Blame view

kvm-all.c 27.3 KB
1
2
3
4
/*
 * QEMU KVM support
 *
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
7
8
 *
 * Authors:
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
11
12
13
14
15
16
17
18
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
19
#include <stdarg.h>
20
21
22
23
24

#include <linux/kvm.h>

#include "qemu-common.h"
#include "sysemu.h"
Jan Kiszka authored
25
#include "hw/hw.h"
26
#include "gdbstub.h"
27
28
#include "kvm.h"
aliguori authored
29
30
31
/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
#define PAGE_SIZE TARGET_PAGE_SIZE
32
33
34
35
36
37
38
39
40
41
//#define DEBUG_KVM

#ifdef DEBUG_KVM
#define dprintf(fmt, ...) \
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
#define dprintf(fmt, ...) \
    do { } while (0)
#endif
42
43
44
45
46
47
48
49
typedef struct KVMSlot
{
    target_phys_addr_t start_addr;
    ram_addr_t memory_size;
    ram_addr_t phys_offset;
    int slot;
    int flags;
} KVMSlot;
50
51
52
typedef struct kvm_dirty_log KVMDirtyLog;
53
54
55
56
57
58
59
int kvm_allowed = 0;

struct KVMState
{
    KVMSlot slots[32];
    int fd;
    int vmfd;
aliguori authored
60
    int coalesced_mmio;
61
    int broken_set_mem_region;
62
    int migration_log;
63
64
65
#ifdef KVM_CAP_SET_GUEST_DEBUG
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
#endif
66
67
    int irqchip_in_kernel;
    int pit_in_kernel;
68
69
70
71
72
73
74
75
76
};

static KVMState *kvm_state;

static KVMSlot *kvm_alloc_slot(KVMState *s)
{
    int i;

    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
77
78
79
        /* KVM private memory slots */
        if (i >= 8 && i < 12)
            continue;
80
81
82
83
        if (s->slots[i].memory_size == 0)
            return &s->slots[i];
    }
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    fprintf(stderr, "%s: no free slot available\n", __func__);
    abort();
}

static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
                                         target_phys_addr_t start_addr,
                                         target_phys_addr_t end_addr)
{
    int i;

    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
        KVMSlot *mem = &s->slots[i];

        if (start_addr == mem->start_addr &&
            end_addr == mem->start_addr + mem->memory_size) {
            return mem;
        }
    }
103
104
105
    return NULL;
}
106
107
108
109
110
111
/*
 * Find overlapping slot with lowest start address
 */
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
                                            target_phys_addr_t start_addr,
                                            target_phys_addr_t end_addr)
112
{
113
    KVMSlot *found = NULL;
114
115
116
117
118
    int i;

    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
        KVMSlot *mem = &s->slots[i];
119
120
121
122
123
124
125
126
127
        if (mem->memory_size == 0 ||
            (found && found->start_addr < mem->start_addr)) {
            continue;
        }

        if (end_addr > mem->start_addr &&
            start_addr < mem->start_addr + mem->memory_size) {
            found = mem;
        }
128
129
    }
130
    return found;
131
132
}
133
134
135
136
137
138
139
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
{
    struct kvm_userspace_memory_region mem;

    mem.slot = slot->slot;
    mem.guest_phys_addr = slot->start_addr;
    mem.memory_size = slot->memory_size;
140
    mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
141
    mem.flags = slot->flags;
142
143
144
    if (s->migration_log) {
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
    }
145
146
147
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
}
148
149
150
151
152
153
154
155
156
static void kvm_reset_vcpu(void *opaque)
{
    CPUState *env = opaque;

    if (kvm_arch_put_registers(env)) {
        fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
        abort();
    }
}
157
158
159
160
161
162
163
164
165
166
167
168
int kvm_irqchip_in_kernel(void)
{
    return kvm_state->irqchip_in_kernel;
}

int kvm_pit_in_kernel(void)
{
    return kvm_state->pit_in_kernel;
}
169
170
171
172
173
174
175
176
int kvm_init_vcpu(CPUState *env)
{
    KVMState *s = kvm_state;
    long mmap_size;
    int ret;

    dprintf("kvm_init_vcpu\n");
177
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    if (ret < 0) {
        dprintf("kvm_create_vcpu failed\n");
        goto err;
    }

    env->kvm_fd = ret;
    env->kvm_state = s;

