|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
/*
* QEMU 8253/8254 interval timer emulation
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
|
|
26
27
|
//#define DEBUG_PIT
|
|
28
29
30
31
|
#define RW_STATE_LSB 1
#define RW_STATE_MSB 2
#define RW_STATE_WORD0 3
#define RW_STATE_WORD1 4
|
|
32
|
|
|
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
typedef struct PITChannelState {
int count; /* can be 65536 */
uint16_t latched_count;
uint8_t count_latched;
uint8_t status_latched;
uint8_t status;
uint8_t read_state;
uint8_t write_state;
uint8_t write_latch;
uint8_t rw_mode;
uint8_t mode;
uint8_t bcd; /* not supported */
uint8_t gate; /* timer start */
int64_t count_load_time;
/* irq handling */
int64_t next_transition_time;
QEMUTimer *irq_timer;
int irq;
} PITChannelState;
struct PITState {
PITChannelState channels[3];
};
static PITState pit_state;
|
|
58
|
|
|
59
60
|
static void pit_irq_timer_update(PITChannelState *s, int64_t current_time);
|
|
61
62
63
64
65
|
static int pit_get_count(PITChannelState *s)
{
uint64_t d;
int counter;
|
|
66
|
d = muldiv64(qemu_get_clock(vm_clock) - s->count_load_time, PIT_FREQ, ticks_per_sec);
|
|
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
|
switch(s->mode) {
case 0:
case 1:
case 4:
case 5:
counter = (s->count - d) & 0xffff;
break;
case 3:
/* XXX: may be incorrect for odd counts */
counter = s->count - ((2 * d) % s->count);
break;
default:
counter = s->count - (d % s->count);
break;
}
return counter;
}
/* get pit output bit */
|
|
86
|
static int pit_get_out1(PITChannelState *s, int64_t current_time)
|
|
87
88
89
90
|
{
uint64_t d;
int out;
|
|
91
|
d = muldiv64(current_time - s->count_load_time, PIT_FREQ, ticks_per_sec);
|
|
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
|
switch(s->mode) {
default:
case 0:
out = (d >= s->count);
break;
case 1:
out = (d < s->count);
break;
case 2:
if ((d % s->count) == 0 && d != 0)
out = 1;
else
out = 0;
break;
case 3:
out = (d % s->count) < ((s->count + 1) >> 1);
break;
case 4:
case 5:
out = (d == s->count);
break;
}
return out;
}
|
|
117
118
119
120
121
122
|
int pit_get_out(PITState *pit, int channel, int64_t current_time)
{
PITChannelState *s = &pit->channels[channel];
return pit_get_out1(s, current_time);
}
|
|
123
124
125
|
/* return -1 if no transition will occur. */
static int64_t pit_get_next_transition_time(PITChannelState *s,
int64_t current_time)
|
|
126
|
{
|
|
127
128
|
uint64_t d, next_time, base;
int period2;
|
|
129
|
|
|
130
|
d = muldiv64(current_time - s->count_load_time, PIT_FREQ, ticks_per_sec);
|
|
131
132
133
134
|
switch(s->mode) {
default:
case 0:
case 1:
|
|
135
136
137
138
|
if (d < s->count)
next_time = s->count;
else
return -1;
|
|
139
140
|
break;
case 2:
|
|
141
142
143
144
145
|
base = (d / s->count) * s->count;
if ((d - base) == 0 && d != 0)
next_time = base + s->count;
else
next_time = base + s->count + 1;
|
|
146
147
|
break;
case 3:
|
|
148
149
150
151
152
153
|
base = (d / s->count) * s->count;
period2 = ((s->count + 1) >> 1);
if ((d - base) < period2)
next_time = base + period2;
else
next_time = base + s->count;
|
|
154
155
156
|
break;
case 4:
case 5:
|
|
157
158
159
160
|
if (d < s->count)
next_time = s->count;
else if (d == s->count)
next_time = s->count + 1;
|
|
161
|
else
|
|
162
|
return -1;
|
|
163
164
|
break;
}
|
|
165
166
|
/* convert to timer units */
next_time = s->count_load_time + muldiv64(next_time, ticks_per_sec, PIT_FREQ);
|
|
167
168
169
170
|
/* fix potential rounding problems */
/* XXX: better solution: use a clock at PIT_FREQ Hz */
if (next_time <= current_time)
next_time = current_time + 1;
|
|
171
|
return next_time;
|
|
172
173
174
|
}
/* val must be 0 or 1 */
|
|
175
|
void pit_set_gate(PITState *pit, int channel, int val)
|
|
176
|
{
|
|
177
178
|
PITChannelState *s = &pit->channels[channel];
