reactive_socket_service.hpp 17.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
//
// detail/reactive_socket_service.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2020 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#ifndef ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_HPP
#define ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_HPP

#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)

#include "asio/detail/config.hpp"

#if !defined(ASIO_HAS_IOCP)

#include "asio/buffer.hpp"
#include "asio/error.hpp"
#include "asio/execution_context.hpp"
#include "asio/socket_base.hpp"
#include "asio/detail/buffer_sequence_adapter.hpp"
#include "asio/detail/memory.hpp"
#include "asio/detail/noncopyable.hpp"
#include "asio/detail/reactive_null_buffers_op.hpp"
#include "asio/detail/reactive_socket_accept_op.hpp"
#include "asio/detail/reactive_socket_connect_op.hpp"
#include "asio/detail/reactive_socket_recvfrom_op.hpp"
#include "asio/detail/reactive_socket_sendto_op.hpp"
#include "asio/detail/reactive_socket_service_base.hpp"
#include "asio/detail/reactor.hpp"
#include "asio/detail/reactor_op.hpp"
#include "asio/detail/socket_holder.hpp"
#include "asio/detail/socket_ops.hpp"
#include "asio/detail/socket_types.hpp"

#include "asio/detail/push_options.hpp"

namespace asio {
namespace detail {

template <typename Protocol>
class reactive_socket_service :
  public execution_context_service_base<reactive_socket_service<Protocol> >,
  public reactive_socket_service_base
{
public:
  // The protocol type.
  typedef Protocol protocol_type;

  // The endpoint type.
  typedef typename Protocol::endpoint endpoint_type;

  // The native type of a socket.
  typedef socket_type native_handle_type;

  // The implementation type of the socket.
  struct implementation_type :
    reactive_socket_service_base::base_implementation_type
  {
    // Default constructor.
    implementation_type()
      : protocol_(endpoint_type().protocol())
    {
    }

    // The protocol associated with the socket.
    protocol_type protocol_;
  };

  // Constructor.
  reactive_socket_service(execution_context& context)
    : execution_context_service_base<
        reactive_socket_service<Protocol> >(context),
      reactive_socket_service_base(context)
  {
  }

  // Destroy all user-defined handler objects owned by the service.
  void shutdown()
  {
    this->base_shutdown();
  }

  // Move-construct a new socket implementation.
  void move_construct(implementation_type& impl,
      implementation_type& other_impl) ASIO_NOEXCEPT
  {
    this->base_move_construct(impl, other_impl);

    impl.protocol_ = other_impl.protocol_;
    other_impl.protocol_ = endpoint_type().protocol();
  }

  // Move-assign from another socket implementation.
  void move_assign(implementation_type& impl,
      reactive_socket_service_base& other_service,
      implementation_type& other_impl)
  {
    this->base_move_assign(impl, other_service, other_impl);

    impl.protocol_ = other_impl.protocol_;
    other_impl.protocol_ = endpoint_type().protocol();
  }

  // Move-construct a new socket implementation from another protocol type.
  template <typename Protocol1>
  void converting_move_construct(implementation_type& impl,
      reactive_socket_service<Protocol1>&,
      typename reactive_socket_service<
        Protocol1>::implementation_type& other_impl)
  {
    this->base_move_construct(impl, other_impl);

    impl.protocol_ = protocol_type(other_impl.protocol_);
    other_impl.protocol_ = typename Protocol1::endpoint().protocol();
  }

  // Open a new socket implementation.
  asio::error_code open(implementation_type& impl,
      const protocol_type& protocol, asio::error_code& ec)
  {
    if (!do_open(impl, protocol.family(),
          protocol.type(), protocol.protocol(), ec))
      impl.protocol_ = protocol;
    return ec;
  }

  // Assign a native socket to a socket implementation.
  asio::error_code assign(implementation_type& impl,
      const protocol_type& protocol, const native_handle_type& native_socket,
      asio::error_code& ec)
  {
    if (!do_assign(impl, protocol.type(), native_socket, ec))
      impl.protocol_ = protocol;
    return ec;
  }

  // Get the native socket representation.
  native_handle_type native_handle(implementation_type& impl)
  {
    return impl.socket_;
  }

  // Bind the socket to the specified local endpoint.
  asio::error_code bind(implementation_type& impl,
      const endpoint_type& endpoint, asio::error_code& ec)
  {
    socket_ops::bind(impl.socket_, endpoint.data(), endpoint.size(), ec);
    return ec;
  }

