Commit 158142c2c2df728cfa3b5320c65534921a764f26
1 parent
4f716dc6
soft float support
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@1332 c046a42c-6fe2-441c-8c8c-71466251a162
Showing
8 changed files
with
7288 additions
and
3 deletions
Makefile.target
| ... | ... | @@ -229,7 +229,7 @@ ifeq ($(TARGET_ARCH), i386) |
| 229 | 229 | OBJS+= vm86.o |
| 230 | 230 | endif |
| 231 | 231 | ifeq ($(TARGET_ARCH), arm) |
| 232 | -OBJS+=nwfpe/softfloat.o nwfpe/fpa11.o nwfpe/fpa11_cpdo.o \ | |
| 232 | +OBJS+=nwfpe/fpa11.o nwfpe/fpa11_cpdo.o \ | |
| 233 | 233 | nwfpe/fpa11_cpdt.o nwfpe/fpa11_cprt.o nwfpe/fpopcode.o nwfpe/single_cpdo.o \ |
| 234 | 234 | nwfpe/double_cpdo.o nwfpe/extended_cpdo.o |
| 235 | 235 | endif |
| ... | ... | @@ -237,8 +237,14 @@ SRCS:= $(OBJS:.o=.c) |
| 237 | 237 | OBJS+= libqemu.a |
| 238 | 238 | |
| 239 | 239 | # cpu emulator library |
| 240 | -LIBOBJS=exec.o kqemu.o translate-all.o cpu-exec.o\ | |
| 240 | +LIBOBJS=exec.o kqemu.o translate-op.o translate-all.o cpu-exec.o\ | |
| 241 | 241 | translate.o op.o |
| 242 | +ifdef CONFIG_SOFTFLOAT | |
| 243 | +LIBOBJS+=fpu/softfloat.o | |
| 244 | +else | |
| 245 | +LIBOBJS+=fpu/softfloat-native.o | |
| 246 | +endif | |
| 247 | +DEFINES+=-I$(SRC_PATH)/fpu | |
| 242 | 248 | |
| 243 | 249 | ifeq ($(TARGET_ARCH), i386) |
| 244 | 250 | LIBOBJS+=helper.o helper2.o |
| ... | ... | @@ -399,7 +405,9 @@ libqemu.a: $(LIBOBJS) |
| 399 | 405 | |
| 400 | 406 | translate.o: translate.c gen-op.h opc.h cpu.h |
| 401 | 407 | |
| 402 | -translate-all.o: translate-all.c op.h opc.h cpu.h | |
| 408 | +translate-all.o: translate-all.c opc.h cpu.h | |
| 409 | + | |
| 410 | +translate-op.o: translate-all.c op.h opc.h cpu.h | |
| 403 | 411 | |
| 404 | 412 | op.h: op.o $(DYNGEN) |
| 405 | 413 | $(DYNGEN) -o $@ $< | ... | ... |
configure
| ... | ... | @@ -593,6 +593,7 @@ fi |
| 593 | 593 | #echo "Creating $config_mak, $config_h and $target_dir/Makefile" |
| 594 | 594 | |
| 595 | 595 | mkdir -p $target_dir |
| 596 | +mkdir -p $target_dir/fpu | |
| 596 | 597 | if test "$target" = "arm-user" -o "$target" = "armeb-user" ; then |
| 597 | 598 | mkdir -p $target_dir/nwfpe |
| 598 | 599 | fi |
| ... | ... | @@ -658,6 +659,10 @@ if test "$target_user_only" = "yes" ; then |
| 658 | 659 | echo "#define CONFIG_USER_ONLY 1" >> $config_h |
| 659 | 660 | fi |
| 660 | 661 | |
| 662 | +if test "$target_cpu" = "arm" -o "$target_cpu" = "armeb" ; then | |
| 663 | + echo "CONFIG_SOFTFLOAT=yes" >> $config_mak | |
| 664 | + echo "#define CONFIG_SOFTFLOAT 1" >> $config_h | |
| 665 | +fi | |
| 661 | 666 | # sdl defines |
| 662 | 667 | |
| 663 | 668 | if test "$target_user_only" = "no"; then | ... | ... |
fpu/softfloat-macros.h
0 → 100644
| 1 | + | |
| 2 | +/*============================================================================ | |
| 3 | + | |
| 4 | +This C source fragment is part of the SoftFloat IEC/IEEE Floating-point | |
| 5 | +Arithmetic Package, Release 2b. | |
| 6 | + | |
| 7 | +Written by John R. Hauser. This work was made possible in part by the | |
| 8 | +International Computer Science Institute, located at Suite 600, 1947 Center | |
| 9 | +Street, Berkeley, California 94704. Funding was partially provided by the | |
| 10 | +National Science Foundation under grant MIP-9311980. The original version | |
| 11 | +of this code was written as part of a project to build a fixed-point vector | |
| 12 | +processor in collaboration with the University of California at Berkeley, | |
| 13 | +overseen by Profs. Nelson Morgan and John Wawrzynek. More information | |
| 14 | +is available through the Web page `http://www.cs.berkeley.edu/~jhauser/ | |
| 15 | +arithmetic/SoftFloat.html'. | |
| 16 | + | |
| 17 | +THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has | |
| 18 | +been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES | |
| 19 | +RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS | |
| 20 | +AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES, | |
| 21 | +COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE | |
| 22 | +EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE | |
| 23 | +INSTITUTE (possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR | |
| 24 | +OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE. | |
| 25 | + | |
| 26 | +Derivative works are acceptable, even for commercial purposes, so long as | |
| 27 | +(1) the source code for the derivative work includes prominent notice that | |
| 28 | +the work is derivative, and (2) the source code includes prominent notice with | |
| 29 | +these four paragraphs for those parts of this code that are retained. | |
| 30 | + | |
| 31 | +=============================================================================*/ | |
| 32 | + | |
| 33 | +/*---------------------------------------------------------------------------- | |
| 34 | +| Shifts `a' right by the number of bits given in `count'. If any nonzero | |
| 35 | +| bits are shifted off, they are ``jammed'' into the least significant bit of | |
| 36 | +| the result by setting the least significant bit to 1. The value of `count' | |
| 37 | +| can be arbitrarily large; in particular, if `count' is greater than 32, the | |
| 38 | +| result will be either 0 or 1, depending on whether `a' is zero or nonzero. | |
| 39 | +| The result is stored in the location pointed to by `zPtr'. | |
| 40 | +*----------------------------------------------------------------------------*/ | |
| 41 | + | |
| 42 | +INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr ) | |
| 43 | +{ | |
| 44 | + bits32 z; | |
| 45 | + | |
| 46 | + if ( count == 0 ) { | |
| 47 | + z = a; | |
| 48 | + } | |
| 49 | + else if ( count < 32 ) { | |
| 50 | + z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 ); | |
| 51 | + } | |
| 52 | + else { | |
| 53 | + z = ( a != 0 ); | |
| 54 | + } | |
| 55 | + *zPtr = z; | |
| 56 | + | |
| 57 | +} | |
| 58 | + | |
| 59 | +/*---------------------------------------------------------------------------- | |
| 60 | +| Shifts `a' right by the number of bits given in `count'. If any nonzero | |
| 61 | +| bits are shifted off, they are ``jammed'' into the least significant bit of | |
| 62 | +| the result by setting the least significant bit to 1. The value of `count' | |
| 63 | +| can be arbitrarily large; in particular, if `count' is greater than 64, the | |
| 64 | +| result will be either 0 or 1, depending on whether `a' is zero or nonzero. | |
| 65 | +| The result is stored in the location pointed to by `zPtr'. | |
| 66 | +*----------------------------------------------------------------------------*/ | |
| 67 | + | |
| 68 | +INLINE void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr ) | |
| 69 | +{ | |
| 70 | + bits64 z; | |
| 71 | + | |
| 72 | + if ( count == 0 ) { | |
| 73 | + z = a; | |
| 74 | + } | |
| 75 | + else if ( count < 64 ) { | |
| 76 | + z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 ); | |
| 77 | + } | |
| 78 | + else { | |
| 79 | + z = ( a != 0 ); | |
| 80 | + } | |
| 81 | + *zPtr = z; | |
| 82 | + | |
| 83 | +} | |
| 84 | + | |
| 85 | +/*---------------------------------------------------------------------------- | |
| 86 | +| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64 | |
| 87 | +| _plus_ the number of bits given in `count'. The shifted result is at most | |
| 88 | +| 64 nonzero bits; this is stored at the location pointed to by `z0Ptr'. The | |
| 89 | +| bits shifted off form a second 64-bit result as follows: The _last_ bit | |
| 90 | +| shifted off is the most-significant bit of the extra result, and the other | |
| 91 | +| 63 bits of the extra result are all zero if and only if _all_but_the_last_ | |
| 92 | +| bits shifted off were all zero. This extra result is stored in the location | |
| 93 | +| pointed to by `z1Ptr'. The value of `count' can be arbitrarily large. | |
| 94 | +| (This routine makes more sense if `a0' and `a1' are considered to form | |
| 95 | +| a fixed-point value with binary point between `a0' and `a1'. This fixed- | |
| 96 | +| point value is shifted right by the number of bits given in `count', and | |
| 97 | +| the integer part of the result is returned at the location pointed to by | |
| 98 | +| `z0Ptr'. The fractional part of the result may be slightly corrupted as | |
