|
1
2
3
4
|
/*
* QEMU KVM support
*
* Copyright IBM, Corp. 2008
|
|
5
|
* Red Hat, Inc. 2008
|
|
6
7
8
|
*
* Authors:
* Anthony Liguori <aliguori@us.ibm.com>
|
|
9
|
* Glauber Costa <gcosta@redhat.com>
|
|
10
11
12
13
14
15
16
17
18
|
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
|
|
19
|
#include <stdarg.h>
|
|
20
21
22
23
24
|
#include <linux/kvm.h>
#include "qemu-common.h"
#include "sysemu.h"
|
|
25
|
#include "hw/hw.h"
|
|
26
|
#include "gdbstub.h"
|
|
27
28
|
#include "kvm.h"
|
|
29
30
31
|
/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
#define PAGE_SIZE TARGET_PAGE_SIZE
|
|
32
33
34
35
36
37
38
39
40
41
|
//#define DEBUG_KVM
#ifdef DEBUG_KVM
#define dprintf(fmt, ...) \
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
#define dprintf(fmt, ...) \
do { } while (0)
#endif
|
|
42
43
44
45
46
47
48
49
|
typedef struct KVMSlot
{
target_phys_addr_t start_addr;
ram_addr_t memory_size;
ram_addr_t phys_offset;
int slot;
int flags;
} KVMSlot;
|
|
50
|
|
|
51
52
|
typedef struct kvm_dirty_log KVMDirtyLog;
|
|
53
54
55
56
57
58
59
|
int kvm_allowed = 0;
struct KVMState
{
KVMSlot slots[32];
int fd;
int vmfd;
|
|
60
|
int coalesced_mmio;
|
|
61
|
int broken_set_mem_region;
|
|
62
|
int migration_log;
|
|
63
64
65
|
#ifdef KVM_CAP_SET_GUEST_DEBUG
struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
#endif
|
|
66
67
|
int irqchip_in_kernel;
int pit_in_kernel;
|
|
68
69
70
71
72
73
74
75
76
|
};
static KVMState *kvm_state;
static KVMSlot *kvm_alloc_slot(KVMState *s)
{
int i;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
|
|
77
78
79
|
/* KVM private memory slots */
if (i >= 8 && i < 12)
continue;
|
|
80
81
82
83
|
if (s->slots[i].memory_size == 0)
return &s->slots[i];
}
|
|
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
|
fprintf(stderr, "%s: no free slot available\n", __func__);
abort();
}
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
target_phys_addr_t start_addr,
target_phys_addr_t end_addr)
{
int i;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
KVMSlot *mem = &s->slots[i];
if (start_addr == mem->start_addr &&
end_addr == mem->start_addr + mem->memory_size) {
return mem;
}
}
|
|
103
104
105
|
return NULL;
}
|
|
106
107
108
109
110
111
|
/*
* Find overlapping slot with lowest start address
*/
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
target_phys_addr_t start_addr,
target_phys_addr_t end_addr)
|
|
112
|
{
|
|
113
|
KVMSlot *found = NULL;
|
|
114
115
116
117
118
|
int i;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
KVMSlot *mem = &s->slots[i];
|
|
119
120
121
122
123
124
125
126
127
|
if (mem->memory_size == 0 ||
(found && found->start_addr < mem->start_addr)) {
continue;
}
if (end_addr > mem->start_addr &&
start_addr < mem->start_addr + mem->memory_size) {
found = mem;
}
|
|
128
129
|
}
|
|
130
|
return found;
|
|
131
132
|
}
|
|
133
134
135
136
137
138
139
|
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
{
struct kvm_userspace_memory_region mem;
mem.slot = slot->slot;
mem.guest_phys_addr = slot->start_addr;
mem.memory_size = slot->memory_size;
|
|
140
|
mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
|
|
141
|
mem.flags = slot->flags;
|
|
142
143
144
|
if (s->migration_log) {
mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
}
|
|
145
146
147
|
return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
}
|
|
148
149
150
151
152
153
154
155
156
|
static void kvm_reset_vcpu(void *opaque)
{
CPUState *env = opaque;
if (kvm_arch_put_registers(env)) {
fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