    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
    if (mmap_size < 0) {
        dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
        goto err;
    }

    env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
                        env->kvm_fd, 0);
    if (env->kvm_run == MAP_FAILED) {
        ret = -errno;
        dprintf("mmap'ing vcpu state failed\n");
        goto err;
    }

    ret = kvm_arch_init_vcpu(env);
201
    if (ret == 0) {
202
        qemu_register_reset(kvm_reset_vcpu, env);
203
204
        ret = kvm_arch_put_registers(env);
    }
205
206
207
208
err:
    return ret;
}
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
int kvm_put_mp_state(CPUState *env)
{
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };

    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
}

int kvm_get_mp_state(CPUState *env)
{
    struct kvm_mp_state mp_state;
    int ret;

    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
    if (ret < 0) {
        return ret;
    }
    env->mp_state = mp_state.mp_state;
    return 0;
}
229
230
231
/*
 * dirty pages logging control
 */
232
static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
233
                                      ram_addr_t size, int flags, int mask)
234
235
{
    KVMState *s = kvm_state;
236
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
237
238
    int old_flags;
239
    if (mem == NULL)  {
240
241
            fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
                    TARGET_FMT_plx "\n", __func__, phys_addr,
242
                    (target_phys_addr_t)(phys_addr + size - 1));
243
244
245
            return -EINVAL;
    }
246
    old_flags = mem->flags;
247
248
    flags = (mem->flags & ~mask) | flags;
249
250
    mem->flags = flags;
251
252
253
254
255
256
257
258
    /* If nothing changed effectively, no need to issue ioctl */
    if (s->migration_log) {
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
    }
    if (flags == old_flags) {
            return 0;
    }
259
260
261
    return kvm_set_user_memory_region(s, mem);
}
262
int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
263
{
264
        return kvm_dirty_pages_log_change(phys_addr, size,
265
266
267
268
                                          KVM_MEM_LOG_DIRTY_PAGES,
                                          KVM_MEM_LOG_DIRTY_PAGES);
}
269
int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
270
{
271
        return kvm_dirty_pages_log_change(phys_addr, size,
272
273
274
275
                                          0,
                                          KVM_MEM_LOG_DIRTY_PAGES);
}
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
int kvm_set_migration_log(int enable)
{
    KVMState *s = kvm_state;
    KVMSlot *mem;
    int i, err;

    s->migration_log = enable;

    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
        mem = &s->slots[i];