| 99 | +| described above, and is returned at the location pointed to by `z1Ptr'.) | |
| 100 | +*----------------------------------------------------------------------------*/ | |
| 101 | + | |
| 102 | +INLINE void | |
| 103 | + shift64ExtraRightJamming( | |
| 104 | + bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) | |
| 105 | +{ | |
| 106 | + bits64 z0, z1; | |
| 107 | + int8 negCount = ( - count ) & 63; | |
| 108 | + | |
| 109 | + if ( count == 0 ) { | |
| 110 | + z1 = a1; | |
| 111 | + z0 = a0; | |
| 112 | + } | |
| 113 | + else if ( count < 64 ) { | |
| 114 | + z1 = ( a0<<negCount ) | ( a1 != 0 ); | |
| 115 | + z0 = a0>>count; | |
| 116 | + } | |
| 117 | + else { | |
| 118 | + if ( count == 64 ) { | |
| 119 | + z1 = a0 | ( a1 != 0 ); | |
| 120 | + } | |
| 121 | + else { | |
| 122 | + z1 = ( ( a0 | a1 ) != 0 ); | |
| 123 | + } | |
| 124 | + z0 = 0; | |
| 125 | + } | |
| 126 | + *z1Ptr = z1; | |
| 127 | + *z0Ptr = z0; | |
| 128 | + | |
| 129 | +} | |
| 130 | + | |
| 131 | +/*---------------------------------------------------------------------------- | |
| 132 | +| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the | |
| 133 | +| number of bits given in `count'. Any bits shifted off are lost. The value | |
| 134 | +| of `count' can be arbitrarily large; in particular, if `count' is greater | |
| 135 | +| than 128, the result will be 0. The result is broken into two 64-bit pieces | |
| 136 | +| which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. | |
| 137 | +*----------------------------------------------------------------------------*/ | |
| 138 | + | |
| 139 | +INLINE void | |
| 140 | + shift128Right( | |
| 141 | + bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) | |
| 142 | +{ | |
| 143 | + bits64 z0, z1; | |
| 144 | + int8 negCount = ( - count ) & 63; | |
| 145 | + | |
| 146 | + if ( count == 0 ) { | |
| 147 | + z1 = a1; | |
| 148 | + z0 = a0; | |
| 149 | + } | |
| 150 | + else if ( count < 64 ) { | |
| 151 | + z1 = ( a0<<negCount ) | ( a1>>count ); | |
| 152 | + z0 = a0>>count; | |
| 153 | + } | |
| 154 | + else { | |
| 155 | + z1 = ( count < 64 ) ? ( a0>>( count & 63 ) ) : 0; | |
| 156 | + z0 = 0; | |
| 157 | + } | |
| 158 | + *z1Ptr = z1; | |
| 159 | + *z0Ptr = z0; | |
| 160 | + | |
| 161 | +} | |
| 162 | + | |
| 163 | +/*---------------------------------------------------------------------------- | |
| 164 | +| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the | |
| 165 | +| number of bits given in `count'. If any nonzero bits are shifted off, they | |
| 166 | +| are ``jammed'' into the least significant bit of the result by setting the | |
| 167 | +| least significant bit to 1. The value of `count' can be arbitrarily large; | |
| 168 | +| in particular, if `count' is greater than 128, the result will be either | |
| 169 | +| 0 or 1, depending on whether the concatenation of `a0' and `a1' is zero or | |
| 170 | +| nonzero. The result is broken into two 64-bit pieces which are stored at | |
| 171 | +| the locations pointed to by `z0Ptr' and `z1Ptr'. | |
| 172 | +*----------------------------------------------------------------------------*/ | |
| 173 | + | |
| 174 | +INLINE void | |
| 175 | + shift128RightJamming( | |
| 176 | + bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) | |
| 177 | +{ | |
| 178 | + bits64 z0, z1; | |
| 179 | + int8 negCount = ( - count ) & 63; | |
| 180 | + | |
| 181 | + if ( count == 0 ) { | |
| 182 | + z1 = a1; | |
| 183 | + z0 = a0; | |
| 184 | + } | |
| 185 | + else if ( count < 64 ) { | |
| 186 | + z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 ); | |
| 187 | + z0 = a0>>count; | |
| 188 | + } | |
| 189 | + else { | |
| 190 | + if ( count == 64 ) { | |
| 191 | + z1 = a0 | ( a1 != 0 ); | |
| 192 | + } | |
| 193 | + else if ( count < 128 ) { | |
| 194 | + z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 ); | |
| 195 | + } | |
| 196 | + else { | |
| 197 | + z1 = ( ( a0 | a1 ) != 0 ); | |
| 198 | + } | |
| 199 | + z0 = 0; | |
| 200 | + } | |
| 201 | + *z1Ptr = z1; | |
| 202 | + *z0Ptr = z0; | |
| 203 | + | |
| 204 | +} | |
| 205 | + | |
| 206 | +/*---------------------------------------------------------------------------- | |
| 207 | +| Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' right | |
| 208 | +| by 64 _plus_ the number of bits given in `count'. The shifted result is | |
| 209 | +| at most 128 nonzero bits; these are broken into two 64-bit pieces which are | |
| 210 | +| stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted | |
| 211 | +| off form a third 64-bit result as follows: The _last_ bit shifted off is | |
| 212 | +| the most-significant bit of the extra result, and the other 63 bits of the | |
| 213 | +| extra result are all zero if and only if _all_but_the_last_ bits shifted off | |
| 214 | +| were all zero. This extra result is stored in the location pointed to by | |
| 215 | +| `z2Ptr'. The value of `count' can be arbitrarily large. | |
| 216 | +| (This routine makes more sense if `a0', `a1', and `a2' are considered | |
| 217 | +| to form a fixed-point value with binary point between `a1' and `a2'. This | |
| 218 | +| fixed-point value is shifted right by the number of bits given in `count', | |
| 219 | +| and the integer part of the result is returned at the locations pointed to | |
| 220 | +| by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly | |
| 221 | +| corrupted as described above, and is returned at the location pointed to by | |
| 222 | +| `z2Ptr'.) | |
| 223 | +*----------------------------------------------------------------------------*/ | |
| 224 | + | |
| 225 | +INLINE void | |
| 226 | + shift128ExtraRightJamming( | |
| 227 | + bits64 a0, | |
| 228 | + bits64 a1, | |
| 229 | + bits64 a2, | |
| 230 | + int16 count, | |
| 231 | + bits64 *z0Ptr, | |
| 232 | + bits64 *z1Ptr, | |
| 233 | + bits64 *z2Ptr | |
| 234 | + ) | |
| 235 | +{ | |
| 236 | + bits64 z0, z1, z2; | |
| 237 | + int8 negCount = ( - count ) & 63; | |
| 238 | + | |
| 239 | + if ( count == 0 ) { | |
| 240 | + z2 = a2; | |
| 241 | + z1 = a1; | |
| 242 | + z0 = a0; | |
| 243 | + } | |
| 244 | + else { | |
| 245 | + if ( count < 64 ) { | |
| 246 | + z2 = a1<<negCount; | |
| 247 | + z1 = ( a0<<negCount ) | ( a1>>count ); | |
| 248 | + z0 = a0>>count; | |
| 249 | + } | |
| 250 | + else { | |
| 251 | + if ( count == 64 ) { | |
| 252 | + z2 = a1; | |
| 253 | + z1 = a0; | |
| 254 | + } | |
| 255 | + else { | |
| 256 | + a2 |= a1; | |
| 257 | + if ( count < 128 ) { | |
| 258 | + z2 = a0<<negCount; | |
| 259 | + z1 = a0>>( count & 63 ); | |
| 260 | + } | |
| 261 | + else { | |
| 262 | + z2 = ( count == 128 ) ? a0 : ( a0 != 0 ); | |
| 263 | + z1 = 0; | |
| 264 | + } | |
| 265 | + } | |
| 266 | + z0 = 0; | |
| 267 | + } | |
| 268 | + z2 |= ( a2 != 0 ); | |
| 269 | + } | |
| 270 | + *z2Ptr = z2; | |
| 271 | + *z1Ptr = z1; | |
| 272 | + *z0Ptr = z0; | |
| 273 | + | |
| 274 | +} | |
| 275 | + | |
| 276 | +/*---------------------------------------------------------------------------- | |
| 277 | +| Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the | |
| 278 | +| number of bits given in `count'. Any bits shifted off are lost. The value | |
| 279 | +| of `count' must be less than 64. The result is broken into two 64-bit | |
| 280 | +| pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. | |
| 281 | +*----------------------------------------------------------------------------*/ | |
| 282 | + | |
| 283 | +INLINE void | |
| 284 | + shortShift128Left( | |
| 285 | + bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) | |
| 286 | +{ | |
| 287 | + | |
| 288 | + *z1Ptr = a1<<count; | |
| 289 | + *z0Ptr = | |
| 290 | + ( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 63 ) ); | |
| 291 | + | |
| 292 | +} | |
| 293 | + | |
| 294 | +/*---------------------------------------------------------------------------- | |
| 295 | +| Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left | |
| 296 | +| by the number of bits given in `count'. Any bits shifted off are lost. | |
| 297 | +| The value of `count' must be less than 64. The result is broken into three | |
| 298 | +| 64-bit pieces which are stored at the locations pointed to by `z0Ptr', | |