  // Set a socket option.
  template <typename Option>
  asio::error_code set_option(implementation_type& impl,
      const Option& option, asio::error_code& ec)
  {
    socket_ops::setsockopt(impl.socket_, impl.state_,
        option.level(impl.protocol_), option.name(impl.protocol_),
        option.data(impl.protocol_), option.size(impl.protocol_), ec);
    return ec;
  }

  // Set a socket option.
  template <typename Option>
  asio::error_code get_option(const implementation_type& impl,
      Option& option, asio::error_code& ec) const
  {
    std::size_t size = option.size(impl.protocol_);
    socket_ops::getsockopt(impl.socket_, impl.state_,
        option.level(impl.protocol_), option.name(impl.protocol_),
        option.data(impl.protocol_), &size, ec);
    if (!ec)
      option.resize(impl.protocol_, size);
    return ec;
  }

  // Get the local endpoint.
  endpoint_type local_endpoint(const implementation_type& impl,
      asio::error_code& ec) const
  {
    endpoint_type endpoint;
    std::size_t addr_len = endpoint.capacity();
    if (socket_ops::getsockname(impl.socket_, endpoint.data(), &addr_len, ec))
      return endpoint_type();
    endpoint.resize(addr_len);
    return endpoint;
  }

  // Get the remote endpoint.
  endpoint_type remote_endpoint(const implementation_type& impl,
      asio::error_code& ec) const
  {
    endpoint_type endpoint;
    std::size_t addr_len = endpoint.capacity();
    if (socket_ops::getpeername(impl.socket_,
          endpoint.data(), &addr_len, false, ec))
      return endpoint_type();
    endpoint.resize(addr_len);
    return endpoint;
  }

  // Disable sends or receives on the socket.
  asio::error_code shutdown(base_implementation_type& impl,
      socket_base::shutdown_type what, asio::error_code& ec)
  {
    socket_ops::shutdown(impl.socket_, what, ec);
    return ec;
  }

  // Send a datagram to the specified endpoint. Returns the number of bytes
  // sent.
  template <typename ConstBufferSequence>
  size_t send_to(implementation_type& impl, const ConstBufferSequence& buffers,
      const endpoint_type& destination, socket_base::message_flags flags,
      asio::error_code& ec)
  {
    typedef buffer_sequence_adapter<asio::const_buffer,
        ConstBufferSequence> bufs_type;

    if (bufs_type::is_single_buffer)
    {
      return socket_ops::sync_sendto1(impl.socket_, impl.state_,
          bufs_type::first(buffers).data(),
          bufs_type::first(buffers).size(), flags,
          destination.data(), destination.size(), ec);
    }
    else
    {
      bufs_type bufs(buffers);
      return socket_ops::sync_sendto(impl.socket_, impl.state_,
          bufs.buffers(), bufs.count(), flags,
          destination.data(), destination.size(), ec);
    }
  }

  // Wait until data can be sent without blocking.
  size_t send_to(implementation_type& impl, const null_buffers&,
      const endpoint_type&, socket_base::message_flags,
      asio::error_code& ec)
  {
    // Wait for socket to become ready.
    socket_ops::poll_write(impl.socket_, impl.state_, -1, ec);

    return 0;
  }

  // Start an asynchronous send. The data being sent must be valid for the
  // lifetime of the asynchronous operation.
  template <typename ConstBufferSequence, typename Handler, typename IoExecutor>
  void async_send_to(implementation_type& impl,
      const ConstBufferSequence& buffers,
      const endpoint_type& destination, socket_base::message_flags flags,
      Handler& handler, const IoExecutor& io_ex)
  {
    bool is_continuation =
      asio_handler_cont_helpers::is_continuation(handler);

    // Allocate and construct an operation to wrap the handler.
    typedef reactive_socket_sendto_op<ConstBufferSequence,
        endpoint_type, Handler, IoExecutor> op;
    typename op::ptr p = { asio::detail::addressof(handler),
      op::ptr::allocate(handler), 0 };
    p.p = new (p.v) op(success_ec_, impl.socket_,
        buffers, destination, flags, handler, io_ex);

    ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
          &impl, impl.socket_, "async_send_to"));

    start_op(impl, reactor::write_op, p.p, is_continuation, true, false);
    p.v = p.p = 0;
  }

  // Start an asynchronous wait until data can be sent without blocking.
  template <typename Handler, typename IoExecutor>
  void async_send_to(implementation_type& impl, const null_buffers&,
      const endpoint_type&, socket_base::message_flags,
      Handler& handler, const IoExecutor& io_ex)
  {
    bool is_continuation =
      asio_handler_cont_helpers::is_continuation(handler);