        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
            continue;
        }
        err = kvm_set_user_memory_region(s, mem);
        if (err) {
            return err;
        }
    }
    return 0;
}
298
299
300
301
302
static int test_le_bit(unsigned long nr, unsigned char *addr)
{
    return (addr[nr >> 3] >> (nr & 7)) & 1;
}
303
304
305
306
307
/**
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
 * This means all bits are set to dirty.
 *
308
 * @start_add: start of logged region.
309
310
 * @end_addr: end of logged region.
 */
311
312
int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
                                   target_phys_addr_t end_addr)
313
314
{
    KVMState *s = kvm_state;
315
316
    unsigned long size, allocated_size = 0;
    target_phys_addr_t phys_addr;
317
    ram_addr_t addr;
318
319
320
    KVMDirtyLog d;
    KVMSlot *mem;
    int ret = 0;
321
    int r;
322
323
324
325
326
327
328
    d.dirty_bitmap = NULL;
    while (start_addr < end_addr) {
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
        if (mem == NULL) {
            break;
        }
329
330
331
332
333
334
        /* We didn't activate dirty logging? Don't care then. */
        if(!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
            continue;
        }
335
336
337
338
339
340
341
342
        size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
        if (!d.dirty_bitmap) {
            d.dirty_bitmap = qemu_malloc(size);
        } else if (size > allocated_size) {
            d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
        }
        allocated_size = size;
        memset(d.dirty_bitmap, 0, allocated_size);
343
344
        d.slot = mem->slot;
345
346
347
        r = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
        if (r == -EINVAL) {
348
349
350
351
            dprintf("ioctl failed %d\n", errno);
            ret = -1;
            break;
        }
352
353
354
355
        for (phys_addr = mem->start_addr, addr = mem->phys_offset;
             phys_addr < mem->start_addr + mem->memory_size;
             phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
356
            unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
357
358
            unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
359
            if (test_le_bit(nr, bitmap)) {
360
                cpu_physical_memory_set_dirty(addr);
361
362
363
364
            } else if (r < 0) {
                /* When our KVM implementation doesn't know about dirty logging
                 * we can just assume it's always dirty and be fine. */
                cpu_physical_memory_set_dirty(addr);
365
366
367
            }
        }
        start_addr = phys_addr;
368
369
    }
    qemu_free(d.dirty_bitmap);
370
371

    return ret;
372
373
}
aliguori authored
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
{
    int ret = -ENOSYS;
#ifdef KVM_CAP_COALESCED_MMIO
    KVMState *s = kvm_state;

    if (s->coalesced_mmio) {
        struct kvm_coalesced_mmio_zone zone;

        zone.addr = start;
        zone.size = size;

        ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
    }
#endif

    return ret;
}

int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
{
    int ret = -ENOSYS;
#ifdef KVM_CAP_COALESCED_MMIO
    KVMState *s = kvm_state;

    if (s->coalesced_mmio) {
        struct kvm_coalesced_mmio_zone zone;

        zone.addr = start;
        zone.size = size;

        ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
    }
#endif

    return ret;
}
412
413
414
415
416
417
418
419
420
421
422
423
int kvm_check_extension(KVMState *s, unsigned int extension)
{
    int ret;

    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
    if (ret < 0) {
        ret = 0;
    }

    return ret;
}
424
425
int kvm_init(int smp_cpus)
{
426
427
428
    static const char upgrade_note[] =
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
        "(see http://sourceforge.net/projects/kvm).\n";
429
430
431
432
    KVMState *s;
    int ret;
    int i;
433
434
    if (smp_cpus > 1) {
        fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
435
        return -EINVAL;
436
    }
437
438
439

    s = qemu_mallocz(sizeof(KVMState));
440
441
442
#ifdef KVM_CAP_SET_GUEST_DEBUG
    TAILQ_INIT(&s->kvm_sw_breakpoints);
#endif
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
    for (i = 0; i < ARRAY_SIZE(s->slots); i++)
        s->slots[i].slot = i;

    s->vmfd = -1;
    s->fd = open("/dev/kvm", O_RDWR);
    if (s->fd == -1) {
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
        ret = -errno;
        goto err;
    }

    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
    if (ret < KVM_API_VERSION) {
        if (ret > 0)
            ret = -EINVAL;
        fprintf(stderr, "kvm version too old\n");
        goto err;
    }

    if (ret > KVM_API_VERSION) {
        ret = -EINVAL;
        fprintf(stderr, "kvm version not supported\n");
        goto err;
    }

    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
    if (s->vmfd < 0)
        goto err;