| 299 | +| `z1Ptr', and `z2Ptr'. | |
| 300 | +*----------------------------------------------------------------------------*/ | |
| 301 | + | |
| 302 | +INLINE void | |
| 303 | + shortShift192Left( | |
| 304 | + bits64 a0, | |
| 305 | + bits64 a1, | |
| 306 | + bits64 a2, | |
| 307 | + int16 count, | |
| 308 | + bits64 *z0Ptr, | |
| 309 | + bits64 *z1Ptr, | |
| 310 | + bits64 *z2Ptr | |
| 311 | + ) | |
| 312 | +{ | |
| 313 | + bits64 z0, z1, z2; | |
| 314 | + int8 negCount; | |
| 315 | + | |
| 316 | + z2 = a2<<count; | |
| 317 | + z1 = a1<<count; | |
| 318 | + z0 = a0<<count; | |
| 319 | + if ( 0 < count ) { | |
| 320 | + negCount = ( ( - count ) & 63 ); | |
| 321 | + z1 |= a2>>negCount; | |
| 322 | + z0 |= a1>>negCount; | |
| 323 | + } | |
| 324 | + *z2Ptr = z2; | |
| 325 | + *z1Ptr = z1; | |
| 326 | + *z0Ptr = z0; | |
| 327 | + | |
| 328 | +} | |
| 329 | + | |
| 330 | +/*---------------------------------------------------------------------------- | |
| 331 | +| Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit | |
| 332 | +| value formed by concatenating `b0' and `b1'. Addition is modulo 2^128, so | |
| 333 | +| any carry out is lost. The result is broken into two 64-bit pieces which | |
| 334 | +| are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. | |
| 335 | +*----------------------------------------------------------------------------*/ | |
| 336 | + | |
| 337 | +INLINE void | |
| 338 | + add128( | |
| 339 | + bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr ) | |
| 340 | +{ | |
| 341 | + bits64 z1; | |
| 342 | + | |
| 343 | + z1 = a1 + b1; | |
| 344 | + *z1Ptr = z1; | |
| 345 | + *z0Ptr = a0 + b0 + ( z1 < a1 ); | |
| 346 | + | |
| 347 | +} | |
| 348 | + | |
| 349 | +/*---------------------------------------------------------------------------- | |
| 350 | +| Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the | |
| 351 | +| 192-bit value formed by concatenating `b0', `b1', and `b2'. Addition is | |
| 352 | +| modulo 2^192, so any carry out is lost. The result is broken into three | |
| 353 | +| 64-bit pieces which are stored at the locations pointed to by `z0Ptr', | |
| 354 | +| `z1Ptr', and `z2Ptr'. | |
| 355 | +*----------------------------------------------------------------------------*/ | |
| 356 | + | |
| 357 | +INLINE void | |
| 358 | + add192( | |
| 359 | + bits64 a0, | |
| 360 | + bits64 a1, | |
| 361 | + bits64 a2, | |
| 362 | + bits64 b0, | |
| 363 | + bits64 b1, | |
| 364 | + bits64 b2, | |
| 365 | + bits64 *z0Ptr, | |
| 366 | + bits64 *z1Ptr, | |
| 367 | + bits64 *z2Ptr | |
| 368 | + ) | |
| 369 | +{ | |
| 370 | + bits64 z0, z1, z2; | |
| 371 | + int8 carry0, carry1; | |
| 372 | + | |
| 373 | + z2 = a2 + b2; | |
| 374 | + carry1 = ( z2 < a2 ); | |
| 375 | + z1 = a1 + b1; | |
| 376 | + carry0 = ( z1 < a1 ); | |
| 377 | + z0 = a0 + b0; | |
| 378 | + z1 += carry1; | |
| 379 | + z0 += ( z1 < carry1 ); | |
| 380 | + z0 += carry0; | |
| 381 | + *z2Ptr = z2; | |
| 382 | + *z1Ptr = z1; | |
| 383 | + *z0Ptr = z0; | |
| 384 | + | |
| 385 | +} | |
| 386 | + | |
| 387 | +/*---------------------------------------------------------------------------- | |
| 388 | +| Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the | |
| 389 | +| 128-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo | |
| 390 | +| 2^128, so any borrow out (carry out) is lost. The result is broken into two | |
| 391 | +| 64-bit pieces which are stored at the locations pointed to by `z0Ptr' and | |
| 392 | +| `z1Ptr'. | |
| 393 | +*----------------------------------------------------------------------------*/ | |
| 394 | + | |
| 395 | +INLINE void | |
| 396 | + sub128( | |
| 397 | + bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr ) | |
| 398 | +{ | |
| 399 | + | |
| 400 | + *z1Ptr = a1 - b1; | |
| 401 | + *z0Ptr = a0 - b0 - ( a1 < b1 ); | |
| 402 | + | |
| 403 | +} | |
| 404 | + | |
| 405 | +/*---------------------------------------------------------------------------- | |
| 406 | +| Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2' | |
| 407 | +| from the 192-bit value formed by concatenating `a0', `a1', and `a2'. | |
| 408 | +| Subtraction is modulo 2^192, so any borrow out (carry out) is lost. The | |
| 409 | +| result is broken into three 64-bit pieces which are stored at the locations | |
| 410 | +| pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'. | |
| 411 | +*----------------------------------------------------------------------------*/ | |
| 412 | + | |
| 413 | +INLINE void | |
| 414 | + sub192( | |
| 415 | + bits64 a0, | |
| 416 | + bits64 a1, | |
| 417 | + bits64 a2, | |
| 418 | + bits64 b0, | |
| 419 | + bits64 b1, | |
| 420 | + bits64 b2, | |
| 421 | + bits64 *z0Ptr, | |
| 422 | + bits64 *z1Ptr, | |
| 423 | + bits64 *z2Ptr | |
| 424 | + ) | |
| 425 | +{ | |
| 426 | + bits64 z0, z1, z2; | |
| 427 | + int8 borrow0, borrow1; | |
| 428 | + | |
| 429 | + z2 = a2 - b2; | |
| 430 | + borrow1 = ( a2 < b2 ); | |
| 431 | + z1 = a1 - b1; | |
| 432 | + borrow0 = ( a1 < b1 ); | |
| 433 | + z0 = a0 - b0; | |
| 434 | + z0 -= ( z1 < borrow1 ); | |
| 435 | + z1 -= borrow1; | |
| 436 | + z0 -= borrow0; | |
| 437 | + *z2Ptr = z2; | |
| 438 | + *z1Ptr = z1; | |
| 439 | + *z0Ptr = z0; | |
| 440 | + | |
| 441 | +} | |
| 442 | + | |
| 443 | +/*---------------------------------------------------------------------------- | |
| 444 | +| Multiplies `a' by `b' to obtain a 128-bit product. The product is broken | |
| 445 | +| into two 64-bit pieces which are stored at the locations pointed to by | |
| 446 | +| `z0Ptr' and `z1Ptr'. | |
| 447 | +*----------------------------------------------------------------------------*/ | |
| 448 | + | |
| 449 | +INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr ) | |
| 450 | +{ | |
| 451 | + bits32 aHigh, aLow, bHigh, bLow; | |
| 452 | + bits64 z0, zMiddleA, zMiddleB, z1; | |
| 453 | + | |
| 454 | + aLow = a; | |
| 455 | + aHigh = a>>32; | |
| 456 | + bLow = b; | |
| 457 | + bHigh = b>>32; | |
| 458 | + z1 = ( (bits64) aLow ) * bLow; | |
| 459 | + zMiddleA = ( (bits64) aLow ) * bHigh; | |
| 460 | + zMiddleB = ( (bits64) aHigh ) * bLow; | |
| 461 | + z0 = ( (bits64) aHigh ) * bHigh; | |
| 462 | + zMiddleA += zMiddleB; | |
| 463 | + z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 ); | |
| 464 | + zMiddleA <<= 32; | |
| 465 | + z1 += zMiddleA; | |
| 466 | + z0 += ( z1 < zMiddleA ); | |
| 467 | + *z1Ptr = z1; | |
| 468 | + *z0Ptr = z0; | |
| 469 | + | |
| 470 | +} | |
| 471 | + | |
| 472 | +/*---------------------------------------------------------------------------- | |
| 473 | +| Multiplies the 128-bit value formed by concatenating `a0' and `a1' by | |
| 474 | +| `b' to obtain a 192-bit product. The product is broken into three 64-bit | |
| 475 | +| pieces which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and | |
| 476 | +| `z2Ptr'. | |
| 477 | +*----------------------------------------------------------------------------*/ | |
| 478 | + | |
| 479 | +INLINE void | |
| 480 | + mul128By64To192( | |
| 481 | + bits64 a0, | |
| 482 | + bits64 a1, | |
| 483 | + bits64 b, | |
| 484 | + bits64 *z0Ptr, | |
| 485 | + bits64 *z1Ptr, | |
| 486 | + bits64 *z2Ptr | |
| 487 | + ) | |
| 488 | +{ | |
| 489 | + bits64 z0, z1, z2, more1; | |
| 490 | + | |
| 491 | + mul64To128( a1, b, &z1, &z2 ); | |
| 492 | + mul64To128( a0, b, &z0, &more1 ); | |
| 493 | + add128( z0, more1, 0, z1, &z0, &z1 ); | |
| 494 | + *z2Ptr = z2; | |
| 495 | + *z1Ptr = z1; | |
| 496 | + *z0Ptr = z0; | |
| 497 | + | |
| 498 | +} | |
| 499 | + | |
| 500 | +/*---------------------------------------------------------------------------- | |
| 501 | +| Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the | |
| 502 | +| 128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit | |
| 503 | +| product. The product is broken into four 64-bit pieces which are stored at | |
| 504 | +| the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'. | |
| 505 | +*----------------------------------------------------------------------------*/ | |
| 506 | + | |
| 507 | +INLINE void | |
| 508 | + mul128To256( | |
| 509 | + bits64 a0, | |
| 510 | + bits64 a1, | |
| 511 | + bits64 b0, | |
| 512 | + bits64 b1, | |
| 513 | + bits64 *z0Ptr, | |
