epoll_reactor.ipp 21.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
//
// detail/impl/epoll_reactor.ipp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2020 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#ifndef ASIO_DETAIL_IMPL_EPOLL_REACTOR_IPP
#define ASIO_DETAIL_IMPL_EPOLL_REACTOR_IPP

#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)

#include "asio/detail/config.hpp"

#if defined(ASIO_HAS_EPOLL)

#include <cstddef>
#include <sys/epoll.h>
#include "asio/detail/epoll_reactor.hpp"
#include "asio/detail/throw_error.hpp"
#include "asio/error.hpp"

#if defined(ASIO_HAS_TIMERFD)
# include <sys/timerfd.h>
#endif // defined(ASIO_HAS_TIMERFD)

#include "asio/detail/push_options.hpp"

namespace asio {
namespace detail {

epoll_reactor::epoll_reactor(asio::execution_context& ctx)
  : execution_context_service_base<epoll_reactor>(ctx),
    scheduler_(use_service<scheduler>(ctx)),
    mutex_(ASIO_CONCURRENCY_HINT_IS_LOCKING(
          REACTOR_REGISTRATION, scheduler_.concurrency_hint())),
    interrupter_(),
    epoll_fd_(do_epoll_create()),
    timer_fd_(do_timerfd_create()),
    shutdown_(false),
    registered_descriptors_mutex_(mutex_.enabled())
{
  // Add the interrupter's descriptor to epoll.
  epoll_event ev = { 0, { 0 } };
  ev.events = EPOLLIN | EPOLLERR | EPOLLET;
  ev.data.ptr = &interrupter_;
  epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, interrupter_.read_descriptor(), &ev);
  interrupter_.interrupt();

  // Add the timer descriptor to epoll.
  if (timer_fd_ != -1)
  {
    ev.events = EPOLLIN | EPOLLERR;
    ev.data.ptr = &timer_fd_;
    epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, timer_fd_, &ev);
  }
}

epoll_reactor::~epoll_reactor()
{
  if (epoll_fd_ != -1)
    close(epoll_fd_);
  if (timer_fd_ != -1)
    close(timer_fd_);
}

void epoll_reactor::shutdown()
{
  mutex::scoped_lock lock(mutex_);
  shutdown_ = true;
  lock.unlock();

  op_queue<operation> ops;

  while (descriptor_state* state = registered_descriptors_.first())
  {
    for (int i = 0; i < max_ops; ++i)
      ops.push(state->op_queue_[i]);
    state->shutdown_ = true;
    registered_descriptors_.free(state);
  }

  timer_queues_.get_all_timers(ops);

  scheduler_.abandon_operations(ops);
}

void epoll_reactor::notify_fork(
    asio::execution_context::fork_event fork_ev)
{
  if (fork_ev == asio::execution_context::fork_child)
  {
    if (epoll_fd_ != -1)
      ::close(epoll_fd_);
    epoll_fd_ = -1;
    epoll_fd_ = do_epoll_create();

    if (timer_fd_ != -1)
      ::close(timer_fd_);
    timer_fd_ = -1;
    timer_fd_ = do_timerfd_create();

    interrupter_.recreate();

    // Add the interrupter's descriptor to epoll.
    epoll_event ev = { 0, { 0 } };
    ev.events = EPOLLIN | EPOLLERR | EPOLLET;
    ev.data.ptr = &interrupter_;
    epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, interrupter_.read_descriptor(), &ev);
    interrupter_.interrupt();

    // Add the timer descriptor to epoll.
    if (timer_fd_ != -1)
    {
      ev.events = EPOLLIN | EPOLLERR;
      ev.data.ptr = &timer_fd_;
      epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, timer_fd_, &ev);
    }

    update_timeout();