    /* initially, KVM allocated its own memory and we had to jump through
     * hooks to make phys_ram_base point to this.  Modern versions of KVM
474
     * just use a user allocated buffer so we can use regular pages
475
476
     * unmodified.  Make sure we have a sufficiently modern version of KVM.
     */
477
478
    if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
        ret = -EINVAL;
479
480
        fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
                upgrade_note);
481
482
483
        goto err;
    }
484
485
486
    /* There was a nasty bug in < kvm-80 that prevents memory slots from being
     * destroyed properly.  Since we rely on this capability, refuse to work
     * with any kernel without this capability. */
487
488
    if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
        ret = -EINVAL;
489
490

        fprintf(stderr,
491
492
                "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
                upgrade_note);
493
494
495
        goto err;
    }
aliguori authored
496
#ifdef KVM_CAP_COALESCED_MMIO
497
498
499
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
#else
    s->coalesced_mmio = 0;
aliguori authored
500
501
#endif
502
503
504
505
506
507
508
509
    s->broken_set_mem_region = 1;
#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
    if (ret > 0) {
        s->broken_set_mem_region = 0;
    }
#endif
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
    ret = kvm_arch_init(s, smp_cpus);
    if (ret < 0)
        goto err;

    kvm_state = s;

    return 0;

err:
    if (s) {
        if (s->vmfd != -1)
            close(s->vmfd);
        if (s->fd != -1)
            close(s->fd);
    }
    qemu_free(s);

    return ret;
}

static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
                         int direction, int size, uint32_t count)
{
    int i;
    uint8_t *ptr = data;

    for (i = 0; i < count; i++) {
        if (direction == KVM_EXIT_IO_IN) {
            switch (size) {
            case 1:
                stb_p(ptr, cpu_inb(env, port));
                break;
            case 2:
                stw_p(ptr, cpu_inw(env, port));
                break;
            case 4:
                stl_p(ptr, cpu_inl(env, port));
                break;
            }
        } else {
            switch (size) {
            case 1:
                cpu_outb(env, port, ldub_p(ptr));
                break;
            case 2:
                cpu_outw(env, port, lduw_p(ptr));
                break;
            case 4:
                cpu_outl(env, port, ldl_p(ptr));
                break;
            }
        }

        ptr += size;
    }

    return 1;
}
aliguori authored
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
{
#ifdef KVM_CAP_COALESCED_MMIO
    KVMState *s = kvm_state;
    if (s->coalesced_mmio) {
        struct kvm_coalesced_mmio_ring *ring;

        ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
        while (ring->first != ring->last) {
            struct kvm_coalesced_mmio *ent;

            ent = &ring->coalesced_mmio[ring->first];

            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
            /* FIXME smp_wmb() */
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
        }
    }
#endif
}
590
591
592
593
594
595
596
597
int kvm_cpu_exec(CPUState *env)
{
    struct kvm_run *run = env->kvm_run;
    int ret;

    dprintf("kvm_cpu_exec()\n");

    do {
598
        if (env->exit_request) {
599
600
601
602
603
            dprintf("interrupt exit requested\n");
            ret = 0;
            break;
        }
604
        kvm_arch_pre_run(env, run);
605
606
607
608
609
610
611
612
613
614
615
616
617
618
        ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
        kvm_arch_post_run(env, run);

        if (ret == -EINTR || ret == -EAGAIN) {
            dprintf("io window exit\n");
            ret = 0;
            break;
        }