| 514 | + bits64 *z1Ptr, | |
| 515 | + bits64 *z2Ptr, | |
| 516 | + bits64 *z3Ptr | |
| 517 | + ) | |
| 518 | +{ | |
| 519 | + bits64 z0, z1, z2, z3; | |
| 520 | + bits64 more1, more2; | |
| 521 | + | |
| 522 | + mul64To128( a1, b1, &z2, &z3 ); | |
| 523 | + mul64To128( a1, b0, &z1, &more2 ); | |
| 524 | + add128( z1, more2, 0, z2, &z1, &z2 ); | |
| 525 | + mul64To128( a0, b0, &z0, &more1 ); | |
| 526 | + add128( z0, more1, 0, z1, &z0, &z1 ); | |
| 527 | + mul64To128( a0, b1, &more1, &more2 ); | |
| 528 | + add128( more1, more2, 0, z2, &more1, &z2 ); | |
| 529 | + add128( z0, z1, 0, more1, &z0, &z1 ); | |
| 530 | + *z3Ptr = z3; | |
| 531 | + *z2Ptr = z2; | |
| 532 | + *z1Ptr = z1; | |
| 533 | + *z0Ptr = z0; | |
| 534 | + | |
| 535 | +} | |
| 536 | + | |
| 537 | +/*---------------------------------------------------------------------------- | |
| 538 | +| Returns an approximation to the 64-bit integer quotient obtained by dividing | |
| 539 | +| `b' into the 128-bit value formed by concatenating `a0' and `a1'. The | |
| 540 | +| divisor `b' must be at least 2^63. If q is the exact quotient truncated | |
| 541 | +| toward zero, the approximation returned lies between q and q + 2 inclusive. | |
| 542 | +| If the exact quotient q is larger than 64 bits, the maximum positive 64-bit | |
| 543 | +| unsigned integer is returned. | |
| 544 | +*----------------------------------------------------------------------------*/ | |
| 545 | + | |
| 546 | +static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b ) | |
| 547 | +{ | |
| 548 | + bits64 b0, b1; | |
| 549 | + bits64 rem0, rem1, term0, term1; | |
| 550 | + bits64 z; | |
| 551 | + | |
| 552 | + if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF ); | |
| 553 | + b0 = b>>32; | |
| 554 | + z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32; | |
| 555 | + mul64To128( b, z, &term0, &term1 ); | |
| 556 | + sub128( a0, a1, term0, term1, &rem0, &rem1 ); | |
| 557 | + while ( ( (sbits64) rem0 ) < 0 ) { | |
| 558 | + z -= LIT64( 0x100000000 ); | |
| 559 | + b1 = b<<32; | |
| 560 | + add128( rem0, rem1, b0, b1, &rem0, &rem1 ); | |
| 561 | + } | |
| 562 | + rem0 = ( rem0<<32 ) | ( rem1>>32 ); | |
| 563 | + z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0; | |
| 564 | + return z; | |
| 565 | + | |
| 566 | +} | |
| 567 | + | |
| 568 | +/*---------------------------------------------------------------------------- | |
| 569 | +| Returns an approximation to the square root of the 32-bit significand given | |
| 570 | +| by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of | |
| 571 | +| `aExp' (the least significant bit) is 1, the integer returned approximates | |
| 572 | +| 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp' | |
| 573 | +| is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either | |
| 574 | +| case, the approximation returned lies strictly within +/-2 of the exact | |
| 575 | +| value. | |
| 576 | +*----------------------------------------------------------------------------*/ | |
| 577 | + | |
| 578 | +static bits32 estimateSqrt32( int16 aExp, bits32 a ) | |
| 579 | +{ | |
| 580 | + static const bits16 sqrtOddAdjustments[] = { | |
| 581 | + 0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0, | |
| 582 | + 0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67 | |
| 583 | + }; | |
| 584 | + static const bits16 sqrtEvenAdjustments[] = { | |
| 585 | + 0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E, | |
| 586 | + 0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002 | |
| 587 | + }; | |
| 588 | + int8 index; | |
| 589 | + bits32 z; | |
| 590 | + | |
| 591 | + index = ( a>>27 ) & 15; | |
| 592 | + if ( aExp & 1 ) { | |
| 593 | + z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ]; | |
| 594 | + z = ( ( a / z )<<14 ) + ( z<<15 ); | |
| 595 | + a >>= 1; | |
| 596 | + } | |
| 597 | + else { | |
| 598 | + z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ]; | |
| 599 | + z = a / z + z; | |
| 600 | + z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 ); | |
| 601 | + if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 ); | |
| 602 | + } | |
| 603 | + return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 ); | |
| 604 | + | |
| 605 | +} | |
| 606 | + | |
| 607 | +/*---------------------------------------------------------------------------- | |
| 608 | +| Returns the number of leading 0 bits before the most-significant 1 bit of | |
| 609 | +| `a'. If `a' is zero, 32 is returned. | |
| 610 | +*----------------------------------------------------------------------------*/ | |
| 611 | + | |
| 612 | +static int8 countLeadingZeros32( bits32 a ) | |
| 613 | +{ | |
| 614 | + static const int8 countLeadingZerosHigh[] = { | |
| 615 | + 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, | |
| 616 | + 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, | |
| 617 | + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | |
| 618 | + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | |
| 619 | + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| 620 | + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| 621 | + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| 622 | + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| 623 | + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 624 | + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 625 | + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 626 | + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 627 | + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 628 | + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 629 | + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 630 | + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 | |
| 631 | + }; | |
| 632 | + int8 shiftCount; | |
| 633 | + | |
| 634 | + shiftCount = 0; | |
| 635 | + if ( a < 0x10000 ) { | |
| 636 | + shiftCount += 16; | |
| 637 | + a <<= 16; | |
| 638 | + } | |
| 639 | + if ( a < 0x1000000 ) { | |
| 640 | + shiftCount += 8; | |
| 641 | + a <<= 8; | |
| 642 | + } | |
| 643 | + shiftCount += countLeadingZerosHigh[ a>>24 ]; | |
| 644 | + return shiftCount; | |
| 645 | + | |
| 646 | +} | |
| 647 | + | |
| 648 | +/*---------------------------------------------------------------------------- | |
| 649 | +| Returns the number of leading 0 bits before the most-significant 1 bit of | |
| 650 | +| `a'. If `a' is zero, 64 is returned. | |
| 651 | +*----------------------------------------------------------------------------*/ | |
| 652 | + | |
| 653 | +static int8 countLeadingZeros64( bits64 a ) | |
| 654 | +{ | |
| 655 | + int8 shiftCount; | |
| 656 | + | |
| 657 | + shiftCount = 0; | |
| 658 | + if ( a < ( (bits64) 1 )<<32 ) { | |
| 659 | + shiftCount += 32; | |
| 660 | + } | |
| 661 | + else { | |
| 662 | + a >>= 32; | |
| 663 | + } | |
| 664 | + shiftCount += countLeadingZeros32( a ); | |
| 665 | + return shiftCount; | |
| 666 | + | |
| 667 | +} | |
| 668 | + | |
| 669 | +/*---------------------------------------------------------------------------- | |
| 670 | +| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' | |
| 671 | +| is equal to the 128-bit value formed by concatenating `b0' and `b1'. | |
| 672 | +| Otherwise, returns 0. | |
| 673 | +*----------------------------------------------------------------------------*/ | |
| 674 | + | |
| 675 | +INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) | |
| 676 | +{ | |
| 677 | + | |
| 678 | + return ( a0 == b0 ) && ( a1 == b1 ); | |
| 679 | + | |
| 680 | +} | |
| 681 | + | |
| 682 | +/*---------------------------------------------------------------------------- | |
| 683 | +| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less | |
| 684 | +| than or equal to the 128-bit value formed by concatenating `b0' and `b1'. | |
| 685 | +| Otherwise, returns 0. | |
| 686 | +*----------------------------------------------------------------------------*/ | |
| 687 | + | |
| 688 | +INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) | |
| 689 | +{ | |
| 690 | + | |
| 691 | + return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) ); | |
| 692 | + | |
| 693 | +} | |
| 694 | + | |
| 695 | +/*---------------------------------------------------------------------------- | |