    // Re-register all descriptors with epoll.
    mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_);
    for (descriptor_state* state = registered_descriptors_.first();
        state != 0; state = state->next_)
    {
      ev.events = state->registered_events_;
      ev.data.ptr = state;
      int result = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, state->descriptor_, &ev);
      if (result != 0)
      {
        asio::error_code ec(errno,
            asio::error::get_system_category());
        asio::detail::throw_error(ec, "epoll re-registration");
      }
    }
  }
}

void epoll_reactor::init_task()
{
  scheduler_.init_task();
}

int epoll_reactor::register_descriptor(socket_type descriptor,
    epoll_reactor::per_descriptor_data& descriptor_data)
{
  descriptor_data = allocate_descriptor_state();

  ASIO_HANDLER_REACTOR_REGISTRATION((
        context(), static_cast<uintmax_t>(descriptor),
        reinterpret_cast<uintmax_t>(descriptor_data)));

  {
    mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);

    descriptor_data->reactor_ = this;
    descriptor_data->descriptor_ = descriptor;
    descriptor_data->shutdown_ = false;
    for (int i = 0; i < max_ops; ++i)
      descriptor_data->try_speculative_[i] = true;
  }

  epoll_event ev = { 0, { 0 } };
  ev.events = EPOLLIN | EPOLLERR | EPOLLHUP | EPOLLPRI | EPOLLET;
  descriptor_data->registered_events_ = ev.events;
  ev.data.ptr = descriptor_data;
  int result = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, descriptor, &ev);
  if (result != 0)
  {
    if (errno == EPERM)
    {
      // This file descriptor type is not supported by epoll. However, if it is
      // a regular file then operations on it will not block. We will allow
      // this descriptor to be used and fail later if an operation on it would
      // otherwise require a trip through the reactor.
      descriptor_data->registered_events_ = 0;
      return 0;
    }
    return errno;
  }

  return 0;
}

int epoll_reactor::register_internal_descriptor(
    int op_type, socket_type descriptor,
    epoll_reactor::per_descriptor_data& descriptor_data, reactor_op* op)
{
  descriptor_data = allocate_descriptor_state();

  ASIO_HANDLER_REACTOR_REGISTRATION((
        context(), static_cast<uintmax_t>(descriptor),
        reinterpret_cast<uintmax_t>(descriptor_data)));

  {
    mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);

    descriptor_data->reactor_ = this;
    descriptor_data->descriptor_ = descriptor;
    descriptor_data->shutdown_ = false;
    descriptor_data->op_queue_[op_type].push(op);
    for (int i = 0; i < max_ops; ++i)
      descriptor_data->try_speculative_[i] = true;
  }

  epoll_event ev = { 0, { 0 } };
  ev.events = EPOLLIN | EPOLLERR | EPOLLHUP | EPOLLPRI | EPOLLET;
  descriptor_data->registered_events_ = ev.events;
  ev.data.ptr = descriptor_data;
  int result = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, descriptor, &ev);
  if (result != 0)
    return errno;

  return 0;
}

void epoll_reactor::move_descriptor(socket_type,
    epoll_reactor::per_descriptor_data& target_descriptor_data,
    epoll_reactor::per_descriptor_data& source_descriptor_data)
{
  target_descriptor_data = source_descriptor_data;
  source_descriptor_data = 0;
}

void epoll_reactor::start_op(int op_type, socket_type descriptor,
    epoll_reactor::per_descriptor_data& descriptor_data, reactor_op* op,
    bool is_continuation, bool allow_speculative)
{
  if (!descriptor_data)
  {
    op->ec_ = asio::error::bad_descriptor;
    post_immediate_completion(op, is_continuation);
    return;
  }

  mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);

  if (descriptor_data->shutdown_)
  {
    post_immediate_completion(op, is_continuation);
    return;
  }

  if (descriptor_data->op_queue_[op_type].empty())
  {
    if (allow_speculative
        && (op_type != read_op
          || descriptor_data->op_queue_[except_op].empty()))
    {
      if (descriptor_data->try_speculative_[op_type])
      {
        if (reactor_op::status status = op->perform())
        {
          if (status == reactor_op::done_and_exhausted)
            if (descriptor_data->registered_events_ != 0)
              descriptor_data->try_speculative_[op_type] = false;
          descriptor_lock.unlock();
          scheduler_.post_immediate_completion(op, is_continuation);
          return;
        }
      }