abort();
}
}
|
|
157
|
|
|
158
159
160
161
162
163
164
165
166
167
168
|
int kvm_irqchip_in_kernel(void)
{
return kvm_state->irqchip_in_kernel;
}
int kvm_pit_in_kernel(void)
{
return kvm_state->pit_in_kernel;
}
|
|
169
170
171
172
173
174
175
176
|
int kvm_init_vcpu(CPUState *env)
{
KVMState *s = kvm_state;
long mmap_size;
int ret;
dprintf("kvm_init_vcpu\n");
|
|
177
|
ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
|
|
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
if (ret < 0) {
dprintf("kvm_create_vcpu failed\n");
goto err;
}
env->kvm_fd = ret;
env->kvm_state = s;
mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
if (mmap_size < 0) {
dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
goto err;
}
env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
env->kvm_fd, 0);
if (env->kvm_run == MAP_FAILED) {
ret = -errno;
dprintf("mmap'ing vcpu state failed\n");
goto err;
}
ret = kvm_arch_init_vcpu(env);
|
|
201
|
if (ret == 0) {
|
|
202
|
qemu_register_reset(kvm_reset_vcpu, env);
|
|
203
204
|
ret = kvm_arch_put_registers(env);
}
|
|
205
206
207
208
|
err:
return ret;
}
|
|
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
int kvm_put_mp_state(CPUState *env)
{
struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
}
int kvm_get_mp_state(CPUState *env)
{
struct kvm_mp_state mp_state;
int ret;
ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
if (ret < 0) {
return ret;
}
env->mp_state = mp_state.mp_state;
return 0;
}
|
|
229
230
231
|
/*
* dirty pages logging control
*/
|
|
232
|
static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
|
|
233
|
ram_addr_t size, int flags, int mask)
|
|
234
235
|
{
KVMState *s = kvm_state;
|
|
236
|
KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
|
|
237
238
|
int old_flags;
|
|
239
|
if (mem == NULL) {
|
|
240
241
|
fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
TARGET_FMT_plx "\n", __func__, phys_addr,
|
|
242
|
(target_phys_addr_t)(phys_addr + size - 1));
|
|
243
244
245
|
return -EINVAL;
}
|
|
246
|
old_flags = mem->flags;
|
|
247
|
|
|
248
|
flags = (mem->flags & ~mask) | flags;
|
|
249
250
|
mem->flags = flags;
|
|
251
252
253
254
255
256
257
258
|
/* If nothing changed effectively, no need to issue ioctl */
if (s->migration_log) {
flags |= KVM_MEM_LOG_DIRTY_PAGES;
}
if (flags == old_flags) {
return 0;
}
|
|
259
260
261
|
return kvm_set_user_memory_region(s, mem);
}
|
|
262
|
int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
|
|
263
|
{
|
|
264
|
return kvm_dirty_pages_log_change(phys_addr, size,
|
|
265
266
267
268
|
KVM_MEM_LOG_DIRTY_PAGES,
KVM_MEM_LOG_DIRTY_PAGES);
}
|
|
269
|
int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
|
|
270
|
{
|
|
271
|
return kvm_dirty_pages_log_change(phys_addr, size,
|
|
272
273
274
275
|
0,
KVM_MEM_LOG_DIRTY_PAGES);
}
|
|
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
|
int kvm_set_migration_log(int enable)
{
KVMState *s = kvm_state;
KVMSlot *mem;
int i, err;
s->migration_log = enable;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
mem = &s->slots[i];
if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
continue;
}
err = kvm_set_user_memory_region(s, mem);
if (err) {
return err;
}
}
return 0;
}
|
|
298
299
300
301
302
|
static int test_le_bit(unsigned long nr, unsigned char *addr)
{
return (addr[nr >> 3] >> (nr & 7)) & 1;
}
|
|
303
304
305
306
307
|
/**
* kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
* This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
* This means all bits are set to dirty.