        if (ret < 0) {
            dprintf("kvm run failed %s\n", strerror(-ret));
            abort();
        }
aliguori authored
619
620
        kvm_run_coalesced_mmio(env, run);
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
        ret = 0; /* exit loop */
        switch (run->exit_reason) {
        case KVM_EXIT_IO:
            dprintf("handle_io\n");
            ret = kvm_handle_io(env, run->io.port,
                                (uint8_t *)run + run->io.data_offset,
                                run->io.direction,
                                run->io.size,
                                run->io.count);
            break;
        case KVM_EXIT_MMIO:
            dprintf("handle_mmio\n");
            cpu_physical_memory_rw(run->mmio.phys_addr,
                                   run->mmio.data,
                                   run->mmio.len,
                                   run->mmio.is_write);
            ret = 1;
            break;
        case KVM_EXIT_IRQ_WINDOW_OPEN:
            dprintf("irq_window_open\n");
            break;
        case KVM_EXIT_SHUTDOWN:
            dprintf("shutdown\n");
            qemu_system_reset_request();
            ret = 1;
            break;
        case KVM_EXIT_UNKNOWN:
            dprintf("kvm_exit_unknown\n");
            break;
        case KVM_EXIT_FAIL_ENTRY:
            dprintf("kvm_exit_fail_entry\n");
            break;
        case KVM_EXIT_EXCEPTION:
            dprintf("kvm_exit_exception\n");
            break;
        case KVM_EXIT_DEBUG:
            dprintf("kvm_exit_debug\n");
658
659
660
661
662
663
664
665
666
667
#ifdef KVM_CAP_SET_GUEST_DEBUG
            if (kvm_arch_debug(&run->debug.arch)) {
                gdb_set_stop_cpu(env);
                vm_stop(EXCP_DEBUG);
                env->exception_index = EXCP_DEBUG;
                return 0;
            }
            /* re-enter, this exception was guest-internal */
            ret = 1;
#endif /* KVM_CAP_SET_GUEST_DEBUG */
668
669
670
671
672
673
674
675
            break;
        default:
            dprintf("kvm_arch_handle_exit\n");
            ret = kvm_arch_handle_exit(env, run);
            break;
        }
    } while (ret > 0);
676
677
    if (env->exit_request) {
        env->exit_request = 0;
678
679
680
        env->exception_index = EXCP_INTERRUPT;
    }
681
682
683
684
685
686
687
688
689
    return ret;
}

void kvm_set_phys_mem(target_phys_addr_t start_addr,
                      ram_addr_t size,
                      ram_addr_t phys_offset)
{
    KVMState *s = kvm_state;
    ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
690
691
    KVMSlot *mem, old;
    int err;
692
693
    if (start_addr & ~TARGET_PAGE_MASK) {
694
695
696
697
698
699
700
701
702
        if (flags >= IO_MEM_UNASSIGNED) {
            if (!kvm_lookup_overlapping_slot(s, start_addr,
                                             start_addr + size)) {
                return;
            }
            fprintf(stderr, "Unaligned split of a KVM memory slot\n");
        } else {
            fprintf(stderr, "Only page-aligned memory slots supported\n");
        }
703
704
705
        abort();
    }
706
707
708
    /* KVM does not support read-only slots */
    phys_offset &= ~IO_MEM_ROM;
709
710
711
712
713
    while (1) {
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
        if (!mem) {
            break;
        }
714
715
716
717
718
719
        if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
            (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
            /* The new slot fits into the existing one and comes with
             * identical parameters - nothing to be done. */
720
            return;
721
722
723
724
725
726
727
728
729
730
        }

        old = *mem;

        /* unregister the overlapping slot */
        mem->memory_size = 0;
        err = kvm_set_user_memory_region(s, mem);
        if (err) {
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
                    __func__, strerror(-err));
731
732
            abort();
        }
733
734
735
736
737
738
739
740
741

        /* Workaround for older KVM versions: we can't join slots, even not by
         * unregistering the previous ones and then registering the larger
         * slot. We have to maintain the existing fragmentation. Sigh.
         *
         * This workaround assumes that the new slot starts at the same
         * address as the first existing one. If not or if some overlapping
         * slot comes around later, we will fail (not seen in practice so far)
         * - and actually require a recent KVM version. */
742
743
        if (s->broken_set_mem_region &&
            old.start_addr == start_addr && old.memory_size < size &&
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
            flags < IO_MEM_UNASSIGNED) {
            mem = kvm_alloc_slot(s);
            mem->memory_size = old.memory_size;
            mem->start_addr = old.start_addr;
            mem->phys_offset = old.phys_offset;
            mem->flags = 0;

            err = kvm_set_user_memory_region(s, mem);
            if (err) {
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
                        strerror(-err));
                abort();
            }

            start_addr += old.memory_size;
            phys_offset += old.memory_size;
            size -= old.memory_size;
            continue;
        }

