composed_5.cpp
9.24 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
//
// composed_5.cpp
// ~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2020 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#include <asio/io_context.hpp>
#include <asio/ip/tcp.hpp>
#include <asio/use_future.hpp>
#include <asio/write.hpp>
#include <functional>
#include <iostream>
#include <memory>
#include <sstream>
#include <string>
#include <type_traits>
#include <utility>
using asio::ip::tcp;
// NOTE: This example requires the new asio::async_initiate function. For
// an example that works with the Networking TS style of completion tokens,
// please see an older version of asio.
//------------------------------------------------------------------------------
// This composed operation automatically serialises a message, using its I/O
// streams insertion operator, before sending it on the socket. To do this, it
// must allocate a buffer for the encoded message and ensure this buffer's
// validity until the underlying async_write operation completes.
template <typename T, typename CompletionToken>
auto async_write_message(tcp::socket& socket,
const T& message, CompletionToken&& token)
// The return type of the initiating function is deduced from the combination
// of CompletionToken type and the completion handler's signature. When the
// completion token is a simple callback, the return type is always void.
// In this example, when the completion token is asio::yield_context
// (used for stackful coroutines) the return type would be also be void, as
// there is no non-error argument to the completion handler. When the
// completion token is asio::use_future it would be std::future<void>.
//
// In C++14 we can omit the return type as it is automatically deduced from
// the return type of asio::async_initiate.
{
// In addition to determining the mechanism by which an asynchronous
// operation delivers its result, a completion token also determines the time
// when the operation commences. For example, when the completion token is a
// simple callback the operation commences before the initiating function
// returns. However, if the completion token's delivery mechanism uses a
// future, we might instead want to defer initiation of the operation until
// the returned future object is waited upon.
//
// To enable this, when implementing an asynchronous operation we must
// package the initiation step as a function object. The initiation function
// object's call operator is passed the concrete completion handler produced
// by the completion token. This completion handler matches the asynchronous
// operation's completion handler signature, which in this example is:
//
// void(std::error_code error)
//
// The initiation function object also receives any additional arguments
// required to start the operation. (Note: We could have instead passed these
// arguments in the lambda capture set. However, we should prefer to
// propagate them as function call arguments as this allows the completion
// token to optimise how they are passed. For example, a lazy future which
// defers initiation would need to make a decay-copy of the arguments, but
// when using a simple callback the arguments can be trivially forwarded
// straight through.)
auto initiation = [](auto&& completion_handler,
tcp::socket& socket, std::unique_ptr<std::string> encoded_message)
{
// In this example, the composed operation's intermediate completion
// handler is implemented as a hand-crafted function object, rather than
// using a lambda or std::bind.
struct intermediate_completion_handler
{
// The intermediate completion handler holds a reference to the socket so
// that it can obtain the I/O executor (see get_executor below).
tcp::socket& socket_;
// The allocated buffer for the encoded message. The std::unique_ptr
// smart pointer is move-only, and as a consequence our intermediate
// completion handler is also move-only.
std::unique_ptr<std::string> encoded_message_;
// The user-supplied completion handler.
typename std::decay<decltype(completion_handler)>::type handler_;
// The function call operator matches the completion signature of the
// async_write operation.
void operator()(const std::error_code& error, std::size_t /*n*/)
{
// Deallocate the encoded message before calling the user-supplied
// completion handler.
encoded_message_.reset();
// Call the user-supplied handler with the result of the operation.
// The arguments must match the completion signature of our composed
// operation.
handler_(error);
}
// It is essential to the correctness of our composed operation that we
// preserve the executor of the user-supplied completion handler. With a
// hand-crafted function object we can do this by defining a nested type
// executor_type and member function get_executor. These obtain the
// completion handler's associated executor, and default to the I/O
// executor - in this case the executor of the socket - if the completion
// handler does not have its own.
using executor_type = asio::associated_executor_t<
typename std::decay<decltype(completion_handler)>::type,
tcp::socket::executor_type>;
executor_type get_executor() const noexcept
{
return asio::get_associated_executor(
handler_, socket_.get_executor());
}
// Although not necessary for correctness, we may also preserve the
// allocator of the user-supplied completion handler. This is achieved by
// defining a nested type allocator_type and member function
// get_allocator. These obtain the completion handler's associated
// allocator, and default to std::allocator<void> if the completion
// handler does not have its own.
using allocator_type = asio::associated_allocator_t<
typename std::decay<decltype(completion_handler)>::type,
std::allocator<void>>;
allocator_type get_allocator() const noexcept
{
return asio::get_associated_allocator(
handler_, std::allocator<void>{});
}
};
// Initiate the underlying async_write operation using our intermediate
// completion handler.
auto encoded_message_buffer = asio::buffer(*encoded_message);
asio::async_write(socket, encoded_message_buffer,
intermediate_completion_handler{socket, std::move(encoded_message),
std::forward<decltype(completion_handler)>(completion_handler)});
};
// Encode the message and copy it into an allocated buffer. The buffer will
// be maintained for the lifetime of the asynchronous operation.
std::ostringstream os;
os << message;
std::unique_ptr<std::string> encoded_message(new std::string(os.str()));
// The asio::async_initiate function takes:
//
// - our initiation function object,
// - the completion token,
// - the completion handler signature, and
// - any additional arguments we need to initiate the operation.
//
// It then asks the completion token to create a completion handler (i.e. a
// callback) with the specified signature, and invoke the initiation function
// object with this completion handler as well as the additional arguments.
// The return value of async_initiate is the result of our operation's
// initiating function.
//
// Note that we wrap non-const reference arguments in std::reference_wrapper
// to prevent incorrect decay-copies of these objects.
return asio::async_initiate<
CompletionToken, void(std::error_code)>(
initiation, token, std::ref(socket),
std::move(encoded_message));
}
//------------------------------------------------------------------------------
void test_callback()
{
asio::io_context io_context;
tcp::acceptor acceptor(io_context, {tcp::v4(), 55555});
tcp::socket socket = acceptor.accept();
// Test our asynchronous operation using a lambda as a callback.
async_write_message(socket, 123456,
[](const std::error_code& error)
{
if (!error)
{
std::cout << "Message sent\n";
}
else
{
std::cout << "Error: " << error.message() << "\n";
}
});
io_context.run();
}
//------------------------------------------------------------------------------
void test_future()
{
asio::io_context io_context;
tcp::acceptor acceptor(io_context, {tcp::v4(), 55555});
tcp::socket socket = acceptor.accept();
// Test our asynchronous operation using the use_future completion token.
// This token causes the operation's initiating function to return a future,
// which may be used to synchronously wait for the result of the operation.
std::future<void> f = async_write_message(
socket, 654.321, asio::use_future);
io_context.run();
try
{
// Get the result of the operation.
f.get();
std::cout << "Message sent\n";
}
catch (const std::exception& e)
{
std::cout << "Exception: " << e.what() << "\n";
}
}
//------------------------------------------------------------------------------
int main()
{
test_callback();
test_future();
}