*
|
|
308
|
* @start_add: start of logged region.
|
|
309
310
|
* @end_addr: end of logged region.
*/
|
|
311
312
|
int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
target_phys_addr_t end_addr)
|
|
313
314
|
{
KVMState *s = kvm_state;
|
|
315
316
|
unsigned long size, allocated_size = 0;
target_phys_addr_t phys_addr;
|
|
317
|
ram_addr_t addr;
|
|
318
319
320
|
KVMDirtyLog d;
KVMSlot *mem;
int ret = 0;
|
|
321
|
|
|
322
323
324
325
326
327
|
d.dirty_bitmap = NULL;
while (start_addr < end_addr) {
mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
if (mem == NULL) {
break;
}
|
|
328
|
|
|
329
330
331
332
333
334
335
336
|
size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
if (!d.dirty_bitmap) {
d.dirty_bitmap = qemu_malloc(size);
} else if (size > allocated_size) {
d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
}
allocated_size = size;
memset(d.dirty_bitmap, 0, allocated_size);
|
|
337
|
|
|
338
|
d.slot = mem->slot;
|
|
339
|
|
|
340
|
if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
|
|
341
342
343
344
|
dprintf("ioctl failed %d\n", errno);
ret = -1;
break;
}
|
|
345
|
|
|
346
347
348
|
for (phys_addr = mem->start_addr, addr = mem->phys_offset;
phys_addr < mem->start_addr + mem->memory_size;
phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
|
|
349
|
unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
|
|
350
351
|
unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
|
|
352
|
if (test_le_bit(nr, bitmap)) {
|
|
353
354
355
356
|
cpu_physical_memory_set_dirty(addr);
}
}
start_addr = phys_addr;
|
|
357
358
|
}
qemu_free(d.dirty_bitmap);
|
|
359
360
|
return ret;
|
|
361
362
|
}
|
|
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
|
int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
{
int ret = -ENOSYS;
#ifdef KVM_CAP_COALESCED_MMIO
KVMState *s = kvm_state;
if (s->coalesced_mmio) {
struct kvm_coalesced_mmio_zone zone;
zone.addr = start;
zone.size = size;
ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
}
#endif
return ret;
}
int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
{
int ret = -ENOSYS;
#ifdef KVM_CAP_COALESCED_MMIO
KVMState *s = kvm_state;
if (s->coalesced_mmio) {
struct kvm_coalesced_mmio_zone zone;
zone.addr = start;
zone.size = size;
ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
}
#endif
return ret;
}
|
|
401
402
403
404
405
406
407
408
409
410
411
412
|
int kvm_check_extension(KVMState *s, unsigned int extension)
{
int ret;
ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
if (ret < 0) {
ret = 0;
}
return ret;
}
|
|
413
414
|
int kvm_init(int smp_cpus)
{
|
|
415
416
417
|
static const char upgrade_note[] =
"Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
"(see http://sourceforge.net/projects/kvm).\n";
|
|
418
419
420
421
|
KVMState *s;
int ret;
int i;
|
|
422
423
|
if (smp_cpus > 1) {
fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
|
|
424
|
return -EINVAL;
|
|
425
|
}
|
|
426
427
428
|
s = qemu_mallocz(sizeof(KVMState));
|
|
429
430
431
|
#ifdef KVM_CAP_SET_GUEST_DEBUG
TAILQ_INIT(&s->kvm_sw_breakpoints);
#endif
|
|
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
|
for (i = 0; i < ARRAY_SIZE(s->slots); i++)
s->slots[i].slot = i;
s->vmfd = -1;
s->fd = open("/dev/kvm", O_RDWR);
if (s->fd == -1) {
fprintf(stderr, "Could not access KVM kernel module: %m\n");
ret = -errno;
goto err;
}
ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
if (ret < KVM_API_VERSION) {
if (ret > 0)
ret = -EINVAL;
fprintf(stderr, "kvm version too old\n");
goto err;
}
if (ret > KVM_API_VERSION) {
ret = -EINVAL;
fprintf(stderr, "kvm version not supported\n");
goto err;
}
s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
if (s->vmfd < 0)
goto err;
/* initially, KVM allocated its own memory and we had to jump through
* hooks to make phys_ram_base point to this. Modern versions of KVM
|
|
463
|
* just use a user allocated buffer so we can use regular pages
|
|
464
465
|
* unmodified. Make sure we have a sufficiently modern version of KVM.
