|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
/*
* QEMU 8253/8254 interval timer emulation
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
|
|
26
27
|
//#define DEBUG_PIT
|
|
28
29
30
31
|
#define RW_STATE_LSB 1
#define RW_STATE_MSB 2
#define RW_STATE_WORD0 3
#define RW_STATE_WORD1 4
|
|
32
|
|
|
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
typedef struct PITChannelState {
int count; /* can be 65536 */
uint16_t latched_count;
uint8_t count_latched;
uint8_t status_latched;
uint8_t status;
uint8_t read_state;
uint8_t write_state;
uint8_t write_latch;
uint8_t rw_mode;
uint8_t mode;
uint8_t bcd; /* not supported */
uint8_t gate; /* timer start */
int64_t count_load_time;
/* irq handling */
int64_t next_transition_time;
QEMUTimer *irq_timer;
int irq;
} PITChannelState;
struct PITState {
PITChannelState channels[3];
};
static PITState pit_state;
|
|
58
|
|
|
59
60
|
static void pit_irq_timer_update(PITChannelState *s, int64_t current_time);
|
|
61
62
63
64
65
|
static int pit_get_count(PITChannelState *s)
{
uint64_t d;
int counter;
|
|
66
|
d = muldiv64(qemu_get_clock(vm_clock) - s->count_load_time, PIT_FREQ, ticks_per_sec);
|
|
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
|
switch(s->mode) {
case 0:
case 1:
case 4:
case 5:
counter = (s->count - d) & 0xffff;
break;
case 3:
/* XXX: may be incorrect for odd counts */
counter = s->count - ((2 * d) % s->count);
break;
default:
counter = s->count - (d % s->count);
break;
}
return counter;
}
/* get pit output bit */
|
|
86
|
static int pit_get_out1(PITChannelState *s, int64_t current_time)
|
|
87
88
89
90
|
{
uint64_t d;
int out;
|
|
91
|
d = muldiv64(current_time - s->count_load_time, PIT_FREQ, ticks_per_sec);
|
|
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
|
switch(s->mode) {
default:
case 0:
out = (d >= s->count);
break;
case 1:
out = (d < s->count);
break;
case 2:
if ((d % s->count) == 0 && d != 0)
out = 1;
else
out = 0;
break;
case 3:
out = (d % s->count) < ((s->count + 1) >> 1);
break;
case 4:
case 5:
out = (d == s->count);
break;
}
return out;
}
|
|
117
118
119
120
121
122
|
int pit_get_out(PITState *pit, int channel, int64_t current_time)
{
PITChannelState *s = &pit->channels[channel];
return pit_get_out1(s, current_time);
}
|
|
123
124
125
|
/* return -1 if no transition will occur. */
static int64_t pit_get_next_transition_time(PITChannelState *s,
int64_t current_time)
|
|
126
|
{
|
|
127
128
|
uint64_t d, next_time, base;
int period2;
|
|
129
|
|
|
130
|
d = muldiv64(current_time - s->count_load_time, PIT_FREQ, ticks_per_sec);
|
|
131
132
133
134
|
switch(s->mode) {
default:
case 0:
case 1:
|
|
135
136
137
138
|
if (d < s->count)
next_time = s->count;
else
return -1;
|
|
139
140
|
break;
case 2:
|
|
141
142
143
144
145
|
base = (d / s->count) * s->count;
if ((d - base) == 0 && d != 0)
next_time = base + s->count;
else
next_time = base + s->count + 1;
|
|
146
147
|
break;
case 3:
|
|
148
149
150
151
152
153
|
base = (d / s->count) * s->count;
period2 = ((s->count + 1) >> 1);
if ((d - base) < period2)
next_time = base + period2;
else
next_time = base + s->count;
|
|
154
155
156
|
break;
case 4:
case 5:
|
|
157
158
159
160
|
if (d < s->count)
next_time = s->count;
else if (d == s->count)
next_time = s->count + 1;
|
|
161
|
else
|
|
162
|
return -1;
|
|
163
164
|
break;
}
|
|
165
166
|
/* convert to timer units */
next_time = s->count_load_time + muldiv64(next_time, ticks_per_sec, PIT_FREQ);
|
|
167
168
169
170
|
/* fix potential rounding problems */
/* XXX: better solution: use a clock at PIT_FREQ Hz */
if (next_time <= current_time)
next_time = current_time + 1;
|
|
171
|
return next_time;
|
|
172
173
174
|
}
/* val must be 0 or 1 */
|
|
175
|