        /* register prefix slot */
        if (old.start_addr < start_addr) {
            mem = kvm_alloc_slot(s);
            mem->memory_size = start_addr - old.start_addr;
            mem->start_addr = old.start_addr;
            mem->phys_offset = old.phys_offset;
            mem->flags = 0;

            err = kvm_set_user_memory_region(s, mem);
            if (err) {
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
                        __func__, strerror(-err));
                abort();
            }
        }

        /* register suffix slot */
        if (old.start_addr + old.memory_size > start_addr + size) {
            ram_addr_t size_delta;

            mem = kvm_alloc_slot(s);
            mem->start_addr = start_addr + size;
            size_delta = mem->start_addr - old.start_addr;
            mem->memory_size = old.memory_size - size_delta;
            mem->phys_offset = old.phys_offset + size_delta;
            mem->flags = 0;

            err = kvm_set_user_memory_region(s, mem);
            if (err) {
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
                        __func__, strerror(-err));
                abort();
            }
        }
798
    }
799
800
801
802
803

    /* in case the KVM bug workaround already "consumed" the new slot */
    if (!size)
        return;
804
805
806
807
808
809
    /* KVM does not need to know about this memory */
    if (flags >= IO_MEM_UNASSIGNED)
        return;

    mem = kvm_alloc_slot(s);
    mem->memory_size = size;
810
811
    mem->start_addr = start_addr;
    mem->phys_offset = phys_offset;
812
813
    mem->flags = 0;
814
815
816
817
818
819
    err = kvm_set_user_memory_region(s, mem);
    if (err) {
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
                strerror(-err));
        abort();
    }
820
821
}
822
int kvm_ioctl(KVMState *s, int type, ...)
823
824
{
    int ret;
825
826
    void *arg;
    va_list ap;
827
828
829
830
831
832
    va_start(ap, type);
    arg = va_arg(ap, void *);
    va_end(ap);

    ret = ioctl(s->fd, type, arg);
833
834
835
836
837
838
    if (ret == -1)
        ret = -errno;

    return ret;
}
839
int kvm_vm_ioctl(KVMState *s, int type, ...)
840
841
{
    int ret;
842
843
844
845
846
847
    void *arg;
    va_list ap;

    va_start(ap, type);
    arg = va_arg(ap, void *);
    va_end(ap);
848
849
    ret = ioctl(s->vmfd, type, arg);
850
851
852
853
854
855
    if (ret == -1)
        ret = -errno;

    return ret;
}
856
int kvm_vcpu_ioctl(CPUState *env, int type, ...)
857
858
{
    int ret;
859
860
861
862
863
864
    void *arg;
    va_list ap;

    va_start(ap, type);
    arg = va_arg(ap, void *);
    va_end(ap);
865
866
    ret = ioctl(env->kvm_fd, type, arg);
867
868
869
870
871
    if (ret == -1)
        ret = -errno;

    return ret;
}
aliguori authored
872
873
874

int kvm_has_sync_mmu(void)
{
875
#ifdef KVM_CAP_SYNC_MMU
aliguori authored
876
877
    KVMState *s = kvm_state;
878
879
    return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
#else
aliguori authored
880
    return 0;
881
#endif
aliguori authored
882
}
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
void kvm_setup_guest_memory(void *start, size_t size)
{
    if (!kvm_has_sync_mmu()) {
#ifdef MADV_DONTFORK
        int ret = madvise(start, size, MADV_DONTFORK);

        if (ret) {
            perror("madvice");
            exit(1);
        }
#else
        fprintf(stderr,
                "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
        exit(1);
#endif
    }
}
902
#ifdef KVM_CAP_SET_GUEST_DEBUG
Luiz Capitulino authored
903
904
905
906
907
908
909
910
911
static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
{
    if (env == cpu_single_env) {
        func(data);
        return;
    }
    abort();
}
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
                                                 target_ulong pc)
{
    struct kvm_sw_breakpoint *bp;

    TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
        if (bp->pc == pc)
            return bp;
    }
    return NULL;
}

int kvm_sw_breakpoints_active(CPUState *env)
{
    return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
}
Glauber Costa authored
929
930
931
932
933
934
935
936
937
938
939
940
struct kvm_set_guest_debug_data {
    struct kvm_guest_debug dbg;
    CPUState *env;
    int err;
};

static void kvm_invoke_set_guest_debug(void *data)
{
    struct kvm_set_guest_debug_data *dbg_data = data;
    dbg_data->err = kvm_vcpu_ioctl(dbg_data->env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
}
941
942
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
{
Glauber Costa authored
943
    struct kvm_set_guest_debug_data data;
944
Glauber Costa authored
945
    data.dbg.control = 0;
946
    if (env->singlestep_enabled)
Glauber Costa authored
947
        data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
948
Glauber Costa authored
949
950
951
    kvm_arch_update_guest_debug(env, &data.dbg);
    data.dbg.control |= reinject_trap;
    data.env = env;
952
Glauber Costa authored
953
954
    on_vcpu(env, kvm_invoke_set_guest_debug, &data);
    return data.err;
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
}

int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
                          target_ulong len, int type)
{
    struct kvm_sw_breakpoint *bp;
    CPUState *env;
    int err;

    if (type == GDB_BREAKPOINT_SW) {
        bp = kvm_find_sw_breakpoint(current_env, addr);
        if (bp) {
            bp->use_count++;
            return 0;
        }

        bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
        if (!bp)
            return -ENOMEM;

        bp->pc = addr;
        bp->use_count = 1;
        err = kvm_arch_insert_sw_breakpoint(current_env, bp);
        if (err) {
            free(bp);
            return err;
        }

        TAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
                          bp, entry);
    } else {
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
        if (err)
            return err;
    }

    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        err = kvm_update_guest_debug(env, 0);
        if (err)
            return err;
    }
    return 0;
}

int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
                          target_ulong len, int type)
{
    struct kvm_sw_breakpoint *bp;
    CPUState *env;
    int err;

    if (type == GDB_BREAKPOINT_SW) {
        bp = kvm_find_sw_breakpoint(current_env, addr);
        if (!bp)
            return -ENOENT;

        if (bp->use_count > 1) {
            bp->use_count--;
            return 0;
        }

        err = kvm_arch_remove_sw_breakpoint(current_env, bp);
        if (err)
            return err;

        TAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
        qemu_free(bp);
    } else {
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
        if (err)
            return err;
    }

    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        err = kvm_update_guest_debug(env, 0);
        if (err)
            return err;
    }
    return 0;
}

void kvm_remove_all_breakpoints(CPUState *current_env)
{
    struct kvm_sw_breakpoint *bp, *next;
    KVMState *s = current_env->kvm_state;
    CPUState *env;

    TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
        if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
            /* Try harder to find a CPU that currently sees the breakpoint. */
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
                if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
                    break;
            }
        }
    }
    kvm_arch_remove_all_hw_breakpoints();

    for (env = first_cpu; env != NULL; env = env->next_cpu)
        kvm_update_guest_debug(env, 0);
}

#else /* !KVM_CAP_SET_GUEST_DEBUG */

int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
{
    return -EINVAL;
}

int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
                          target_ulong len, int type)
{
    return -EINVAL;
}

int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
                          target_ulong len, int type)
{
    return -EINVAL;
}

void kvm_remove_all_breakpoints(CPUState *current_env)
{
}
#endif /* !KVM_CAP_SET_GUEST_DEBUG */