*/
|
|
466
467
|
if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
ret = -EINVAL;
|
|
468
469
|
fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
upgrade_note);
|
|
470
471
472
|
goto err;
}
|
|
473
474
475
|
/* There was a nasty bug in < kvm-80 that prevents memory slots from being
* destroyed properly. Since we rely on this capability, refuse to work
* with any kernel without this capability. */
|
|
476
477
|
if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
ret = -EINVAL;
|
|
478
479
|
fprintf(stderr,
|
|
480
481
|
"KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
upgrade_note);
|
|
482
483
484
|
goto err;
}
|
|
485
|
#ifdef KVM_CAP_COALESCED_MMIO
|
|
486
487
488
|
s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
#else
s->coalesced_mmio = 0;
|
|
489
490
|
#endif
|
|
491
492
493
494
495
496
497
498
|
s->broken_set_mem_region = 1;
#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
if (ret > 0) {
s->broken_set_mem_region = 0;
}
#endif
|
|
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
|
ret = kvm_arch_init(s, smp_cpus);
if (ret < 0)
goto err;
kvm_state = s;
return 0;
err:
if (s) {
if (s->vmfd != -1)
close(s->vmfd);
if (s->fd != -1)
close(s->fd);
}
qemu_free(s);
return ret;
}
static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
int direction, int size, uint32_t count)
{
int i;
uint8_t *ptr = data;
for (i = 0; i < count; i++) {
if (direction == KVM_EXIT_IO_IN) {
switch (size) {
case 1:
stb_p(ptr, cpu_inb(env, port));
break;
case 2:
stw_p(ptr, cpu_inw(env, port));
break;
case 4:
stl_p(ptr, cpu_inl(env, port));
break;
}
} else {
switch (size) {
case 1:
cpu_outb(env, port, ldub_p(ptr));
break;
case 2:
cpu_outw(env, port, lduw_p(ptr));
break;
case 4:
cpu_outl(env, port, ldl_p(ptr));
break;
}
}
ptr += size;
}
return 1;
}
|
|
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
|
static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
{
#ifdef KVM_CAP_COALESCED_MMIO
KVMState *s = kvm_state;
if (s->coalesced_mmio) {
struct kvm_coalesced_mmio_ring *ring;
ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
while (ring->first != ring->last) {
struct kvm_coalesced_mmio *ent;
ent = &ring->coalesced_mmio[ring->first];
cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
/* FIXME smp_wmb() */
ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
}
}
#endif
}
|
|
579
580
581
582
583
584
585
586
|
int kvm_cpu_exec(CPUState *env)
{
struct kvm_run *run = env->kvm_run;
int ret;
dprintf("kvm_cpu_exec()\n");
do {
|
|
587
|
if (env->exit_request) {
|
|
588
589
590
591
592
|
dprintf("interrupt exit requested\n");
ret = 0;
break;
}
|
|
593
|
kvm_arch_pre_run(env, run);
|
|
594
595
596
597
598
599
600
601
602
603
604
605
606
607
|
ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
kvm_arch_post_run(env, run);
if (ret == -EINTR || ret == -EAGAIN) {
dprintf("io window exit\n");
ret = 0;
break;
}
if (ret < 0) {
dprintf("kvm run failed %s\n", strerror(-ret));
abort();
}
|
|
608
609
|
kvm_run_coalesced_mmio(env, run);
|
|
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