    // Allocate and construct an operation to wrap the handler.
    typedef reactive_null_buffers_op<Handler, IoExecutor> op;
    typename op::ptr p = { asio::detail::addressof(handler),
      op::ptr::allocate(handler), 0 };
    p.p = new (p.v) op(success_ec_, handler, io_ex);

    ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
          &impl, impl.socket_, "async_send_to(null_buffers)"));

    start_op(impl, reactor::write_op, p.p, is_continuation, false, false);
    p.v = p.p = 0;
  }

  // Receive a datagram with the endpoint of the sender. Returns the number of
  // bytes received.
  template <typename MutableBufferSequence>
  size_t receive_from(implementation_type& impl,
      const MutableBufferSequence& buffers,
      endpoint_type& sender_endpoint, socket_base::message_flags flags,
      asio::error_code& ec)
  {
    typedef buffer_sequence_adapter<asio::mutable_buffer,
        MutableBufferSequence> bufs_type;

    std::size_t addr_len = sender_endpoint.capacity();
    std::size_t bytes_recvd;
    if (bufs_type::is_single_buffer)
    {
      bytes_recvd = socket_ops::sync_recvfrom1(impl.socket_,
          impl.state_, bufs_type::first(buffers).data(),
          bufs_type::first(buffers).size(), flags,
          sender_endpoint.data(), &addr_len, ec);
    }
    else
    {
      bufs_type bufs(buffers);
      bytes_recvd = socket_ops::sync_recvfrom(
          impl.socket_, impl.state_, bufs.buffers(), bufs.count(),
          flags, sender_endpoint.data(), &addr_len, ec);
    }

    if (!ec)
      sender_endpoint.resize(addr_len);

    return bytes_recvd;
  }

  // Wait until data can be received without blocking.
  size_t receive_from(implementation_type& impl, const null_buffers&,
      endpoint_type& sender_endpoint, socket_base::message_flags,
      asio::error_code& ec)
  {
    // Wait for socket to become ready.
    socket_ops::poll_read(impl.socket_, impl.state_, -1, ec);

    // Reset endpoint since it can be given no sensible value at this time.
    sender_endpoint = endpoint_type();

    return 0;
  }

  // Start an asynchronous receive. The buffer for the data being received and
  // the sender_endpoint object must both be valid for the lifetime of the
  // asynchronous operation.
  template <typename MutableBufferSequence,
      typename Handler, typename IoExecutor>
  void async_receive_from(implementation_type& impl,
      const MutableBufferSequence& buffers, endpoint_type& sender_endpoint,
      socket_base::message_flags flags, Handler& handler,
      const IoExecutor& io_ex)
  {
    bool is_continuation =
      asio_handler_cont_helpers::is_continuation(handler);

    // Allocate and construct an operation to wrap the handler.
    typedef reactive_socket_recvfrom_op<MutableBufferSequence,
        endpoint_type, Handler, IoExecutor> op;
    typename op::ptr p = { asio::detail::addressof(handler),
      op::ptr::allocate(handler), 0 };
    int protocol = impl.protocol_.type();
    p.p = new (p.v) op(success_ec_, impl.socket_, protocol,
        buffers, sender_endpoint, flags, handler, io_ex);

    ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
          &impl, impl.socket_, "async_receive_from"));

    start_op(impl,
        (flags & socket_base::message_out_of_band)
          ? reactor::except_op : reactor::read_op,
        p.p, is_continuation, true, false);
    p.v = p.p = 0;
  }

  // Wait until data can be received without blocking.
  template <typename Handler, typename IoExecutor>
  void async_receive_from(implementation_type& impl, const null_buffers&,
      endpoint_type& sender_endpoint, socket_base::message_flags flags,
      Handler& handler, const IoExecutor& io_ex)
  {
    bool is_continuation =
      asio_handler_cont_helpers::is_continuation(handler);

    // Allocate and construct an operation to wrap the handler.
    typedef reactive_null_buffers_op<Handler, IoExecutor> op;
    typename op::ptr p = { asio::detail::addressof(handler),
      op::ptr::allocate(handler), 0 };
    p.p = new (p.v) op(success_ec_, handler, io_ex);

    ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
          &impl, impl.socket_, "async_receive_from(null_buffers)"));

    // Reset endpoint since it can be given no sensible value at this time.
    sender_endpoint = endpoint_type();

    start_op(impl,
        (flags & socket_base::message_out_of_band)
          ? reactor::except_op : reactor::read_op,
        p.p, is_continuation, false, false);
    p.v = p.p = 0;
  }