| 696 | +| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less | |
| 697 | +| than the 128-bit value formed by concatenating `b0' and `b1'. Otherwise, | |
| 698 | +| returns 0. | |
| 699 | +*----------------------------------------------------------------------------*/ | |
| 700 | + | |
| 701 | +INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) | |
| 702 | +{ | |
| 703 | + | |
| 704 | + return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) ); | |
| 705 | + | |
| 706 | +} | |
| 707 | + | |
| 708 | +/*---------------------------------------------------------------------------- | |
| 709 | +| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is | |
| 710 | +| not equal to the 128-bit value formed by concatenating `b0' and `b1'. | |
| 711 | +| Otherwise, returns 0. | |
| 712 | +*----------------------------------------------------------------------------*/ | |
| 713 | + | |
| 714 | +INLINE flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) | |
| 715 | +{ | |
| 716 | + | |
| 717 | + return ( a0 != b0 ) || ( a1 != b1 ); | |
| 718 | + | |
| 719 | +} | |
| 720 | + | ... | ... |
fpu/softfloat-native.c
0 → 100644
| 1 | +/* Native implementation of soft float functions. Only a single status | |
| 2 | + context is supported */ | |
| 3 | +#include "softfloat.h" | |
| 4 | +#include <math.h> | |
| 5 | + | |
| 6 | +void set_float_rounding_mode(int val STATUS_PARAM) | |
| 7 | +{ | |
| 8 | + STATUS(float_rounding_mode) = val; | |
| 9 | +#if defined(_BSD) && !defined(__APPLE__) | |
| 10 | + fpsetround(val); | |
| 11 | +#elif defined(__arm__) | |
| 12 | + /* nothing to do */ | |
| 13 | +#else | |
| 14 | + fesetround(val); | |
| 15 | +#endif | |
| 16 | +} | |
| 17 | + | |
| 18 | +#ifdef FLOATX80 | |
| 19 | +void set_floatx80_rounding_precision(int val STATUS_PARAM) | |
| 20 | +{ | |
| 21 | + STATUS(floatx80_rounding_precision) = val; | |
| 22 | +} | |
| 23 | +#endif | |
| 24 | + | |
| 25 | +#if defined(_BSD) | |
| 26 | +#define lrint(d) ((int32_t)rint(d)) | |
| 27 | +#define llrint(d) ((int64_t)rint(d)) | |
| 28 | +#endif | |
| 29 | + | |
| 30 | +#if defined(__powerpc__) | |
| 31 | + | |
| 32 | +/* correct (but slow) PowerPC rint() (glibc version is incorrect) */ | |
| 33 | +double qemu_rint(double x) | |
| 34 | +{ | |
| 35 | + double y = 4503599627370496.0; | |
| 36 | + if (fabs(x) >= y) | |
| 37 | + return x; | |
| 38 | + if (x < 0) | |
| 39 | + y = -y; | |
| 40 | + y = (x + y) - y; | |
| 41 | + if (y == 0.0) | |
| 42 | + y = copysign(y, x); | |
| 43 | + return y; | |
| 44 | +} | |
| 45 | + | |
| 46 | +#define rint qemu_rint | |
| 47 | +#endif | |
| 48 | + | |
| 49 | +/*---------------------------------------------------------------------------- | |
| 50 | +| Software IEC/IEEE integer-to-floating-point conversion routines. | |
| 51 | +*----------------------------------------------------------------------------*/ | |
| 52 | +float32 int32_to_float32(int v STATUS_PARAM) | |
| 53 | +{ | |
| 54 | + return (float32)v; | |
| 55 | +} | |
| 56 | + | |
| 57 | +float64 int32_to_float64(int v STATUS_PARAM) | |
| 58 | +{ | |
| 59 | + return (float64)v; | |
| 60 | +} | |
| 61 | + | |
| 62 | +#ifdef FLOATX80 | |
| 63 | +floatx80 int32_to_floatx80(int v STATUS_PARAM) | |
| 64 | +{ | |
| 65 | + return (floatx80)v; | |
| 66 | +} | |
| 67 | +#endif | |
| 68 | +float32 int64_to_float32( int64_t v STATUS_PARAM) | |
| 69 | +{ | |
| 70 | + return (float32)v; | |
| 71 | +} | |
| 72 | +float64 int64_to_float64( int64_t v STATUS_PARAM) | |
| 73 | +{ | |
| 74 | + return (float64)v; | |
| 75 | +} | |
| 76 | +#ifdef FLOATX80 | |
| 77 | +floatx80 int64_to_floatx80( int64_t v STATUS_PARAM) | |
| 78 | +{ | |
| 79 | + return (floatx80)v; | |
| 80 | +} | |
| 81 | +#endif | |
| 82 | + | |
| 83 | +/*---------------------------------------------------------------------------- | |
| 84 | +| Software IEC/IEEE single-precision conversion routines. | |
| 85 | +*----------------------------------------------------------------------------*/ | |
| 86 | +int float32_to_int32( float32 a STATUS_PARAM) | |
| 87 | +{ | |
| 88 | + return lrintf(a); | |
| 89 | +} | |
| 90 | +int float32_to_int32_round_to_zero( float32 a STATUS_PARAM) | |
| 91 | +{ | |
| 92 | + return (int)a; | |
| 93 | +} | |
| 94 | +int64_t float32_to_int64( float32 a STATUS_PARAM) | |
| 95 | +{ | |
| 96 | + return llrintf(a); | |
| 97 | +} | |
| 98 | + | |
| 99 | +int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM) | |
| 100 | +{ | |
| 101 | + return (int64_t)a; | |
| 102 | +} | |
| 103 | + | |
| 104 | +float64 float32_to_float64( float32 a STATUS_PARAM) | |
| 105 | +{ | |
| 106 | + return a; | |
| 107 | +} | |
| 108 | +#ifdef FLOATX80 | |
| 109 | +floatx80 float32_to_floatx80( float32 a STATUS_PARAM) | |
| 110 | +{ | |
| 111 | + return a; | |
| 112 | +} | |
| 113 | +#endif | |
| 114 | + | |
| 115 | +/*---------------------------------------------------------------------------- | |
| 116 | +| Software IEC/IEEE single-precision operations. | |
| 117 | +*----------------------------------------------------------------------------*/ | |
| 118 | +float32 float32_round_to_int( float32 a STATUS_PARAM) | |
| 119 | +{ | |
| 120 | + return rintf(a); | |
| 121 | +} | |
| 122 | + | |
| 123 | +float32 float32_sqrt( float32 a STATUS_PARAM) | |
| 124 | +{ | |
| 125 | + return sqrtf(a); | |
| 126 | +} | |
| 127 | +char float32_is_signaling_nan( float32 a1) | |
| 128 | +{ | |
| 129 | + float32u u; | |
| 130 | + uint32_t a; | |
| 131 | + u.f = a1; | |
| 132 | + a = u.i; | |
| 133 | + return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); | |
| 134 | +} | |
| 135 | + | |
| 136 | +/*---------------------------------------------------------------------------- | |
| 137 | +| Software IEC/IEEE double-precision conversion routines. | |
| 138 | +*----------------------------------------------------------------------------*/ | |
| 139 | +int float64_to_int32( float64 a STATUS_PARAM) | |
| 140 | +{ | |
| 141 | + return lrint(a); | |
| 142 | +} | |
| 143 | +int float64_to_int32_round_to_zero( float64 a STATUS_PARAM) | |
| 144 | +{ | |
| 145 | + return (int)a; | |
| 146 | +} | |
| 147 | +int64_t float64_to_int64( float64 a STATUS_PARAM) | |
| 148 | +{ | |
| 149 | + return llrint(a); | |
| 150 | +} | |
| 151 | +int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM) | |
| 152 | +{ | |
| 153 | + return (int64_t)a; | |
| 154 | +} | |
| 155 | +float32 float64_to_float32( float64 a STATUS_PARAM) | |
| 156 | +{ | |
| 157 | + return a; | |
| 158 | +} | |
| 159 | +#ifdef FLOATX80 | |
| 160 | +floatx80 float64_to_floatx80( float64 a STATUS_PARAM) | |
| 161 | +{ | |
| 162 | + return a; | |
| 163 | +} | |
| 164 | +#endif | |
| 165 | +#ifdef FLOAT128 | |
| 166 | +float128 float64_to_float128( float64 a STATUS_PARAM) | |
| 167 | +{ | |
| 168 | + return a; | |
| 169 | +} | |
| 170 | +#endif | |
| 171 | + | |
| 172 | +/*---------------------------------------------------------------------------- | |
| 173 | +| Software IEC/IEEE double-precision operations. | |
| 174 | +*----------------------------------------------------------------------------*/ | |
| 175 | +float64 float64_round_to_int( float64 a STATUS_PARAM ) | |
| 176 | +{ | |
| 177 | +#if defined(__arm__) | |
| 178 | + switch(STATUS(float_rounding_mode)) { | |
| 179 | + default: | |
| 180 | + case float_round_nearest_even: | |
| 181 | + asm("rndd %0, %1" : "=f" (a) : "f"(a)); | |
| 182 | + break; | |
| 183 | + case float_round_down: | |
| 184 | + asm("rnddm %0, %1" : "=f" (a) : "f"(a)); | |
| 185 | + break; | |
| 186 | + case float_round_up: | |
| 187 | + asm("rnddp %0, %1" : "=f" (a) : "f"(a)); | |
| 188 | + break; | |
| 189 | + case float_round_to_zero: | |
| 190 | + asm("rnddz %0, %1" : "=f" (a) : "f"(a)); | |
| 191 | + break; | |
| 192 | + } | |
| 193 | +#else | |
| 194 | + return rint(a); | |
| 195 | +#endif | |
| 196 | +} | |
| 197 | + | |
| 198 | +float64 float64_sqrt( float64 a STATUS_PARAM) | |
| 199 | +{ | |
| 200 | + return sqrt(a); | |
| 201 | +} | |
| 202 | +char float64_is_signaling_nan( float64 a1) | |
| 203 | +{ | |
| 204 | + float64u u; | |
| 205 | + uint64_t a; | |
| 206 | + u.f = a1; | |
| 207 | + a = u.i; | |
| 208 | + return | |