      if (descriptor_data->registered_events_ == 0)
      {
        op->ec_ = asio::error::operation_not_supported;
        scheduler_.post_immediate_completion(op, is_continuation);
        return;
      }

      if (op_type == write_op)
      {
        if ((descriptor_data->registered_events_ & EPOLLOUT) == 0)
        {
          epoll_event ev = { 0, { 0 } };
          ev.events = descriptor_data->registered_events_ | EPOLLOUT;
          ev.data.ptr = descriptor_data;
          if (epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, descriptor, &ev) == 0)
          {
            descriptor_data->registered_events_ |= ev.events;
          }
          else
          {
            op->ec_ = asio::error_code(errno,
                asio::error::get_system_category());
            scheduler_.post_immediate_completion(op, is_continuation);
            return;
          }
        }
      }
    }
    else if (descriptor_data->registered_events_ == 0)
    {
      op->ec_ = asio::error::operation_not_supported;
      scheduler_.post_immediate_completion(op, is_continuation);
      return;
    }
    else
    {
      if (op_type == write_op)
      {
        descriptor_data->registered_events_ |= EPOLLOUT;
      }

      epoll_event ev = { 0, { 0 } };
      ev.events = descriptor_data->registered_events_;
      ev.data.ptr = descriptor_data;
      epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, descriptor, &ev);
    }
  }

  descriptor_data->op_queue_[op_type].push(op);
  scheduler_.work_started();
}

void epoll_reactor::cancel_ops(socket_type,
    epoll_reactor::per_descriptor_data& descriptor_data)
{
  if (!descriptor_data)
    return;

  mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);

  op_queue<operation> ops;
  for (int i = 0; i < max_ops; ++i)
  {
    while (reactor_op* op = descriptor_data->op_queue_[i].front())
    {
      op->ec_ = asio::error::operation_aborted;
      descriptor_data->op_queue_[i].pop();
      ops.push(op);
    }
  }

  descriptor_lock.unlock();

  scheduler_.post_deferred_completions(ops);
}

void epoll_reactor::deregister_descriptor(socket_type descriptor,
    epoll_reactor::per_descriptor_data& descriptor_data, bool closing)
{
  if (!descriptor_data)
    return;

  mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);

  if (!descriptor_data->shutdown_)
  {
    if (closing)
    {
      // The descriptor will be automatically removed from the epoll set when
      // it is closed.
    }
    else if (descriptor_data->registered_events_ != 0)
    {
      epoll_event ev = { 0, { 0 } };
      epoll_ctl(epoll_fd_, EPOLL_CTL_DEL, descriptor, &ev);
    }

    op_queue<operation> ops;
    for (int i = 0; i < max_ops; ++i)
    {
      while (reactor_op* op = descriptor_data->op_queue_[i].front())
      {
        op->ec_ = asio::error::operation_aborted;
        descriptor_data->op_queue_[i].pop();
        ops.push(op);
      }
    }

    descriptor_data->descriptor_ = -1;
    descriptor_data->shutdown_ = true;

    descriptor_lock.unlock();

    ASIO_HANDLER_REACTOR_DEREGISTRATION((
          context(), static_cast<uintmax_t>(descriptor),
          reinterpret_cast<uintmax_t>(descriptor_data)));

    scheduler_.post_deferred_completions(ops);

    // Leave descriptor_data set so that it will be freed by the subsequent
    // call to cleanup_descriptor_data.
  }
  else
  {
    // We are shutting down, so prevent cleanup_descriptor_data from freeing
    // the descriptor_data object and let the destructor free it instead.
    descriptor_data = 0;
  }
}

void epoll_reactor::deregister_internal_descriptor(socket_type descriptor,
    epoll_reactor::per_descriptor_data& descriptor_data)
{
  if (!descriptor_data)
    return;

  mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);

  if (!descriptor_data->shutdown_)
  {
    epoll_event ev = { 0, { 0 } };
    epoll_ctl(epoll_fd_, EPOLL_CTL_DEL, descriptor, &ev);

    op_queue<operation> ops;
    for (int i = 0; i < max_ops; ++i)
      ops.push(descriptor_data->op_queue_[i]);

    descriptor_data->descriptor_ = -1;
    descriptor_data->shutdown_ = true;

    descriptor_lock.unlock();