|
|
179
180
181
182
183
184
185
186
187
188
|
switch(s->mode) {
default:
case 0:
case 4:
/* XXX: just disable/enable counting */
break;
case 1:
case 5:
if (s->gate < val) {
/* restart counting on rising edge */
|
|
189
190
|
s->count_load_time = qemu_get_clock(vm_clock);
pit_irq_timer_update(s, s->count_load_time);
|
|
191
192
193
194
195
196
|
}
break;
case 2:
case 3:
if (s->gate < val) {
/* restart counting on rising edge */
|
|
197
198
|
s->count_load_time = qemu_get_clock(vm_clock);
pit_irq_timer_update(s, s->count_load_time);
|
|
199
200
201
202
203
204
205
|
}
/* XXX: disable/enable counting */
break;
}
s->gate = val;
}
|
|
206
207
208
209
210
211
|
int pit_get_gate(PITState *pit, int channel)
{
PITChannelState *s = &pit->channels[channel];
return s->gate;
}
|
|
212
213
214
215
216
217
218
219
220
221
222
223
|
int pit_get_initial_count(PITState *pit, int channel)
{
PITChannelState *s = &pit->channels[channel];
return s->count;
}
int pit_get_mode(PITState *pit, int channel)
{
PITChannelState *s = &pit->channels[channel];
return s->mode;
}
|
|
224
225
226
227
|
static inline void pit_load_count(PITChannelState *s, int val)
{
if (val == 0)
val = 0x10000;
|
|
228
|
s->count_load_time = qemu_get_clock(vm_clock);
|
|
229
|
s->count = val;
|
|
230
|
pit_irq_timer_update(s, s->count_load_time);
|
|
231
232
|
}
|
|
233
234
235
236
237
238
239
240
241
|
/* if already latched, do not latch again */
static void pit_latch_count(PITChannelState *s)
{
if (!s->count_latched) {
s->latched_count = pit_get_count(s);
s->count_latched = s->rw_mode;
}
}
|
|
242
|
static void pit_ioport_write(void *opaque, uint32_t addr, uint32_t val)
|
|
243
|
{
|
|
244
|
PITState *pit = opaque;
|
|
245
246
247
248
249
250
|
int channel, access;
PITChannelState *s;
addr &= 3;
if (addr == 3) {
channel = val >> 6;
|
|
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
if (channel == 3) {
/* read back command */
for(channel = 0; channel < 3; channel++) {
s = &pit->channels[channel];
if (val & (2 << channel)) {
if (!(val & 0x20)) {
pit_latch_count(s);
}
if (!(val & 0x10) && !s->status_latched) {
/* status latch */
/* XXX: add BCD and null count */
s->status = (pit_get_out1(s, qemu_get_clock(vm_clock)) << 7) |
(s->rw_mode << 4) |
(s->mode << 1) |
s->bcd;
s->status_latched = 1;
}
}
}
} else {
s = &pit->channels[channel];
access = (val >> 4) & 3;
if (access == 0) {
pit_latch_count(s);
} else {
s->rw_mode = access;
s->read_state = access;
s->write_state = access;
s->mode = (val >> 1) & 7;
s->bcd = val & 1;
/* XXX: update irq timer ? */
}
|
|
284
285
|
}
} else {
|
|
286
287
288
|
s = &pit->channels[addr];
switch(s->write_state) {
default:
|
|
289
290
291
292
293
294
295
|
case RW_STATE_LSB:
pit_load_count(s, val);
break;
case RW_STATE_MSB:
pit_load_count(s, val << 8);
break;
case RW_STATE_WORD0:
|
|
296
297
298
|
s->write_latch = val;
s->write_state = RW_STATE_WORD1;
break;
|
|
299
|
case RW_STATE_WORD1:
|
|
300
301
|
pit_load_count(s, s->write_latch | (val << 8));
s->write_state = RW_STATE_WORD0;
|
|
302
303
304
305
306
|
break;
}
}
}
|
|
307
|
static uint32_t pit_ioport_read(void *opaque, uint32_t addr)
|
|
308
|
{
|
|
309
|
PITState *pit = opaque;
|
|
310
311
312
313
|
int ret, count;
PITChannelState *s;
addr &= 3;
|
|
314
315
316
317
318
319
320
321
322
323
324
325
|
s = &pit->channels[addr];
if (s->status_latched) {
s->status_latched = 0;
ret = s->status;
} else if (s->count_latched) {
switch(s->count_latched) {
default:
case RW_STATE_LSB:
ret = s->latched_count & 0xff;
s->count_latched = 0;
break;
case RW_STATE_MSB:
|
|
326
|
ret = s->latched_count >> 8;
|
|
327
328
329
|
s->count_latched = 0;
break;
case RW_STATE_WORD0:
|
|
330
|
ret = s->latched_count & 0xff;
|
|
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
|
s->count_latched = RW_STATE_MSB;
break;