| 209 | + ( ( ( a>>51 ) & 0xFFF ) == 0xFFE ) | |
| 210 | + && ( a & LIT64( 0x0007FFFFFFFFFFFF ) ); | |
| 211 | + | |
| 212 | +} | |
| 213 | + | |
| 214 | +#ifdef FLOATX80 | |
| 215 | + | |
| 216 | +/*---------------------------------------------------------------------------- | |
| 217 | +| Software IEC/IEEE extended double-precision conversion routines. | |
| 218 | +*----------------------------------------------------------------------------*/ | |
| 219 | +int floatx80_to_int32( floatx80 a STATUS_PARAM) | |
| 220 | +{ | |
| 221 | + return lrintl(a); | |
| 222 | +} | |
| 223 | +int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM) | |
| 224 | +{ | |
| 225 | + return (int)a; | |
| 226 | +} | |
| 227 | +int64_t floatx80_to_int64( floatx80 a STATUS_PARAM) | |
| 228 | +{ | |
| 229 | + return llrintl(a); | |
| 230 | +} | |
| 231 | +int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM) | |
| 232 | +{ | |
| 233 | + return (int64_t)a; | |
| 234 | +} | |
| 235 | +float32 floatx80_to_float32( floatx80 a STATUS_PARAM) | |
| 236 | +{ | |
| 237 | + return a; | |
| 238 | +} | |
| 239 | +float64 floatx80_to_float64( floatx80 a STATUS_PARAM) | |
| 240 | +{ | |
| 241 | + return a; | |
| 242 | +} | |
| 243 | + | |
| 244 | +/*---------------------------------------------------------------------------- | |
| 245 | +| Software IEC/IEEE extended double-precision operations. | |
| 246 | +*----------------------------------------------------------------------------*/ | |
| 247 | +floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM) | |
| 248 | +{ | |
| 249 | + return rintl(a); | |
| 250 | +} | |
| 251 | +floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM) | |
| 252 | +{ | |
| 253 | + return sqrtl(a); | |
| 254 | +} | |
| 255 | +char floatx80_is_signaling_nan( floatx80 a1) | |
| 256 | +{ | |
| 257 | + floatx80u u; | |
| 258 | + u.f = a1; | |
| 259 | + return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 ); | |
| 260 | +} | |
| 261 | + | |
| 262 | +#endif | ... | ... |
fpu/softfloat-native.h
0 → 100644
| 1 | +/* Native implementation of soft float functions */ | |
| 2 | +#include <math.h> | |
| 3 | +#if defined(_BSD) && !defined(__APPLE__) | |
| 4 | +#include <ieeefp.h> | |
| 5 | +#else | |
| 6 | +#include <fenv.h> | |
| 7 | +#endif | |
| 8 | + | |
| 9 | +typedef float float32; | |
| 10 | +typedef double float64; | |
| 11 | +#ifdef FLOATX80 | |
| 12 | +typedef long double floatx80; | |
| 13 | +#endif | |
| 14 | + | |
| 15 | +typedef union { | |
| 16 | + float32 f; | |
| 17 | + uint32_t i; | |
| 18 | +} float32u; | |
| 19 | +typedef union { | |
| 20 | + float64 f; | |
| 21 | + uint64_t i; | |
| 22 | +} float64u; | |
| 23 | +#ifdef FLOATX80 | |
| 24 | +typedef union { | |
| 25 | + floatx80 f; | |
| 26 | + struct { | |
| 27 | + uint64_t low; | |
| 28 | + uint16_t high; | |
| 29 | + } i; | |
| 30 | +} floatx80u; | |
| 31 | +#endif | |
| 32 | + | |
| 33 | +/*---------------------------------------------------------------------------- | |
| 34 | +| Software IEC/IEEE floating-point rounding mode. | |
| 35 | +*----------------------------------------------------------------------------*/ | |
| 36 | +#if defined(_BSD) && !defined(__APPLE__) | |
| 37 | +enum { | |
| 38 | + float_round_nearest_even = FP_RN, | |
| 39 | + float_round_down = FE_RM, | |
| 40 | + float_round_up = FE_RP, | |
| 41 | + float_round_to_zero = FE_RZ | |
| 42 | +}; | |
| 43 | +#elif defined(__arm__) | |
| 44 | +enum { | |
| 45 | + float_round_nearest_even = 0, | |
| 46 | + float_round_down = 1, | |
| 47 | + float_round_up = 2, | |
| 48 | + float_round_to_zero = 3 | |
| 49 | +}; | |
| 50 | +#else | |
| 51 | +enum { | |
| 52 | + float_round_nearest_even = FE_TONEAREST, | |
| 53 | + float_round_down = FE_DOWNWARD, | |
| 54 | + float_round_up = FE_UPWARD, | |
| 55 | + float_round_to_zero = FE_TOWARDZERO | |
| 56 | +}; | |
| 57 | +#endif | |
| 58 | + | |
| 59 | +typedef struct float_status { | |
| 60 | + signed char float_rounding_mode; | |
| 61 | +#ifdef FLOATX80 | |
| 62 | + signed char floatx80_rounding_precision; | |
| 63 | +#endif | |
| 64 | +} float_status; | |
| 65 | + | |
| 66 | +void set_float_rounding_mode(int val STATUS_PARAM); | |
| 67 | +#ifdef FLOATX80 | |
| 68 | +void set_floatx80_rounding_precision(int val STATUS_PARAM); | |
| 69 | +#endif | |
| 70 | + | |
| 71 | +/*---------------------------------------------------------------------------- | |
| 72 | +| Software IEC/IEEE integer-to-floating-point conversion routines. | |
| 73 | +*----------------------------------------------------------------------------*/ | |
| 74 | +float32 int32_to_float32( int STATUS_PARAM); | |
| 75 | +float64 int32_to_float64( int STATUS_PARAM); | |
| 76 | +#ifdef FLOATX80 | |
| 77 | +floatx80 int32_to_floatx80( int STATUS_PARAM); | |
| 78 | +#endif | |
| 79 | +#ifdef FLOAT128 | |
| 80 | +float128 int32_to_float128( int STATUS_PARAM); | |
| 81 | +#endif | |
| 82 | +float32 int64_to_float32( int64_t STATUS_PARAM); | |
| 83 | +float64 int64_to_float64( int64_t STATUS_PARAM); | |
| 84 | +#ifdef FLOATX80 | |
| 85 | +floatx80 int64_to_floatx80( int64_t STATUS_PARAM); | |
| 86 | +#endif | |
| 87 | +#ifdef FLOAT128 | |
| 88 | +float128 int64_to_float128( int64_t STATUS_PARAM); | |
| 89 | +#endif | |
| 90 | + | |
| 91 | +/*---------------------------------------------------------------------------- | |
| 92 | +| Software IEC/IEEE single-precision conversion routines. | |
| 93 | +*----------------------------------------------------------------------------*/ | |
| 94 | +int float32_to_int32( float32 STATUS_PARAM); | |
| 95 | +int float32_to_int32_round_to_zero( float32 STATUS_PARAM); | |
| 96 | +int64_t float32_to_int64( float32 STATUS_PARAM); | |
| 97 | +int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM); | |
| 98 | +float64 float32_to_float64( float32 STATUS_PARAM); | |
| 99 | +#ifdef FLOATX80 | |
| 100 | +floatx80 float32_to_floatx80( float32 STATUS_PARAM); | |
| 101 | +#endif | |
| 102 | +#ifdef FLOAT128 | |
| 103 | +float128 float32_to_float128( float32 STATUS_PARAM); | |
| 104 | +#endif | |
| 105 | + | |
| 106 | +/*---------------------------------------------------------------------------- | |
| 107 | +| Software IEC/IEEE single-precision operations. | |
| 108 | +*----------------------------------------------------------------------------*/ | |
| 109 | +float32 float32_round_to_int( float32 STATUS_PARAM); | |
| 110 | +INLINE float32 float32_add( float32 a, float32 b STATUS_PARAM) | |
| 111 | +{ | |
| 112 | + return a + b; | |
| 113 | +} | |
| 114 | +INLINE float32 float32_sub( float32 a, float32 b STATUS_PARAM) | |
| 115 | +{ | |
| 116 | + return a - b; | |
| 117 | +} | |
| 118 | +INLINE float32 float32_mul( float32 a, float32 b STATUS_PARAM) | |
| 119 | +{ | |
| 120 | + return a * b; | |
| 121 | +} | |
| 122 | +INLINE float32 float32_div( float32 a, float32 b STATUS_PARAM) | |
| 123 | +{ | |
| 124 | + return a / b; | |
| 125 | +} | |
| 126 | +float32 float32_rem( float32, float32 STATUS_PARAM); | |
| 127 | +float32 float32_sqrt( float32 STATUS_PARAM); | |
| 128 | +INLINE char float32_eq( float32 a, float32 b STATUS_PARAM) | |
| 129 | +{ | |
| 130 | + /* XXX: incorrect because it can raise an exception */ | |
| 131 | + return a == b; | |
| 132 | +} | |
| 133 | +INLINE char float32_le( float32 a, float32 b STATUS_PARAM) | |
| 134 | +{ | |
| 135 | + return a <= b; | |
| 136 | +} | |
| 137 | +INLINE char float32_lt( float32 a, float32 b STATUS_PARAM) | |
| 138 | +{ | |
| 139 | + return a < b; | |
| 140 | +} | |
| 141 | +INLINE char float32_eq_signaling( float32 a, float32 b STATUS_PARAM) | |
| 142 | +{ | |
| 143 | + return a == b; | |
| 144 | +} | |
| 145 | +INLINE char float32_le_quiet( float32 a, float32 b STATUS_PARAM) | |
| 146 | +{ | |
| 147 | + return islessequal(a, b); | |
| 148 | +} | |
| 149 | +INLINE char float32_lt_quiet( float32 a, float32 b STATUS_PARAM) | |
| 150 | +{ | |
| 151 | + return isless(a, b); | |
| 152 | +} | |
| 153 | +char float32_is_signaling_nan( float32 ); | |
| 154 | + | |
| 155 | +INLINE float32 float32_abs(float32 a) | |
| 156 | +{ | |
| 157 | + return fabsf(a); | |
| 158 | +} | |
| 159 | + | |
| 160 | +INLINE float32 float32_chs(float32 a) | |
| 161 | +{ | |