void pit_set_gate(PITState *pit, int channel, int val)
|
|
176
|
{
|
|
177
178
|
PITChannelState *s = &pit->channels[channel];
|
|
179
180
181
182
183
184
185
186
187
188
|
switch(s->mode) {
default:
case 0:
case 4:
/* XXX: just disable/enable counting */
break;
case 1:
case 5:
if (s->gate < val) {
/* restart counting on rising edge */
|
|
189
190
|
s->count_load_time = qemu_get_clock(vm_clock);
pit_irq_timer_update(s, s->count_load_time);
|
|
191
192
193
194
195
196
|
}
break;
case 2:
case 3:
if (s->gate < val) {
/* restart counting on rising edge */
|
|
197
198
|
s->count_load_time = qemu_get_clock(vm_clock);
pit_irq_timer_update(s, s->count_load_time);
|
|
199
200
201
202
203
204
205
|
}
/* XXX: disable/enable counting */
break;
}
s->gate = val;
}
|
|
206
207
208
209
210
211
|
int pit_get_gate(PITState *pit, int channel)
{
PITChannelState *s = &pit->channels[channel];
return s->gate;
}
|
|
212
213
214
215
|
static inline void pit_load_count(PITChannelState *s, int val)
{
if (val == 0)
val = 0x10000;
|
|
216
|
s->count_load_time = qemu_get_clock(vm_clock);
|
|
217
|
s->count = val;
|
|
218
|
pit_irq_timer_update(s, s->count_load_time);
|
|
219
220
|
}
|
|
221
222
223
224
225
226
227
228
229
|
/* if already latched, do not latch again */
static void pit_latch_count(PITChannelState *s)
{
if (!s->count_latched) {
s->latched_count = pit_get_count(s);
s->count_latched = s->rw_mode;
}
}
|
|
230
|
static void pit_ioport_write(void *opaque, uint32_t addr, uint32_t val)
|
|
231
|
{
|
|
232
|
PITState *pit = opaque;
|
|
233
234
235
236
237
238
|
int channel, access;
PITChannelState *s;
addr &= 3;
if (addr == 3) {
channel = val >> 6;
|
|
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
|
if (channel == 3) {
/* read back command */
for(channel = 0; channel < 3; channel++) {
s = &pit->channels[channel];
if (val & (2 << channel)) {
if (!(val & 0x20)) {
pit_latch_count(s);
}
if (!(val & 0x10) && !s->status_latched) {
/* status latch */
/* XXX: add BCD and null count */
s->status = (pit_get_out1(s, qemu_get_clock(vm_clock)) << 7) |
(s->rw_mode << 4) |
(s->mode << 1) |
s->bcd;
s->status_latched = 1;
}
}
}
} else {
s = &pit->channels[channel];
access = (val >> 4) & 3;
if (access == 0) {
pit_latch_count(s);
} else {
s->rw_mode = access;
s->read_state = access;
s->write_state = access;
s->mode = (val >> 1) & 7;
s->bcd = val & 1;
/* XXX: update irq timer ? */
}
|
|
272
273
|
}
} else {
|
|
274
275
276
|
s = &pit->channels[addr];
switch(s->write_state) {
default:
|
|
277
278
279
280
281
282
283
|
case RW_STATE_LSB:
pit_load_count(s, val);
break;
case RW_STATE_MSB:
pit_load_count(s, val << 8);
break;
case RW_STATE_WORD0:
|
|
284
285
286
|
s->write_latch = val;
s->write_state = RW_STATE_WORD1;
break;
|
|
287
|
case RW_STATE_WORD1:
|
|
288
289
|
pit_load_count(s, s->write_latch | (val << 8));
s->write_state = RW_STATE_WORD0;
|
|
290
291
292
293
294
|
break;
}
}
}
|
|
295
|
static uint32_t pit_ioport_read(void *opaque, uint32_t addr)
|
|
296
|
{
|
|
297
|
PITState *pit = opaque;
|
|
298
299
300
301
|
int ret, count;
PITChannelState *s;
addr &= 3;
|
|
302
303
304
305
306
307
308
309
310
311
312
313
|
s = &pit->channels[addr];
if (s->status_latched) {
s->status_latched = 0;
ret = s->status;
} else if (s->count_latched) {
switch(s->count_latched) {
default:
case RW_STATE_LSB:
ret = s->latched_count & 0xff;
s->count_latched = 0;
break;
case RW_STATE_MSB:
|
|
314
|
ret = s->latched_count >> 8;
|
|
315
316
317
|
s->count_latched = 0;
break;
case RW_STATE_WORD0:
|
|
318
|
ret = s->latched_count & 0xff;
|
|
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
s->count_latched = RW_STATE_MSB;
break;
}
} else {
switch(s->read_state) {
default:
case RW_STATE_LSB:
count = pit_get_count(s);
