
if (!mem) {
break;
}
|
|
707
|
|
|
708
709
710
711
712
|
if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
(start_addr + size <= mem->start_addr + mem->memory_size) &&
(phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
/* The new slot fits into the existing one and comes with
* identical parameters - nothing to be done. */
|
|
713
|
return;
|
|
714
715
716
717
718
719
720
721
722
723
|
}
old = *mem;
/* unregister the overlapping slot */
mem->memory_size = 0;
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
__func__, strerror(-err));
|
|
724
725
|
abort();
}
|
|
726
727
728
729
730
731
732
733
734
|
/* Workaround for older KVM versions: we can't join slots, even not by
* unregistering the previous ones and then registering the larger
* slot. We have to maintain the existing fragmentation. Sigh.
*
* This workaround assumes that the new slot starts at the same
* address as the first existing one. If not or if some overlapping
* slot comes around later, we will fail (not seen in practice so far)
* - and actually require a recent KVM version. */
|
|
735
736
|
if (s->broken_set_mem_region &&
old.start_addr == start_addr && old.memory_size < size &&
|
|
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
|
flags < IO_MEM_UNASSIGNED) {
mem = kvm_alloc_slot(s);
mem->memory_size = old.memory_size;
mem->start_addr = old.start_addr;
mem->phys_offset = old.phys_offset;
mem->flags = 0;
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error updating slot: %s\n", __func__,
strerror(-err));
abort();
}
start_addr += old.memory_size;
phys_offset += old.memory_size;
size -= old.memory_size;
continue;
}
/* register prefix slot */
if (old.start_addr < start_addr) {
mem = kvm_alloc_slot(s);
mem->memory_size = start_addr - old.start_addr;
mem->start_addr = old.start_addr;
mem->phys_offset = old.phys_offset;
mem->flags = 0;
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error registering prefix slot: %s\n",
__func__, strerror(-err));
abort();
}
}
/* register suffix slot */
if (old.start_addr + old.memory_size > start_addr + size) {
ram_addr_t size_delta;
mem = kvm_alloc_slot(s);
mem->start_addr = start_addr + size;
size_delta = mem->start_addr - old.start_addr;
mem->memory_size = old.memory_size - size_delta;
mem->phys_offset = old.phys_offset + size_delta;
mem->flags = 0;
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error registering suffix slot: %s\n",
__func__, strerror(-err));
abort();
}
}
|
|
791
|
}
|
|
792
793
794
795
796
|
/* in case the KVM bug workaround already "consumed" the new slot */
if (!size)
return;
|
|
797
798
799
800
801
802
|
/* KVM does not need to know about this memory */
if (flags >= IO_MEM_UNASSIGNED)
return;
mem = kvm_alloc_slot(s);
mem->memory_size = size;
|
|
803
804
|
mem->start_addr = start_addr;
mem->phys_offset = phys_offset;
|
|
805
806
|
mem->flags = 0;
|
|
807
808
809
810
811
812
|
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error registering slot: %s\n", __func__,
strerror(-err));
abort();
}
|
|
813
814
|
}
|
|
815
|
int kvm_ioctl(KVMState *s, int type, ...)
|
|
816
817
|
{
int ret;
|
|
818
819
|
void *arg;
va_list ap;
|
|
820
|
|
|
821
822
823
824
825
|
va_start(ap, type);
arg = va_arg(ap, void *);
va_end(ap);
ret = ioctl(s->fd, type, arg);
|
|
826
827
828
829
830
831
|
if (ret == -1)
ret = -errno;
return ret;
}
|
|
832
|
int kvm_vm_ioctl(KVMState *s, int type, ...)
|
|
833
834
|
{
int ret;
|
|
835
836
837
838
839
840
|
void *arg;
va_list ap;
va_start(ap, type);
arg = va_arg(ap, void *);
va_end(ap);
|
|
841
|
|
|
842
|
ret = ioctl(s->vmfd, type, arg);
|
|
843
844
845
846
847
848
|
if (ret == -1)
ret = -errno;
return ret;
}
|
|
849
|
int kvm_vcpu_ioctl(CPUState *env, int type, ...)