| 162 | + return -a; | |
| 163 | +} | |
| 164 | + | |
| 165 | +/*---------------------------------------------------------------------------- | |
| 166 | +| Software IEC/IEEE double-precision conversion routines. | |
| 167 | +*----------------------------------------------------------------------------*/ | |
| 168 | +int float64_to_int32( float64 STATUS_PARAM ); | |
| 169 | +int float64_to_int32_round_to_zero( float64 STATUS_PARAM ); | |
| 170 | +int64_t float64_to_int64( float64 STATUS_PARAM ); | |
| 171 | +int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM ); | |
| 172 | +float32 float64_to_float32( float64 STATUS_PARAM ); | |
| 173 | +#ifdef FLOATX80 | |
| 174 | +floatx80 float64_to_floatx80( float64 STATUS_PARAM ); | |
| 175 | +#endif | |
| 176 | +#ifdef FLOAT128 | |
| 177 | +float128 float64_to_float128( float64 STATUS_PARAM ); | |
| 178 | +#endif | |
| 179 | + | |
| 180 | +/*---------------------------------------------------------------------------- | |
| 181 | +| Software IEC/IEEE double-precision operations. | |
| 182 | +*----------------------------------------------------------------------------*/ | |
| 183 | +float64 float64_round_to_int( float64 STATUS_PARAM ); | |
| 184 | +INLINE float64 float64_add( float64 a, float64 b STATUS_PARAM) | |
| 185 | +{ | |
| 186 | + return a + b; | |
| 187 | +} | |
| 188 | +INLINE float64 float64_sub( float64 a, float64 b STATUS_PARAM) | |
| 189 | +{ | |
| 190 | + return a - b; | |
| 191 | +} | |
| 192 | +INLINE float64 float64_mul( float64 a, float64 b STATUS_PARAM) | |
| 193 | +{ | |
| 194 | + return a * b; | |
| 195 | +} | |
| 196 | +INLINE float64 float64_div( float64 a, float64 b STATUS_PARAM) | |
| 197 | +{ | |
| 198 | + return a / b; | |
| 199 | +} | |
| 200 | +float64 float64_rem( float64, float64 STATUS_PARAM ); | |
| 201 | +float64 float64_sqrt( float64 STATUS_PARAM ); | |
| 202 | +INLINE char float64_eq( float64 a, float64 b STATUS_PARAM) | |
| 203 | +{ | |
| 204 | + return a == b; | |
| 205 | +} | |
| 206 | +INLINE char float64_le( float64 a, float64 b STATUS_PARAM) | |
| 207 | +{ | |
| 208 | + return a <= b; | |
| 209 | +} | |
| 210 | +INLINE char float64_lt( float64 a, float64 b STATUS_PARAM) | |
| 211 | +{ | |
| 212 | + return a < b; | |
| 213 | +} | |
| 214 | +INLINE char float64_eq_signaling( float64 a, float64 b STATUS_PARAM) | |
| 215 | +{ | |
| 216 | + return a == b; | |
| 217 | +} | |
| 218 | +INLINE char float64_le_quiet( float64 a, float64 b STATUS_PARAM) | |
| 219 | +{ | |
| 220 | + return islessequal(a, b); | |
| 221 | +} | |
| 222 | +INLINE char float64_lt_quiet( float64 a, float64 b STATUS_PARAM) | |
| 223 | +{ | |
| 224 | + return isless(a, b); | |
| 225 | + | |
| 226 | +} | |
| 227 | +char float64_is_signaling_nan( float64 ); | |
| 228 | + | |
| 229 | +INLINE float64 float64_abs(float64 a) | |
| 230 | +{ | |
| 231 | + return fabs(a); | |
| 232 | +} | |
| 233 | + | |
| 234 | +INLINE float64 float64_chs(float64 a) | |
| 235 | +{ | |
| 236 | + return -a; | |
| 237 | +} | |
| 238 | + | |
| 239 | +#ifdef FLOATX80 | |
| 240 | + | |
| 241 | +/*---------------------------------------------------------------------------- | |
| 242 | +| Software IEC/IEEE extended double-precision conversion routines. | |
| 243 | +*----------------------------------------------------------------------------*/ | |
| 244 | +int floatx80_to_int32( floatx80 STATUS_PARAM ); | |
| 245 | +int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM ); | |
| 246 | +int64_t floatx80_to_int64( floatx80 STATUS_PARAM); | |
| 247 | +int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM); | |
| 248 | +float32 floatx80_to_float32( floatx80 STATUS_PARAM ); | |
| 249 | +float64 floatx80_to_float64( floatx80 STATUS_PARAM ); | |
| 250 | +#ifdef FLOAT128 | |
| 251 | +float128 floatx80_to_float128( floatx80 STATUS_PARAM ); | |
| 252 | +#endif | |
| 253 | + | |
| 254 | +/*---------------------------------------------------------------------------- | |
| 255 | +| Software IEC/IEEE extended double-precision operations. | |
| 256 | +*----------------------------------------------------------------------------*/ | |
| 257 | +floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM ); | |
| 258 | +INLINE floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM) | |
| 259 | +{ | |
| 260 | + return a + b; | |
| 261 | +} | |
| 262 | +INLINE floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM) | |
| 263 | +{ | |
| 264 | + return a - b; | |
| 265 | +} | |
| 266 | +INLINE floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM) | |
| 267 | +{ | |
| 268 | + return a * b; | |
| 269 | +} | |
| 270 | +INLINE floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM) | |
| 271 | +{ | |
| 272 | + return a / b; | |
| 273 | +} | |
| 274 | +floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM ); | |
| 275 | +floatx80 floatx80_sqrt( floatx80 STATUS_PARAM ); | |
| 276 | +INLINE char floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM) | |
| 277 | +{ | |
| 278 | + return a == b; | |
| 279 | +} | |
| 280 | +INLINE char floatx80_le( floatx80 a, floatx80 b STATUS_PARAM) | |
| 281 | +{ | |
| 282 | + return a <= b; | |
| 283 | +} | |
| 284 | +INLINE char floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM) | |
| 285 | +{ | |
| 286 | + return a < b; | |
| 287 | +} | |
| 288 | +INLINE char floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM) | |
| 289 | +{ | |
| 290 | + return a == b; | |
| 291 | +} | |
| 292 | +INLINE char floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM) | |
| 293 | +{ | |
| 294 | + return islessequal(a, b); | |
| 295 | +} | |
| 296 | +INLINE char floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM) | |
| 297 | +{ | |
| 298 | + return isless(a, b); | |
| 299 | + | |
| 300 | +} | |
| 301 | +char floatx80_is_signaling_nan( floatx80 ); | |
| 302 | + | |
| 303 | +INLINE floatx80 floatx80_abs(floatx80 a) | |
| 304 | +{ | |
| 305 | + return fabsl(a); | |
| 306 | +} | |
| 307 | + | |
| 308 | +INLINE floatx80 floatx80_chs(floatx80 a) | |
| 309 | +{ | |
| 310 | + return -a; | |
| 311 | +} | |
| 312 | +#endif | ... | ... |
fpu/softfloat-specialize.h
0 → 100644
| 1 | + | |
| 2 | +/*============================================================================ | |
| 3 | + | |
| 4 | +This C source fragment is part of the SoftFloat IEC/IEEE Floating-point | |
| 5 | +Arithmetic Package, Release 2b. | |
| 6 | + | |
| 7 | +Written by John R. Hauser. This work was made possible in part by the | |
| 8 | +International Computer Science Institute, located at Suite 600, 1947 Center | |
| 9 | +Street, Berkeley, California 94704. Funding was partially provided by the | |
| 10 | +National Science Foundation under grant MIP-9311980. The original version | |
| 11 | +of this code was written as part of a project to build a fixed-point vector | |
| 12 | +processor in collaboration with the University of California at Berkeley, | |
| 13 | +overseen by Profs. Nelson Morgan and John Wawrzynek. More information | |
| 14 | +is available through the Web page `http://www.cs.berkeley.edu/~jhauser/ | |
| 15 | +arithmetic/SoftFloat.html'. | |
| 16 | + | |
| 17 | +THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has | |
| 18 | +been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES | |
| 19 | +RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS | |
| 20 | +AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES, | |
| 21 | +COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE | |
| 22 | +EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE | |
| 23 | +INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR | |
| 24 | +OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE. | |
| 25 | + | |
| 26 | +Derivative works are acceptable, even for commercial purposes, so long as | |
| 27 | +(1) the source code for the derivative work includes prominent notice that | |
| 28 | +the work is derivative, and (2) the source code includes prominent notice with | |
| 29 | +these four paragraphs for those parts of this code that are retained. | |
| 30 | + | |
| 31 | +=============================================================================*/ | |
| 32 | + | |
