blocking_tcp_client.cpp
5.87 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
//
// blocking_tcp_client.cpp
// ~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2020 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#include "asio/buffer.hpp"
#include "asio/connect.hpp"
#include "asio/io_context.hpp"
#include "asio/ip/tcp.hpp"
#include "asio/read_until.hpp"
#include "asio/system_error.hpp"
#include "asio/write.hpp"
#include <cstdlib>
#include <iostream>
#include <string>
using asio::ip::tcp;
//----------------------------------------------------------------------
//
// This class manages socket timeouts by running the io_context using the timed
// io_context::run_for() member function. Each asynchronous operation is given
// a timeout within which it must complete. The socket operations themselves
// use lambdas as completion handlers. For a given socket operation, the client
// object runs the io_context to block thread execution until the operation
// completes or the timeout is reached. If the io_context::run_for() function
// times out, the socket is closed and the outstanding asynchronous operation
// is cancelled.
//
class client
{
public:
void connect(const std::string& host, const std::string& service,
std::chrono::steady_clock::duration timeout)
{
// Resolve the host name and service to a list of endpoints.
auto endpoints = tcp::resolver(io_context_).resolve(host, service);
// Start the asynchronous operation itself. The lambda that is used as a
// callback will update the error variable when the operation completes.
// The blocking_udp_client.cpp example shows how you can use std::bind
// rather than a lambda.
std::error_code error;
asio::async_connect(socket_, endpoints,
[&](const std::error_code& result_error,
const tcp::endpoint& /*result_endpoint*/)
{
error = result_error;
});
// Run the operation until it completes, or until the timeout.
run(timeout);
// Determine whether a connection was successfully established.
if (error)
throw std::system_error(error);
}
std::string read_line(std::chrono::steady_clock::duration timeout)
{
// Start the asynchronous operation. The lambda that is used as a callback
// will update the error and n variables when the operation completes. The
// blocking_udp_client.cpp example shows how you can use std::bind rather
// than a lambda.
std::error_code error;
std::size_t n = 0;
asio::async_read_until(socket_,
asio::dynamic_buffer(input_buffer_), '\n',
[&](const std::error_code& result_error,
std::size_t result_n)
{
error = result_error;
n = result_n;
});
// Run the operation until it completes, or until the timeout.
run(timeout);
// Determine whether the read completed successfully.
if (error)
throw std::system_error(error);
std::string line(input_buffer_.substr(0, n - 1));
input_buffer_.erase(0, n);
return line;
}
void write_line(const std::string& line,
std::chrono::steady_clock::duration timeout)
{
std::string data = line + "\n";
// Start the asynchronous operation itself. The lambda that is used as a
// callback will update the error variable when the operation completes.
// The blocking_udp_client.cpp example shows how you can use std::bind
// rather than a lambda.
std::error_code error;
asio::async_write(socket_, asio::buffer(data),
[&](const std::error_code& result_error,
std::size_t /*result_n*/)
{
error = result_error;
});
// Run the operation until it completes, or until the timeout.
run(timeout);
// Determine whether the read completed successfully.
if (error)
throw std::system_error(error);
}
private:
void run(std::chrono::steady_clock::duration timeout)
{
// Restart the io_context, as it may have been left in the "stopped" state
// by a previous operation.
io_context_.restart();
// Block until the asynchronous operation has completed, or timed out. If
// the pending asynchronous operation is a composed operation, the deadline
// applies to the entire operation, rather than individual operations on
// the socket.
io_context_.run_for(timeout);
// If the asynchronous operation completed successfully then the io_context
// would have been stopped due to running out of work. If it was not
// stopped, then the io_context::run_for call must have timed out.
if (!io_context_.stopped())
{
// Close the socket to cancel the outstanding asynchronous operation.
socket_.close();
// Run the io_context again until the operation completes.
io_context_.run();
}
}
asio::io_context io_context_;
tcp::socket socket_{io_context_};
std::string input_buffer_;
};
//----------------------------------------------------------------------
int main(int argc, char* argv[])
{
try
{
if (argc != 4)
{
std::cerr << "Usage: blocking_tcp_client <host> <port> <message>\n";
return 1;
}
client c;
c.connect(argv[1], argv[2], std::chrono::seconds(10));
auto time_sent = std::chrono::steady_clock::now();
c.write_line(argv[3], std::chrono::seconds(10));
for (;;)
{
std::string line = c.read_line(std::chrono::seconds(10));
// Keep going until we get back the line that was sent.
if (line == argv[3])
break;
}
auto time_received = std::chrono::steady_clock::now();
std::cout << "Round trip time: ";
std::cout << std::chrono::duration_cast<
std::chrono::microseconds>(
time_received - time_sent).count();
std::cout << " microseconds\n";
}
catch (std::exception& e)
{
std::cerr << "Exception: " << e.what() << "\n";
}
return 0;
}