}
} else {
switch(s->read_state) {
default:
case RW_STATE_LSB:
count = pit_get_count(s);
ret = count & 0xff;
break;
case RW_STATE_MSB:
count = pit_get_count(s);
ret = (count >> 8) & 0xff;
break;
case RW_STATE_WORD0:
count = pit_get_count(s);
ret = count & 0xff;
s->read_state = RW_STATE_WORD1;
break;
case RW_STATE_WORD1:
count = pit_get_count(s);
ret = (count >> 8) & 0xff;
s->read_state = RW_STATE_WORD0;
break;
}
|
|
356
357
358
359
|
}
return ret;
}
|
|
360
361
362
363
364
365
366
367
|
static void pit_irq_timer_update(PITChannelState *s, int64_t current_time)
{
int64_t expire_time;
int irq_level;
if (!s->irq_timer)
return;
expire_time = pit_get_next_transition_time(s, current_time);
|
|
368
|
irq_level = pit_get_out1(s, current_time);
|
|
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
|
pic_set_irq(s->irq, irq_level);
#ifdef DEBUG_PIT
printf("irq_level=%d next_delay=%f\n",
irq_level,
(double)(expire_time - current_time) / ticks_per_sec);
#endif
s->next_transition_time = expire_time;
if (expire_time != -1)
qemu_mod_timer(s->irq_timer, expire_time);
else
qemu_del_timer(s->irq_timer);
}
static void pit_irq_timer(void *opaque)
{
PITChannelState *s = opaque;
pit_irq_timer_update(s, s->next_transition_time);
}
static void pit_save(QEMUFile *f, void *opaque)
{
|
|
391
|
PITState *pit = opaque;
|
|
392
393
394
395
|
PITChannelState *s;
int i;
for(i = 0; i < 3; i++) {
|
|
396
|
s = &pit->channels[i];
|
|
397
398
|
qemu_put_be32s(f, &s->count);
qemu_put_be16s(f, &s->latched_count);
|
|
399
400
401
402
403
404
405
|
qemu_put_8s(f, &s->count_latched);
qemu_put_8s(f, &s->status_latched);
qemu_put_8s(f, &s->status);
qemu_put_8s(f, &s->read_state);
qemu_put_8s(f, &s->write_state);
qemu_put_8s(f, &s->write_latch);
qemu_put_8s(f, &s->rw_mode);
|
|
406
407
408
409
410
411
412
413
414
415
416
417
418
|
qemu_put_8s(f, &s->mode);
qemu_put_8s(f, &s->bcd);
qemu_put_8s(f, &s->gate);
qemu_put_be64s(f, &s->count_load_time);
if (s->irq_timer) {
qemu_put_be64s(f, &s->next_transition_time);
qemu_put_timer(f, s->irq_timer);
}
}
}
static int pit_load(QEMUFile *f, void *opaque, int version_id)
{
|
|
419
|
PITState *pit = opaque;
|
|
420
421
422
423
424
425
426
|
PITChannelState *s;
int i;
if (version_id != 1)
return -EINVAL;
for(i = 0; i < 3; i++) {
|
|
427
|
s = &pit->channels[i];
|
|
428
429
|
qemu_get_be32s(f, &s->count);
qemu_get_be16s(f, &s->latched_count);
|
|
430
431
432
433
434
435
436
|
qemu_get_8s(f, &s->count_latched);
qemu_get_8s(f, &s->status_latched);
qemu_get_8s(f, &s->status);
qemu_get_8s(f, &s->read_state);
qemu_get_8s(f, &s->write_state);
qemu_get_8s(f, &s->write_latch);
qemu_get_8s(f, &s->rw_mode);
|
|
437
438
439
440
441
442
443
444
445
446
447
448
|
qemu_get_8s(f, &s->mode);
qemu_get_8s(f, &s->bcd);
qemu_get_8s(f, &s->gate);
qemu_get_be64s(f, &s->count_load_time);
if (s->irq_timer) {
qemu_get_be64s(f, &s->next_transition_time);
qemu_get_timer(f, s->irq_timer);
}
}
return 0;
}
|
|
449
|
static void pit_reset(void *opaque)
|
|
450
|
{
|
|
451
|
PITState *pit = opaque;
|
|
452
453
454
455
|
PITChannelState *s;
int i;
for(i = 0;i < 3; i++) {
|
|
456
|
s = &pit->channels[i];
|
|
457
458
459
460
|
s->mode = 3;
s->gate = (i != 2);
pit_load_count(s, 0);
}
|
|
461
462
463
464
465
466
467
468
469
470
471
|
}
PITState *pit_init(int base, int irq)
{
PITState *pit = &pit_state;
PITChannelState *s;
s = &pit->channels[0];
/* the timer 0 is connected to an IRQ */
s->irq_timer = qemu_new_timer(vm_clock, pit_irq_timer, s);
s->irq = irq;
|
|
472
|
|
|
473
|
register_savevm("i8254", base, 1, pit_save, pit_load, pit);
|
|
474
|
|
|
475
|
qemu_register_reset(pit_reset, pit);
|
|
476
477
|
register_ioport_write(base, 4, 1, pit_ioport_write, pit);
register_ioport_read(base, 3, 1, pit_ioport_read, pit);
|
|
478
479
480
|
pit_reset(pit);
|
|
481
|
return pit;
|
|
482
|
}
|