|
ret = 0; /* exit loop */
switch (run->exit_reason) {
case KVM_EXIT_IO:
dprintf("handle_io\n");
ret = kvm_handle_io(env, run->io.port,
(uint8_t *)run + run->io.data_offset,
run->io.direction,
run->io.size,
run->io.count);
break;
case KVM_EXIT_MMIO:
dprintf("handle_mmio\n");
cpu_physical_memory_rw(run->mmio.phys_addr,
run->mmio.data,
run->mmio.len,
run->mmio.is_write);
ret = 1;
break;
case KVM_EXIT_IRQ_WINDOW_OPEN:
dprintf("irq_window_open\n");
break;
case KVM_EXIT_SHUTDOWN:
dprintf("shutdown\n");
qemu_system_reset_request();
ret = 1;
break;
case KVM_EXIT_UNKNOWN:
dprintf("kvm_exit_unknown\n");
break;
case KVM_EXIT_FAIL_ENTRY:
dprintf("kvm_exit_fail_entry\n");
break;
case KVM_EXIT_EXCEPTION:
dprintf("kvm_exit_exception\n");
break;
case KVM_EXIT_DEBUG:
dprintf("kvm_exit_debug\n");
|
|
647
648
649
650
651
652
653
654
655
656
|
#ifdef KVM_CAP_SET_GUEST_DEBUG
if (kvm_arch_debug(&run->debug.arch)) {
gdb_set_stop_cpu(env);
vm_stop(EXCP_DEBUG);
env->exception_index = EXCP_DEBUG;
return 0;
}
/* re-enter, this exception was guest-internal */
ret = 1;
#endif /* KVM_CAP_SET_GUEST_DEBUG */
|
|
657
658
659
660
661
662
663
664
|
break;
default:
dprintf("kvm_arch_handle_exit\n");
ret = kvm_arch_handle_exit(env, run);
break;
}
} while (ret > 0);
|
|
665
666
|
if (env->exit_request) {
env->exit_request = 0;
|
|
667
668
669
|
env->exception_index = EXCP_INTERRUPT;
}
|
|
670
671
672
673
674
675
676
677
678
|
return ret;
}
void kvm_set_phys_mem(target_phys_addr_t start_addr,
ram_addr_t size,
ram_addr_t phys_offset)
{
KVMState *s = kvm_state;
ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
|
|
679
680
|
KVMSlot *mem, old;
int err;
|
|
681
|
|
|
682
|
if (start_addr & ~TARGET_PAGE_MASK) {
|
|
683
684
685
686
687
688
689
690
691
|
if (flags >= IO_MEM_UNASSIGNED) {
if (!kvm_lookup_overlapping_slot(s, start_addr,
start_addr + size)) {
return;
}
fprintf(stderr, "Unaligned split of a KVM memory slot\n");
} else {
fprintf(stderr, "Only page-aligned memory slots supported\n");
}
|
|
692
693
694
|
abort();
}
|
|
695
696
697
|
/* KVM does not support read-only slots */
phys_offset &= ~IO_MEM_ROM;
|
|
698
699
700
701
702
|
while (1) {
mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
if (!mem) {
break;
}
|
|
703
|
|
|
704
705
706
707
708
|
if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
(start_addr + size <= mem->start_addr + mem->memory_size) &&
(phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
/* The new slot fits into the existing one and comes with
* identical parameters - nothing to be done. */
|
|
709
|
return;
|
|
710
711
712
713
714
715
716
717
718
719
|
}
old = *mem;
/* unregister the overlapping slot */
mem->memory_size = 0;
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
__func__, strerror(-err));
|
|
720
721
|
abort();
}
|
|
722
723
724
725
726
727
728
729
730
|
/* Workaround for older KVM versions: we can't join slots, even not by
* unregistering the previous ones and then registering the larger
* slot. We have to maintain the existing fragmentation. Sigh.