|
|
850
851
|
{
int ret;
|
|
852
853
854
855
856
857
|
void *arg;
va_list ap;
va_start(ap, type);
arg = va_arg(ap, void *);
va_end(ap);
|
|
858
|
|
|
859
|
ret = ioctl(env->kvm_fd, type, arg);
|
|
860
861
862
863
864
|
if (ret == -1)
ret = -errno;
return ret;
}
|
|
865
866
867
|
int kvm_has_sync_mmu(void)
{
|
|
868
|
#ifdef KVM_CAP_SYNC_MMU
|
|
869
870
|
KVMState *s = kvm_state;
|
|
871
872
|
return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
#else
|
|
873
|
return 0;
|
|
874
|
#endif
|
|
875
|
}
|
|
876
|
|
|
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
|
void kvm_setup_guest_memory(void *start, size_t size)
{
if (!kvm_has_sync_mmu()) {
#ifdef MADV_DONTFORK
int ret = madvise(start, size, MADV_DONTFORK);
if (ret) {
perror("madvice");
exit(1);
}
#else
fprintf(stderr,
"Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
exit(1);
#endif
}
}
|
|
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
|
#ifdef KVM_CAP_SET_GUEST_DEBUG
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
target_ulong pc)
{
struct kvm_sw_breakpoint *bp;
TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
if (bp->pc == pc)
return bp;
}
return NULL;
}
int kvm_sw_breakpoints_active(CPUState *env)
{
return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
}
|
|
913
914
915
916
917
918
919
920
921
922
923
924
|
struct kvm_set_guest_debug_data {
struct kvm_guest_debug dbg;
CPUState *env;
int err;
};
static void kvm_invoke_set_guest_debug(void *data)
{
struct kvm_set_guest_debug_data *dbg_data = data;
dbg_data->err = kvm_vcpu_ioctl(dbg_data->env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
}
|
|
925
926
|
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
{
|
|
927
|
struct kvm_set_guest_debug_data data;
|
|
928
|
|
|
929
|
data.dbg.control = 0;
|
|
930
|
if (env->singlestep_enabled)
|
|
931
|
data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
|
|
932
|
|
|
933
934
935
|
kvm_arch_update_guest_debug(env, &data.dbg);
data.dbg.control |= reinject_trap;
data.env = env;
|
|
936
|
|
|
937
938
|
on_vcpu(env, kvm_invoke_set_guest_debug, &data);
return data.err;
|
|
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
|
}
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
target_ulong len, int type)
{
struct kvm_sw_breakpoint *bp;
CPUState *env;
int err;
if (type == GDB_BREAKPOINT_SW) {
bp = kvm_find_sw_breakpoint(current_env, addr);
if (bp) {
bp->use_count++;
return 0;
}
bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
if (!bp)
return -ENOMEM;
bp->pc = addr;
bp->use_count = 1;
err = kvm_arch_insert_sw_breakpoint(current_env, bp);
if (err) {
free(bp);
return err;
}
TAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints,
bp, entry);
} else {
err = kvm_arch_insert_hw_breakpoint(addr, len, type);
if (err)
return err;
}
for (env = first_cpu; env != NULL; env = env->next_cpu) {
err = kvm_update_guest_debug(env, 0);
if (err)
return err;
}
return 0;
}
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
target_ulong len, int type)
{
struct kvm_sw_breakpoint *bp;
CPUState *env;
int err;
if (type == GDB_BREAKPOINT_SW) {
bp = kvm_find_sw_breakpoint(current_env, addr);
if (!bp)
return -ENOENT;
if (bp->use_count > 1) {
bp->use_count--;
return 0;
}
err = kvm_arch_remove_sw_breakpoint(current_env, bp);
if (err)
return err;
TAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry);
qemu_free(bp);
} else {
err = kvm_arch_remove_hw_breakpoint(addr, len, type);
if (err)
return err;
}
for (env = first_cpu; env != NULL; env = env->next_cpu) {
err = kvm_update_guest_debug(env, 0);
if (err)
return err;
}
return 0;
}
void kvm_remove_all_breakpoints(CPUState *current_env)
{
struct kvm_sw_breakpoint *bp, *next;
KVMState *s = current_env->kvm_state;
CPUState *env;
TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
/* Try harder to find a CPU that currently sees the breakpoint. */
for (env = first_cpu; env != NULL; env = env->next_cpu) {
if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
break;
}
}
}
kvm_arch_remove_all_hw_breakpoints();
for (env = first_cpu; env != NULL; env = env->next_cpu)
kvm_update_guest_debug(env, 0);
}
#else /* !KVM_CAP_SET_GUEST_DEBUG */
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
{
return -EINVAL;
}
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
target_ulong len, int type)
{
return -EINVAL;
}
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
target_ulong len, int type)
{
return -EINVAL;
}
void kvm_remove_all_breakpoints(CPUState *current_env)
{
}
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
|