fork_join.cpp
7.27 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
#include <asio/execution.hpp>
#include <asio/static_thread_pool.hpp>
#include <algorithm>
#include <condition_variable>
#include <memory>
#include <mutex>
#include <queue>
#include <thread>
#include <numeric>
using asio::static_thread_pool;
namespace execution = asio::execution;
// A fixed-size thread pool used to implement fork/join semantics. Functions
// are scheduled using a simple FIFO queue. Implementing work stealing, or
// using a queue based on atomic operations, are left as tasks for the reader.
class fork_join_pool
{
public:
// The constructor starts a thread pool with the specified number of threads.
// Note that the thread_count is not a fixed limit on the pool's concurrency.
// Additional threads may temporarily be added to the pool if they join a
// fork_executor.
explicit fork_join_pool(
std::size_t thread_count = std::max(std::thread::hardware_concurrency(), 1u) * 2)
: use_count_(1),
threads_(thread_count)
{
try
{
// Ask each thread in the pool to dequeue and execute functions until
// it is time to shut down, i.e. the use count is zero.
for (thread_count_ = 0; thread_count_ < thread_count; ++thread_count_)
{
execution::execute(
threads_.executor(),
[this]
{
std::unique_lock<std::mutex> lock(mutex_);
while (use_count_ > 0)
if (!execute_next(lock))
condition_.wait(lock);
});
}
}
catch (...)
{
stop_threads();
threads_.wait();
throw;
}
}
// The destructor waits for the pool to finish executing functions.
~fork_join_pool()
{
stop_threads();
threads_.wait();
}
private:
friend class fork_executor;
// The base for all functions that are queued in the pool.
struct function_base
{
std::shared_ptr<std::size_t> work_count_;
void (*execute_)(std::shared_ptr<function_base>& p);
};
// Execute the next function from the queue, if any. Returns true if a
// function was executed, and false if the queue was empty.
bool execute_next(std::unique_lock<std::mutex>& lock)
{
if (queue_.empty())
return false;
auto p(queue_.front());
queue_.pop();
lock.unlock();
execute(lock, p);
return true;
}
// Execute a function and decrement the outstanding work.
void execute(std::unique_lock<std::mutex>& lock,
std::shared_ptr<function_base>& p)
{
std::shared_ptr<std::size_t> work_count(std::move(p->work_count_));
try
{
p->execute_(p);
lock.lock();
do_work_finished(work_count);
}
catch (...)
{
lock.lock();
do_work_finished(work_count);
throw;
}
}
// Increment outstanding work.
void do_work_started(const std::shared_ptr<std::size_t>& work_count) noexcept
{
if (++(*work_count) == 1)
++use_count_;
}
// Decrement outstanding work. Notify waiting threads if we run out.
void do_work_finished(const std::shared_ptr<std::size_t>& work_count) noexcept
{
if (--(*work_count) == 0)
{
--use_count_;
condition_.notify_all();
}
}
// Dispatch a function, executing it immediately if the queue is already
// loaded. Otherwise adds the function to the queue and wakes a thread.
void do_execute(std::shared_ptr<function_base> p,
const std::shared_ptr<std::size_t>& work_count)
{
std::unique_lock<std::mutex> lock(mutex_);
if (queue_.size() > thread_count_ * 16)
{
do_work_started(work_count);
lock.unlock();
execute(lock, p);
}
else
{
queue_.push(p);
do_work_started(work_count);
condition_.notify_one();
}
}
// Ask all threads to shut down.
void stop_threads()
{
std::lock_guard<std::mutex> lock(mutex_);
--use_count_;
condition_.notify_all();
}
std::mutex mutex_;
std::condition_variable condition_;
std::queue<std::shared_ptr<function_base>> queue_;
std::size_t use_count_;
std::size_t thread_count_;
static_thread_pool threads_;
};
// A class that satisfies the Executor requirements. Every function or piece of
// work associated with a fork_executor is part of a single, joinable group.
class fork_executor
{
public:
fork_executor(fork_join_pool& ctx)
: context_(ctx),
work_count_(std::make_shared<std::size_t>(0))
{
}
fork_join_pool& query(execution::context_t) const noexcept
{
return context_;
}
template <class Func>
void execute(Func f) const
{
auto p(std::make_shared<function<Func>>(std::move(f), work_count_));
context_.do_execute(p, work_count_);
}
friend bool operator==(const fork_executor& a,
const fork_executor& b) noexcept
{
return a.work_count_ == b.work_count_;
}
friend bool operator!=(const fork_executor& a,
const fork_executor& b) noexcept
{
return a.work_count_ != b.work_count_;
}
// Block until all work associated with the executor is complete. While it is
// waiting, the thread may be borrowed to execute functions from the queue.
void join() const
{
std::unique_lock<std::mutex> lock(context_.mutex_);
while (*work_count_ > 0)
if (!context_.execute_next(lock))
context_.condition_.wait(lock);
}
private:
template <class Func>
struct function : fork_join_pool::function_base
{
explicit function(Func f, const std::shared_ptr<std::size_t>& w)
: function_(std::move(f))
{
work_count_ = w;
execute_ = [](std::shared_ptr<fork_join_pool::function_base>& p)
{
Func tmp(std::move(static_cast<function*>(p.get())->function_));
p.reset();
tmp();
};
}
Func function_;
};
fork_join_pool& context_;
std::shared_ptr<std::size_t> work_count_;
};
// Helper class to automatically join a fork_executor when exiting a scope.
class join_guard
{
public:
explicit join_guard(const fork_executor& ex) : ex_(ex) {}
join_guard(const join_guard&) = delete;
join_guard(join_guard&&) = delete;
~join_guard() { ex_.join(); }
private:
fork_executor ex_;
};
//------------------------------------------------------------------------------
#include <algorithm>
#include <iostream>
#include <random>
#include <vector>
fork_join_pool pool;
template <class Iterator>
void fork_join_sort(Iterator begin, Iterator end)
{
std::size_t n = end - begin;
if (n > 32768)
{
{
fork_executor fork(pool);
join_guard join(fork);
execution::execute(fork, [=]{ fork_join_sort(begin, begin + n / 2); });
execution::execute(fork, [=]{ fork_join_sort(begin + n / 2, end); });
}
std::inplace_merge(begin, begin + n / 2, end);
}
else
{
std::sort(begin, end);
}
}
int main(int argc, char* argv[])
{
if (argc != 2)
{
std::cerr << "Usage: fork_join <size>\n";
return 1;
}
std::vector<double> vec(std::atoll(argv[1]));
std::iota(vec.begin(), vec.end(), 0);
std::random_device rd;
std::mt19937 g(rd());
std::shuffle(vec.begin(), vec.end(), g);
std::chrono::steady_clock::time_point start = std::chrono::steady_clock::now();
fork_join_sort(vec.begin(), vec.end());
std::chrono::steady_clock::duration elapsed = std::chrono::steady_clock::now() - start;
std::cout << "sort took ";
std::cout << std::chrono::duration_cast<std::chrono::microseconds>(elapsed).count();
std::cout << " microseconds" << std::endl;
}