ret = count & 0xff;
break;
case RW_STATE_MSB:
count = pit_get_count(s);
ret = (count >> 8) & 0xff;
break;
case RW_STATE_WORD0:
count = pit_get_count(s);
ret = count & 0xff;
s->read_state = RW_STATE_WORD1;
break;
case RW_STATE_WORD1:
count = pit_get_count(s);
ret = (count >> 8) & 0xff;
s->read_state = RW_STATE_WORD0;
break;
}
|
|
344
345
346
347
|
}
return ret;
}
|
|
348
349
350
351
352
353
354
355
|
static void pit_irq_timer_update(PITChannelState *s, int64_t current_time)
{
int64_t expire_time;
int irq_level;
if (!s->irq_timer)
return;
expire_time = pit_get_next_transition_time(s, current_time);
|
|
356
|
irq_level = pit_get_out1(s, current_time);
|
|
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
|
pic_set_irq(s->irq, irq_level);
#ifdef DEBUG_PIT
printf("irq_level=%d next_delay=%f\n",
irq_level,
(double)(expire_time - current_time) / ticks_per_sec);
#endif
s->next_transition_time = expire_time;
if (expire_time != -1)
qemu_mod_timer(s->irq_timer, expire_time);
else
qemu_del_timer(s->irq_timer);
}
static void pit_irq_timer(void *opaque)
{
PITChannelState *s = opaque;
pit_irq_timer_update(s, s->next_transition_time);
}
static void pit_save(QEMUFile *f, void *opaque)
{
|
|
379
|
PITState *pit = opaque;
|
|
380
381
382
383
|
PITChannelState *s;
int i;
for(i = 0; i < 3; i++) {
|
|
384
|
s = &pit->channels[i];
|
|
385
386
|
qemu_put_be32s(f, &s->count);
qemu_put_be16s(f, &s->latched_count);
|
|
387
388
389
390
391
392
393
|
qemu_put_8s(f, &s->count_latched);
qemu_put_8s(f, &s->status_latched);
qemu_put_8s(f, &s->status);
qemu_put_8s(f, &s->read_state);
qemu_put_8s(f, &s->write_state);
qemu_put_8s(f, &s->write_latch);
qemu_put_8s(f, &s->rw_mode);
|
|
394
395
396
397
398
399
400
401
402
403
404
405
406
|
qemu_put_8s(f, &s->mode);
qemu_put_8s(f, &s->bcd);
qemu_put_8s(f, &s->gate);
qemu_put_be64s(f, &s->count_load_time);
if (s->irq_timer) {
qemu_put_be64s(f, &s->next_transition_time);
qemu_put_timer(f, s->irq_timer);
}
}
}
static int pit_load(QEMUFile *f, void *opaque, int version_id)
{
|
|
407
|
PITState *pit = opaque;
|
|
408
409
410
411
412
413
414
|
PITChannelState *s;
int i;
if (version_id != 1)
return -EINVAL;
for(i = 0; i < 3; i++) {
|
|
415
|
s = &pit->channels[i];
|
|
416
417
|
qemu_get_be32s(f, &s->count);
qemu_get_be16s(f, &s->latched_count);
|
|
418
419
420
421
422
423
424
|
qemu_get_8s(f, &s->count_latched);
qemu_get_8s(f, &s->status_latched);
qemu_get_8s(f, &s->status);
qemu_get_8s(f, &s->read_state);
qemu_get_8s(f, &s->write_state);
qemu_get_8s(f, &s->write_latch);
qemu_get_8s(f, &s->rw_mode);
|
|
425
426
427
428
429
430
431
432
433
434
435
436
|
qemu_get_8s(f, &s->mode);
qemu_get_8s(f, &s->bcd);
qemu_get_8s(f, &s->gate);
qemu_get_be64s(f, &s->count_load_time);
if (s->irq_timer) {
qemu_get_be64s(f, &s->next_transition_time);
qemu_get_timer(f, s->irq_timer);
}
}
return 0;
}
|
|
437
|
static void pit_reset(void *opaque)
|
|
438
|
{
|
|
439
|
PITState *pit = opaque;
|
|
440
441
442
443
|
PITChannelState *s;
int i;
for(i = 0;i < 3; i++) {
|
|
444
|
s = &pit->channels[i];
|
|
445
446
447
448
|
s->mode = 3;
s->gate = (i != 2);
pit_load_count(s, 0);
}
|
|
449
450
451
452
453
454
455
456
457
458
459
|
}
PITState *pit_init(int base, int irq)
{
PITState *pit = &pit_state;
PITChannelState *s;
s = &pit->channels[0];
/* the timer 0 is connected to an IRQ */
s->irq_timer = qemu_new_timer(vm_clock, pit_irq_timer, s);
s->irq = irq;
|
|
460
|
|
|
461
|
register_savevm("i8254", base, 1, pit_save, pit_load, pit);
|
|
462
|
|
|
463
|
qemu_register_reset(pit_reset, pit);
|
|
464
465
|
register_ioport_write(base, 4, 1, pit_ioport_write, pit);
register_ioport_read(base, 3, 1, pit_ioport_read, pit);
|
|
466
467
468
|
pit_reset(pit);
|
|
469
|
return pit;
|
|
470
|
}
|