    ASIO_HANDLER_REACTOR_DEREGISTRATION((
          context(), static_cast<uintmax_t>(descriptor),
          reinterpret_cast<uintmax_t>(descriptor_data)));

    // Leave descriptor_data set so that it will be freed by the subsequent
    // call to cleanup_descriptor_data.
  }
  else
  {
    // We are shutting down, so prevent cleanup_descriptor_data from freeing
    // the descriptor_data object and let the destructor free it instead.
    descriptor_data = 0;
  }
}

void epoll_reactor::cleanup_descriptor_data(
    per_descriptor_data& descriptor_data)
{
  if (descriptor_data)
  {
    free_descriptor_state(descriptor_data);
    descriptor_data = 0;
  }
}

void epoll_reactor::run(long usec, op_queue<operation>& ops)
{
  // This code relies on the fact that the scheduler queues the reactor task
  // behind all descriptor operations generated by this function. This means,
  // that by the time we reach this point, any previously returned descriptor
  // operations have already been dequeued. Therefore it is now safe for us to
  // reuse and return them for the scheduler to queue again.

  // Calculate timeout. Check the timer queues only if timerfd is not in use.
  int timeout;
  if (usec == 0)
    timeout = 0;
  else
  {
    timeout = (usec < 0) ? -1 : ((usec - 1) / 1000 + 1);
    if (timer_fd_ == -1)
    {
      mutex::scoped_lock lock(mutex_);
      timeout = get_timeout(timeout);
    }
  }

  // Block on the epoll descriptor.
  epoll_event events[128];
  int num_events = epoll_wait(epoll_fd_, events, 128, timeout);

#if defined(ASIO_ENABLE_HANDLER_TRACKING)
  // Trace the waiting events.
  for (int i = 0; i < num_events; ++i)
  {
    void* ptr = events[i].data.ptr;
    if (ptr == &interrupter_)
    {
      // Ignore.
    }
# if defined(ASIO_HAS_TIMERFD)
    else if (ptr == &timer_fd_)
    {
      // Ignore.
    }
# endif // defined(ASIO_HAS_TIMERFD)
    else
    {
      unsigned event_mask = 0;
      if ((events[i].events & EPOLLIN) != 0)
        event_mask |= ASIO_HANDLER_REACTOR_READ_EVENT;
      if ((events[i].events & EPOLLOUT))
        event_mask |= ASIO_HANDLER_REACTOR_WRITE_EVENT;
      if ((events[i].events & (EPOLLERR | EPOLLHUP)) != 0)
        event_mask |= ASIO_HANDLER_REACTOR_ERROR_EVENT;
      ASIO_HANDLER_REACTOR_EVENTS((context(),
            reinterpret_cast<uintmax_t>(ptr), event_mask));
    }
  }
#endif // defined(ASIO_ENABLE_HANDLER_TRACKING)

#if defined(ASIO_HAS_TIMERFD)
  bool check_timers = (timer_fd_ == -1);
#else // defined(ASIO_HAS_TIMERFD)
  bool check_timers = true;
#endif // defined(ASIO_HAS_TIMERFD)

  // Dispatch the waiting events.
  for (int i = 0; i < num_events; ++i)
  {
    void* ptr = events[i].data.ptr;
    if (ptr == &interrupter_)
    {
      // No need to reset the interrupter since we're leaving the descriptor
      // in a ready-to-read state and relying on edge-triggered notifications
      // to make it so that we only get woken up when the descriptor's epoll
      // registration is updated.

