Blame view

target-arm/nwfpe/fpa11.c 5.66 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
/*
    NetWinder Floating Point Emulator
    (c) Rebel.COM, 1998,1999

    Direct questions, comments to Scott Bambrough <scottb@netwinder.org>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

#include "fpa11.h"

#include "fpopcode.h"

//#include "fpmodule.h"
//#include "fpmodule.inl"

//#include <asm/system.h>

#include <stdio.h>

/* forward declarations */
unsigned int EmulateCPDO(const unsigned int);
unsigned int EmulateCPDT(const unsigned int);
unsigned int EmulateCPRT(const unsigned int);

FPA11* qemufpa=0;
unsigned int* user_registers=0;

/* Reset the FPA11 chip.  Called to initialize and reset the emulator. */
void resetFPA11(void)
{
  int i;
  FPA11 *fpa11 = GET_FPA11();

  /* initialize the register type array */
  for (i=0;i<=7;i++)
  {
    fpa11->fType[i] = typeNone;
  }

  /* FPSR: set system id to FP_EMULATOR, set AC, clear all other bits */
  fpa11->fpsr = FP_EMULATOR | BIT_AC;

  /* FPCR: set SB, AB and DA bits, clear all others */
#if MAINTAIN_FPCR
  fpa11->fpcr = MASK_RESET;
#endif
}

void SetRoundingMode(const unsigned int opcode)
{
64
    int rounding_mode;
65
   FPA11 *fpa11 = GET_FPA11();
66
67

#if MAINTAIN_FPCR
68
69
70
71
72
73
   fpa11->fpcr &= ~MASK_ROUNDING_MODE;
#endif   
   switch (opcode & MASK_ROUNDING_MODE)
   {
      default:
      case ROUND_TO_NEAREST:
74
         rounding_mode = float_round_nearest_even;
75
76
77
78
79
80
#if MAINTAIN_FPCR         
         fpa11->fpcr |= ROUND_TO_NEAREST;
#endif         
      break;

      case ROUND_TO_PLUS_INFINITY:
81
         rounding_mode = float_round_up;
82
83
84
85
86
87
#if MAINTAIN_FPCR         
         fpa11->fpcr |= ROUND_TO_PLUS_INFINITY;
#endif         
      break;

      case ROUND_TO_MINUS_INFINITY:
88
         rounding_mode = float_round_down;
89
90
91
92
93
94
#if MAINTAIN_FPCR         
         fpa11->fpcr |= ROUND_TO_MINUS_INFINITY;
#endif         
      break;

      case ROUND_TO_ZERO:
95
         rounding_mode = float_round_to_zero;
96
97
98
99
100
#if MAINTAIN_FPCR         
         fpa11->fpcr |= ROUND_TO_ZERO;
#endif         
      break;
  }
101
   set_float_rounding_mode(rounding_mode, &fpa11->fp_status);
102
103
104
105
}

void SetRoundingPrecision(const unsigned int opcode)
{
106
    int rounding_precision;
107
   FPA11 *fpa11 = GET_FPA11();
108
#if MAINTAIN_FPCR
109
110
111
112
113
   fpa11->fpcr &= ~MASK_ROUNDING_PRECISION;
#endif   
   switch (opcode & MASK_ROUNDING_PRECISION)
   {
      case ROUND_SINGLE:
114
         rounding_precision = 32;
115
116
117
118
119
120
#if MAINTAIN_FPCR         
         fpa11->fpcr |= ROUND_SINGLE;
#endif         
      break;

      case ROUND_DOUBLE:
121
         rounding_precision = 64;
122
123
124
125
126
127
#if MAINTAIN_FPCR         
         fpa11->fpcr |= ROUND_DOUBLE;
#endif         
      break;

      case ROUND_EXTENDED:
128
         rounding_precision = 80;
129
130
131
132
133
#if MAINTAIN_FPCR         
         fpa11->fpcr |= ROUND_EXTENDED;
#endif         
      break;
134
      default: rounding_precision = 80;
135
  }
136
   set_floatx80_rounding_precision(rounding_precision, &fpa11->fp_status);
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
}

/* Emulate the instruction in the opcode. */
unsigned int EmulateAll(unsigned int opcode, FPA11* qfpa, unsigned int* qregs)
{
  unsigned int nRc = 0;
//  unsigned long flags;
  FPA11 *fpa11; 
//  save_flags(flags); sti();

  qemufpa=qfpa;
  user_registers=qregs;

#if 0
  fprintf(stderr,"emulating FP insn 0x%08x, PC=0x%08x\n",
          opcode, qregs[REG_PC]);
#endif
  fpa11 = GET_FPA11();

  if (fpa11->initflag == 0)		/* good place for __builtin_expect */
  {
    resetFPA11();
    SetRoundingMode(ROUND_TO_NEAREST);
    SetRoundingPrecision(ROUND_EXTENDED);
    fpa11->initflag = 1;
  }

  if (TEST_OPCODE(opcode,MASK_CPRT))
  {
    //fprintf(stderr,"emulating CPRT\n");
    /* Emulate conversion opcodes. */
    /* Emulate register transfer opcodes. */
    /* Emulate comparison opcodes. */
    nRc = EmulateCPRT(opcode);
  }
  else if (TEST_OPCODE(opcode,MASK_CPDO))
  {
    //fprintf(stderr,"emulating CPDO\n");
    /* Emulate monadic arithmetic opcodes. */
    /* Emulate dyadic arithmetic opcodes. */
    nRc = EmulateCPDO(opcode);
  }
  else if (TEST_OPCODE(opcode,MASK_CPDT))
  {
    //fprintf(stderr,"emulating CPDT\n");
    /* Emulate load/store opcodes. */
    /* Emulate load/store multiple opcodes. */
    nRc = EmulateCPDT(opcode);
  }
  else
  {
    /* Invalid instruction detected.  Return FALSE. */
    nRc = 0;
  }

//  restore_flags(flags);

  //printf("returning %d\n",nRc);
  return(nRc);
}

#if 0
unsigned int EmulateAll1(unsigned int opcode)
{
  switch ((opcode >> 24) & 0xf)
  {
     case 0xc:
     case 0xd:
       if ((opcode >> 20) & 0x1)
       {
          switch ((opcode >> 8) & 0xf)
          {
             case 0x1: return PerformLDF(opcode); break;
             case 0x2: return PerformLFM(opcode); break;
             default: return 0;
          }
       }
       else
       {
          switch ((opcode >> 8) & 0xf)
          {
             case 0x1: return PerformSTF(opcode); break;
             case 0x2: return PerformSFM(opcode); break;
             default: return 0;
          }
      }
     break;

     case 0xe: 
       if (opcode & 0x10)
         return EmulateCPDO(opcode);
       else
         return EmulateCPRT(opcode);
     break;

     default: return 0;
  }
}
#endif