*
* This workaround assumes that the new slot starts at the same
* address as the first existing one. If not or if some overlapping
* slot comes around later, we will fail (not seen in practice so far)
* - and actually require a recent KVM version. */
|
|
731
732
|
if (s->broken_set_mem_region &&
old.start_addr == start_addr && old.memory_size < size &&
|
|
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
|
flags < IO_MEM_UNASSIGNED) {
mem = kvm_alloc_slot(s);
mem->memory_size = old.memory_size;
mem->start_addr = old.start_addr;
mem->phys_offset = old.phys_offset;
mem->flags = 0;
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error updating slot: %s\n", __func__,
strerror(-err));
abort();
}
start_addr += old.memory_size;
phys_offset += old.memory_size;
size -= old.memory_size;
continue;
}
/* register prefix slot */
if (old.start_addr < start_addr) {
mem = kvm_alloc_slot(s);
mem->memory_size = start_addr - old.start_addr;
mem->start_addr = old.start_addr;
mem->phys_offset = old.phys_offset;
mem->flags = 0;
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error registering prefix slot: %s\n",
__func__, strerror(-err));
abort();
}
}
/* register suffix slot */
if (old.start_addr + old.memory_size > start_addr + size) {
ram_addr_t size_delta;
mem = kvm_alloc_slot(s);
mem->start_addr = start_addr + size;
size_delta = mem->start_addr - old.start_addr;
mem->memory_size = old.memory_size - size_delta;
mem->phys_offset = old.phys_offset + size_delta;
mem->flags = 0;
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error registering suffix slot: %s\n",
__func__, strerror(-err));
abort();
}
}
|
|
787
|
}
|
|
788
789
790
791
792
|
/* in case the KVM bug workaround already "consumed" the new slot */
if (!size)
return;
|
|
793
794
795
796
797
798
|
/* KVM does not need to know about this memory */
if (flags >= IO_MEM_UNASSIGNED)
return;
mem = kvm_alloc_slot(s);
mem->memory_size = size;
|
|
799
800
|
mem->start_addr = start_addr;
mem->phys_offset = phys_offset;
|
|
801
802
|
mem->flags = 0;
|
|
803
804
805
806
807
808
|
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error registering slot: %s\n", __func__,
strerror(-err));
abort();
}
|
|
809
810
|
}
|
|
811
|
int kvm_ioctl(KVMState *s, int type, ...)
|
|
812
813
|
{
int ret;
|
|
814
815
|
void *arg;
va_list ap;
|
|
816
|
|
|
817
818
819
820
821
|
va_start(ap, type);
arg = va_arg(ap, void *);
va_end(ap);
ret = ioctl(s->fd, type, arg);
|
|
822
823
824
825
826
827
|
if (ret == -1)
ret = -errno;
return ret;
}
|
|
828
|
int kvm_vm_ioctl(KVMState *s, int type, ...)
|
|
829
830
|
{
int ret;
|
|
831
832
833
834
835
836
|
void *arg;
va_list ap;
va_start(ap, type);
arg = va_arg(ap, void *);
va_end(ap);
|
|
837
|
|
|
838
|
ret = ioctl(s->vmfd, type, arg);
|
|
839
840
841
842
843
844
|
if (ret == -1)
ret = -errno;
return ret;
}
|
|
845
|
int kvm_vcpu_ioctl(CPUState *env, int type, ...)