#if defined(ASIO_HAS_TIMERFD)
      if (timer_fd_ == -1)
        check_timers = true;
#else // defined(ASIO_HAS_TIMERFD)
      check_timers = true;
#endif // defined(ASIO_HAS_TIMERFD)
    }
#if defined(ASIO_HAS_TIMERFD)
    else if (ptr == &timer_fd_)
    {
      check_timers = true;
    }
#endif // defined(ASIO_HAS_TIMERFD)
    else
    {
      // The descriptor operation doesn't count as work in and of itself, so we
      // don't call work_started() here. This still allows the scheduler to
      // stop if the only remaining operations are descriptor operations.
      descriptor_state* descriptor_data = static_cast<descriptor_state*>(ptr);
      if (!ops.is_enqueued(descriptor_data))
      {
        descriptor_data->set_ready_events(events[i].events);
        ops.push(descriptor_data);
      }
      else
      {
        descriptor_data->add_ready_events(events[i].events);
      }
    }
  }

  if (check_timers)
  {
    mutex::scoped_lock common_lock(mutex_);
    timer_queues_.get_ready_timers(ops);

#if defined(ASIO_HAS_TIMERFD)
    if (timer_fd_ != -1)
    {
      itimerspec new_timeout;
      itimerspec old_timeout;
      int flags = get_timeout(new_timeout);
      timerfd_settime(timer_fd_, flags, &new_timeout, &old_timeout);
    }
#endif // defined(ASIO_HAS_TIMERFD)
  }
}

void epoll_reactor::interrupt()
{
  epoll_event ev = { 0, { 0 } };
  ev.events = EPOLLIN | EPOLLERR | EPOLLET;
  ev.data.ptr = &interrupter_;
  epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, interrupter_.read_descriptor(), &ev);
}

int epoll_reactor::do_epoll_create()
{
#if defined(EPOLL_CLOEXEC)
  int fd = epoll_create1(EPOLL_CLOEXEC);
#else // defined(EPOLL_CLOEXEC)
  int fd = -1;
  errno = EINVAL;
#endif // defined(EPOLL_CLOEXEC)

  if (fd == -1 && (errno == EINVAL || errno == ENOSYS))
  {
    fd = epoll_create(epoll_size);
    if (fd != -1)
      ::fcntl(fd, F_SETFD, FD_CLOEXEC);
  }

  if (fd == -1)
  {
    asio::error_code ec(errno,
        asio::error::get_system_category());
    asio::detail::throw_error(ec, "epoll");
  }

  return fd;
}

int epoll_reactor::do_timerfd_create()
{
#if defined(ASIO_HAS_TIMERFD)
# if defined(TFD_CLOEXEC)
  int fd = timerfd_create(CLOCK_MONOTONIC, TFD_CLOEXEC);
# else // defined(TFD_CLOEXEC)
  int fd = -1;
  errno = EINVAL;
# endif // defined(TFD_CLOEXEC)

  if (fd == -1 && errno == EINVAL)
  {
    fd = timerfd_create(CLOCK_MONOTONIC, 0);
    if (fd != -1)
      ::fcntl(fd, F_SETFD, FD_CLOEXEC);
  }

  return fd;
#else // defined(ASIO_HAS_TIMERFD)
  return -1;
#endif // defined(ASIO_HAS_TIMERFD)
}

epoll_reactor::descriptor_state* epoll_reactor::allocate_descriptor_state()
{
  mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_);
  return registered_descriptors_.alloc(ASIO_CONCURRENCY_HINT_IS_LOCKING(
        REACTOR_IO, scheduler_.concurrency_hint()));
}

void epoll_reactor::free_descriptor_state(epoll_reactor::descriptor_state* s)
{
  mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_);
  registered_descriptors_.free(s);
}

void epoll_reactor::do_add_timer_queue(timer_queue_base& queue)
{
  mutex::scoped_lock lock(mutex_);
  timer_queues_.insert(&queue);
}

void epoll_reactor::do_remove_timer_queue(timer_queue_base& queue)
{
  mutex::scoped_lock lock(mutex_);
  timer_queues_.erase(&queue);
}

void epoll_reactor::update_timeout()
{
#if defined(ASIO_HAS_TIMERFD)
  if (timer_fd_ != -1)
  {
    itimerspec new_timeout;
    itimerspec old_timeout;
    int flags = get_timeout(new_timeout);
    timerfd_settime(timer_fd_, flags, &new_timeout, &old_timeout);
    return;
  }
#endif // defined(ASIO_HAS_TIMERFD)
  interrupt();
}

int epoll_reactor::get_timeout(int msec)
{
  // By default we will wait no longer than 5 minutes. This will ensure that
  // any changes to the system clock are detected after no longer than this.
  const int max_msec = 5 * 60 * 1000;
  return timer_queues_.wait_duration_msec(
      (msec < 0 || max_msec < msec) ? max_msec : msec);
}