  // Accept a new connection.
  template <typename Socket>
  asio::error_code accept(implementation_type& impl,
      Socket& peer, endpoint_type* peer_endpoint, asio::error_code& ec)
  {
    // We cannot accept a socket that is already open.
    if (peer.is_open())
    {
      ec = asio::error::already_open;
      return ec;
    }

    std::size_t addr_len = peer_endpoint ? peer_endpoint->capacity() : 0;
    socket_holder new_socket(socket_ops::sync_accept(impl.socket_,
          impl.state_, peer_endpoint ? peer_endpoint->data() : 0,
          peer_endpoint ? &addr_len : 0, ec));

    // On success, assign new connection to peer socket object.
    if (new_socket.get() != invalid_socket)
    {
      if (peer_endpoint)
        peer_endpoint->resize(addr_len);
      peer.assign(impl.protocol_, new_socket.get(), ec);
      if (!ec)
        new_socket.release();
    }

    return ec;
  }

  // Start an asynchronous accept. The peer and peer_endpoint objects must be
  // valid until the accept's handler is invoked.
  template <typename Socket, typename Handler, typename IoExecutor>
  void async_accept(implementation_type& impl, Socket& peer,
      endpoint_type* peer_endpoint, Handler& handler, const IoExecutor& io_ex)
  {
    bool is_continuation =
      asio_handler_cont_helpers::is_continuation(handler);

    // Allocate and construct an operation to wrap the handler.
    typedef reactive_socket_accept_op<Socket, Protocol, Handler, IoExecutor> op;
    typename op::ptr p = { asio::detail::addressof(handler),
      op::ptr::allocate(handler), 0 };
    p.p = new (p.v) op(success_ec_, impl.socket_, impl.state_,
        peer, impl.protocol_, peer_endpoint, handler, io_ex);

    ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
          &impl, impl.socket_, "async_accept"));

    start_accept_op(impl, p.p, is_continuation, peer.is_open());
    p.v = p.p = 0;
  }

#if defined(ASIO_HAS_MOVE)
  // Start an asynchronous accept. The peer_endpoint object must be valid until
  // the accept's handler is invoked.
  template <typename PeerIoExecutor, typename Handler, typename IoExecutor>
  void async_move_accept(implementation_type& impl,
      const PeerIoExecutor& peer_io_ex, endpoint_type* peer_endpoint,
      Handler& handler, const IoExecutor& io_ex)
  {
    bool is_continuation =
      asio_handler_cont_helpers::is_continuation(handler);

    // Allocate and construct an operation to wrap the handler.
    typedef reactive_socket_move_accept_op<Protocol,
        PeerIoExecutor, Handler, IoExecutor> op;
    typename op::ptr p = { asio::detail::addressof(handler),
      op::ptr::allocate(handler), 0 };
    p.p = new (p.v) op(success_ec_, peer_io_ex, impl.socket_,
        impl.state_, impl.protocol_, peer_endpoint, handler, io_ex);

    ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
          &impl, impl.socket_, "async_accept"));

    start_accept_op(impl, p.p, is_continuation, false);
    p.v = p.p = 0;
  }
#endif // defined(ASIO_HAS_MOVE)

  // Connect the socket to the specified endpoint.
  asio::error_code connect(implementation_type& impl,
      const endpoint_type& peer_endpoint, asio::error_code& ec)
  {
    socket_ops::sync_connect(impl.socket_,
        peer_endpoint.data(), peer_endpoint.size(), ec);
    return ec;
  }

  // Start an asynchronous connect.
  template <typename Handler, typename IoExecutor>
  void async_connect(implementation_type& impl,
      const endpoint_type& peer_endpoint,
      Handler& handler, const IoExecutor& io_ex)
  {
    bool is_continuation =
      asio_handler_cont_helpers::is_continuation(handler);

    // Allocate and construct an operation to wrap the handler.
    typedef reactive_socket_connect_op<Handler, IoExecutor> op;
    typename op::ptr p = { asio::detail::addressof(handler),
      op::ptr::allocate(handler), 0 };
    p.p = new (p.v) op(success_ec_, impl.socket_, handler, io_ex);

    ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
          &impl, impl.socket_, "async_connect"));

    start_connect_op(impl, p.p, is_continuation,
        peer_endpoint.data(), peer_endpoint.size());
    p.v = p.p = 0;
  }
};

} // namespace detail
} // namespace asio

#include "asio/detail/pop_options.hpp"

#endif // !defined(ASIO_HAS_IOCP)

#endif // ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_HPP