|
|
846
847
|
{
int ret;
|
|
848
849
850
851
852
853
|
void *arg;
va_list ap;
va_start(ap, type);
arg = va_arg(ap, void *);
va_end(ap);
|
|
854
|
|
|
855
|
ret = ioctl(env->kvm_fd, type, arg);
|
|
856
857
858
859
860
|
if (ret == -1)
ret = -errno;
return ret;
}
|
|
861
862
863
|
int kvm_has_sync_mmu(void)
{
|
|
864
|
#ifdef KVM_CAP_SYNC_MMU
|
|
865
866
|
KVMState *s = kvm_state;
|
|
867
868
|
return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
#else
|
|
869
|
return 0;
|
|
870
|
#endif
|
|
871
|
}
|
|
872
|
|
|
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
|
void kvm_setup_guest_memory(void *start, size_t size)
{
if (!kvm_has_sync_mmu()) {
#ifdef MADV_DONTFORK
int ret = madvise(start, size, MADV_DONTFORK);
if (ret) {
perror("madvice");
exit(1);
}
#else
fprintf(stderr,
"Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
exit(1);
#endif
}
}
|
|
891
|
#ifdef KVM_CAP_SET_GUEST_DEBUG
|
|
892
893
894
895
896
897
898
899
900
|
static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
{
if (env == cpu_single_env) {
func(data);
return;
}
abort();
}
|
|
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
|
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
target_ulong pc)
{
struct kvm_sw_breakpoint *bp;
TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
if (bp->pc == pc)
return bp;
}
return NULL;
}
int kvm_sw_breakpoints_active(CPUState *env)
{
return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
}
|
|
918
919
920
921
922
923
924
925
926
927
928
929
|
struct kvm_set_guest_debug_data {
struct kvm_guest_debug dbg;
CPUState *env;
int err;
};
static void kvm_invoke_set_guest_debug(void *data)
{
struct kvm_set_guest_debug_data *dbg_data = data;
dbg_data->err = kvm_vcpu_ioctl(dbg_data->env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
}
|
|
930
931
|
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
{
|
|
932
|
struct kvm_set_guest_debug_data data;
|
|
933
|
|
|
934
|
data.dbg.control = 0;
|
|
935
|
if (env->singlestep_enabled)
|
|
936
|
data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
|
|
937
|
|
|
938
939
940
|
kvm_arch_update_guest_debug(env, &data.dbg);
data.dbg.control |= reinject_trap;
data.env = env;
|
|
941
|
|
|
942
943
|
on_vcpu(env, kvm_invoke_set_guest_debug, &data);
return data.err;
|
|
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
|
}
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
target_ulong len, int type)
{
struct kvm_sw_breakpoint *bp;
CPUState *env;
int err;
if (type == GDB_BREAKPOINT_SW) {
bp = kvm_find_sw_breakpoint(current_env, addr);
if (bp) {
bp->use_count++;
return 0;
}
bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
if (!bp)
return -ENOMEM;
bp->pc = addr;
bp->use_count = 1;
err = kvm_arch_insert_sw_breakpoint(current_env, bp);
if (err) {
free(bp);
return err;
}
TAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints,
bp, entry);
} else {
err = kvm_arch_insert_hw_breakpoint(addr, len, type);
if (err)
return err;
}
for (env = first_cpu; env != NULL; env = env->next_cpu) {
err = kvm_update_guest_debug(env, 0);
if (err)
return err;
}
return 0;
}
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
target_ulong len, int type)
{
struct kvm_sw_breakpoint *bp;
CPUState *env;
int err;
if (type == GDB_BREAKPOINT_SW) {
bp = kvm_find_sw_breakpoint(current_env, addr);
if (!bp)
return -ENOENT;
if (bp->use_count > 1) {
bp->use_count--;
return 0;
}
err = kvm_arch_remove_sw_breakpoint(current_env, bp);
if (err)
return err;
TAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry);
qemu_free(bp);
} else {
err = kvm_arch_remove_hw_breakpoint(addr, len, type);
if (err)
return err;
}
for (env = first_cpu; env != NULL; env = env->next_cpu) {
err = kvm_update_guest_debug(env, 0);
if (err)
return err;
}
return 0;
}
void kvm_remove_all_breakpoints(CPUState *current_env)
{
struct kvm_sw_breakpoint *bp, *next;
KVMState *s = current_env->kvm_state;
CPUState *env;
TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
/* Try harder to find a CPU that currently sees the breakpoint. */
for (env = first_cpu; env != NULL; env = env->next_cpu) {
if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
break;
}
}
}
kvm_arch_remove_all_hw_breakpoints();
for (env = first_cpu; env != NULL; env = env->next_cpu)
kvm_update_guest_debug(env, 0);
}
#else /* !KVM_CAP_SET_GUEST_DEBUG */
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
{
return -EINVAL;
}
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
target_ulong len, int type)
{
return -EINVAL;
}
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
target_ulong len, int type)
{
return -EINVAL;
}
void kvm_remove_all_breakpoints(CPUState *current_env)
{
}
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
|