#if defined(ASIO_HAS_TIMERFD)
int epoll_reactor::get_timeout(itimerspec& ts)
{
  ts.it_interval.tv_sec = 0;
  ts.it_interval.tv_nsec = 0;

  long usec = timer_queues_.wait_duration_usec(5 * 60 * 1000 * 1000);
  ts.it_value.tv_sec = usec / 1000000;
  ts.it_value.tv_nsec = usec ? (usec % 1000000) * 1000 : 1;

  return usec ? 0 : TFD_TIMER_ABSTIME;
}
#endif // defined(ASIO_HAS_TIMERFD)

struct epoll_reactor::perform_io_cleanup_on_block_exit
{
  explicit perform_io_cleanup_on_block_exit(epoll_reactor* r)
    : reactor_(r), first_op_(0)
  {
  }

  ~perform_io_cleanup_on_block_exit()
  {
    if (first_op_)
    {
      // Post the remaining completed operations for invocation.
      if (!ops_.empty())
        reactor_->scheduler_.post_deferred_completions(ops_);

      // A user-initiated operation has completed, but there's no need to
      // explicitly call work_finished() here. Instead, we'll take advantage of
      // the fact that the scheduler will call work_finished() once we return.
    }
    else
    {
      // No user-initiated operations have completed, so we need to compensate
      // for the work_finished() call that the scheduler will make once this
      // operation returns.
      reactor_->scheduler_.compensating_work_started();
    }
  }

  epoll_reactor* reactor_;
  op_queue<operation> ops_;
  operation* first_op_;
};

epoll_reactor::descriptor_state::descriptor_state(bool locking)
  : operation(&epoll_reactor::descriptor_state::do_complete),
    mutex_(locking)
{
}

operation* epoll_reactor::descriptor_state::perform_io(uint32_t events)
{
  mutex_.lock();
  perform_io_cleanup_on_block_exit io_cleanup(reactor_);
  mutex::scoped_lock descriptor_lock(mutex_, mutex::scoped_lock::adopt_lock);

  // Exception operations must be processed first to ensure that any
  // out-of-band data is read before normal data.
  static const int flag[max_ops] = { EPOLLIN, EPOLLOUT, EPOLLPRI };
  for (int j = max_ops - 1; j >= 0; --j)
  {
    if (events & (flag[j] | EPOLLERR | EPOLLHUP))
    {
      try_speculative_[j] = true;
      while (reactor_op* op = op_queue_[j].front())
      {
        if (reactor_op::status status = op->perform())
        {
          op_queue_[j].pop();
          io_cleanup.ops_.push(op);
          if (status == reactor_op::done_and_exhausted)
          {
            try_speculative_[j] = false;
            break;
          }
        }
        else
          break;
      }
    }
  }

  // The first operation will be returned for completion now. The others will
  // be posted for later by the io_cleanup object's destructor.
  io_cleanup.first_op_ = io_cleanup.ops_.front();
  io_cleanup.ops_.pop();
  return io_cleanup.first_op_;
}

void epoll_reactor::descriptor_state::do_complete(
    void* owner, operation* base,
    const asio::error_code& ec, std::size_t bytes_transferred)
{
  if (owner)
  {
    descriptor_state* descriptor_data = static_cast<descriptor_state*>(base);
    uint32_t events = static_cast<uint32_t>(bytes_transferred);
    if (operation* op = descriptor_data->perform_io(events))
    {
      op->complete(owner, ec, 0);
    }
  }
}

} // namespace detail
} // namespace asio

#include "asio/detail/pop_options.hpp"

#endif // defined(ASIO_HAS_EPOLL)

#endif // ASIO_DETAIL_IMPL_EPOLL_REACTOR_IPP