| 33 | +/*---------------------------------------------------------------------------- | |
| 34 | +| Underflow tininess-detection mode, statically initialized to default value. | |
| 35 | +| (The declaration in `softfloat.h' must match the `int8' type here.) | |
| 36 | +*----------------------------------------------------------------------------*/ | |
| 37 | +int8 float_detect_tininess = float_tininess_after_rounding; | |
| 38 | + | |
| 39 | +/*---------------------------------------------------------------------------- | |
| 40 | +| Raises the exceptions specified by `flags'. Floating-point traps can be | |
| 41 | +| defined here if desired. It is currently not possible for such a trap | |
| 42 | +| to substitute a result value. If traps are not implemented, this routine | |
| 43 | +| should be simply `float_exception_flags |= flags;'. | |
| 44 | +*----------------------------------------------------------------------------*/ | |
| 45 | + | |
| 46 | +void float_raise( int8 flags STATUS_PARAM ) | |
| 47 | +{ | |
| 48 | + | |
| 49 | + STATUS(float_exception_flags) |= flags; | |
| 50 | + | |
| 51 | +} | |
| 52 | + | |
| 53 | +/*---------------------------------------------------------------------------- | |
| 54 | +| Internal canonical NaN format. | |
| 55 | +*----------------------------------------------------------------------------*/ | |
| 56 | +typedef struct { | |
| 57 | + flag sign; | |
| 58 | + bits64 high, low; | |
| 59 | +} commonNaNT; | |
| 60 | + | |
| 61 | +/*---------------------------------------------------------------------------- | |
| 62 | +| The pattern for a default generated single-precision NaN. | |
| 63 | +*----------------------------------------------------------------------------*/ | |
| 64 | +#define float32_default_nan 0xFFC00000 | |
| 65 | + | |
| 66 | +/*---------------------------------------------------------------------------- | |
| 67 | +| Returns 1 if the single-precision floating-point value `a' is a NaN; | |
| 68 | +| otherwise returns 0. | |
| 69 | +*----------------------------------------------------------------------------*/ | |
| 70 | + | |
| 71 | +flag float32_is_nan( float32 a ) | |
| 72 | +{ | |
| 73 | + | |
| 74 | + return ( 0xFF000000 < (bits32) ( a<<1 ) ); | |
| 75 | + | |
| 76 | +} | |
| 77 | + | |
| 78 | +/*---------------------------------------------------------------------------- | |
| 79 | +| Returns 1 if the single-precision floating-point value `a' is a signaling | |
| 80 | +| NaN; otherwise returns 0. | |
| 81 | +*----------------------------------------------------------------------------*/ | |
| 82 | + | |
| 83 | +flag float32_is_signaling_nan( float32 a ) | |
| 84 | +{ | |
| 85 | + | |
| 86 | + return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); | |
| 87 | + | |
| 88 | +} | |
| 89 | + | |
| 90 | +/*---------------------------------------------------------------------------- | |
| 91 | +| Returns the result of converting the single-precision floating-point NaN | |
| 92 | +| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid | |
| 93 | +| exception is raised. | |
| 94 | +*----------------------------------------------------------------------------*/ | |
| 95 | + | |
| 96 | +static commonNaNT float32ToCommonNaN( float32 a STATUS_PARAM ) | |
| 97 | +{ | |
| 98 | + commonNaNT z; | |
| 99 | + | |
| 100 | + if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR ); | |
| 101 | + z.sign = a>>31; | |
| 102 | + z.low = 0; | |
| 103 | + z.high = ( (bits64) a )<<41; | |
| 104 | + return z; | |
| 105 | + | |
| 106 | +} | |
| 107 | + | |
| 108 | +/*---------------------------------------------------------------------------- | |
| 109 | +| Returns the result of converting the canonical NaN `a' to the single- | |
| 110 | +| precision floating-point format. | |
| 111 | +*----------------------------------------------------------------------------*/ | |
| 112 | + | |
| 113 | +static float32 commonNaNToFloat32( commonNaNT a ) | |
| 114 | +{ | |
| 115 | + | |
| 116 | + return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 ); | |
| 117 | + | |
| 118 | +} | |
| 119 | + | |
| 120 | +/*---------------------------------------------------------------------------- | |
| 121 | +| Takes two single-precision floating-point values `a' and `b', one of which | |
| 122 | +| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a | |
| 123 | +| signaling NaN, the invalid exception is raised. | |
| 124 | +*----------------------------------------------------------------------------*/ | |
| 125 | + | |
| 126 | +static float32 propagateFloat32NaN( float32 a, float32 b STATUS_PARAM) | |
| 127 | +{ | |
| 128 | + flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; | |
| 129 | + | |
| 130 | + aIsNaN = float32_is_nan( a ); | |
| 131 | + aIsSignalingNaN = float32_is_signaling_nan( a ); | |
| 132 | + bIsNaN = float32_is_nan( b ); | |
| 133 | + bIsSignalingNaN = float32_is_signaling_nan( b ); | |
| 134 | + a |= 0x00400000; | |
| 135 | + b |= 0x00400000; | |
| 136 | + if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR); | |
| 137 | + if ( aIsSignalingNaN ) { | |
| 138 | + if ( bIsSignalingNaN ) goto returnLargerSignificand; | |
| 139 | + return bIsNaN ? b : a; | |
| 140 | + } | |
| 141 | + else if ( aIsNaN ) { | |
| 142 | + if ( bIsSignalingNaN | ! bIsNaN ) return a; | |
| 143 | + returnLargerSignificand: | |
| 144 | + if ( (bits32) ( a<<1 ) < (bits32) ( b<<1 ) ) return b; | |
| 145 | + if ( (bits32) ( b<<1 ) < (bits32) ( a<<1 ) ) return a; | |
| 146 | + return ( a < b ) ? a : b; | |
| 147 | + } | |
| 148 | + else { | |
| 149 | + return b; | |
| 150 | + } | |
| 151 | + | |
| 152 | +} | |
| 153 | + | |
| 154 | +/*---------------------------------------------------------------------------- | |
| 155 | +| The pattern for a default generated double-precision NaN. | |
| 156 | +*----------------------------------------------------------------------------*/ | |
| 157 | +#define float64_default_nan LIT64( 0xFFF8000000000000 ) | |
| 158 | + | |
| 159 | +/*---------------------------------------------------------------------------- | |
| 160 | +| Returns 1 if the double-precision floating-point value `a' is a NaN; | |
| 161 | +| otherwise returns 0. | |
| 162 | +*----------------------------------------------------------------------------*/ | |
| 163 | + | |
| 164 | +flag float64_is_nan( float64 a ) | |
| 165 | +{ | |
| 166 | + | |
| 167 | + return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) ); | |
| 168 | + | |
| 169 | +} | |
| 170 | + | |
| 171 | +/*---------------------------------------------------------------------------- | |
| 172 | +| Returns 1 if the double-precision floating-point value `a' is a signaling | |
| 173 | +| NaN; otherwise returns 0. | |
| 174 | +*----------------------------------------------------------------------------*/ | |
| 175 | + | |
| 176 | +flag float64_is_signaling_nan( float64 a ) | |
| 177 | +{ | |
| 178 | + | |
| 179 | + return | |
| 180 | + ( ( ( a>>51 ) & 0xFFF ) == 0xFFE ) | |
| 181 | + && ( a & LIT64( 0x0007FFFFFFFFFFFF ) ); | |
| 182 | + | |
| 183 | +} | |
| 184 | + | |
| 185 | +/*---------------------------------------------------------------------------- | |
| 186 | +| Returns the result of converting the double-precision floating-point NaN | |
| 187 | +| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid | |
| 188 | +| exception is raised. | |
| 189 | +*----------------------------------------------------------------------------*/ | |
| 190 | + | |
| 191 | +static commonNaNT float64ToCommonNaN( float64 a STATUS_PARAM) | |
| 192 | +{ | |
| 193 | + commonNaNT z; | |
| 194 | + | |
| 195 | + if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR); | |
| 196 | + z.sign = a>>63; | |
| 197 | + z.low = 0; | |
| 198 | + z.high = a<<12; | |
| 199 | + return z; | |
| 200 | + | |
| 201 | +} | |
| 202 | + | |
| 203 | +/*---------------------------------------------------------------------------- | |
| 204 | +| Returns the result of converting the canonical NaN `a' to the double- | |
| 205 | +| precision floating-point format. | |
| 206 | +*----------------------------------------------------------------------------*/ | |
| 207 | + | |
| 208 | +static float64 commonNaNToFloat64( commonNaNT a ) | |
| 209 | +{ | |
| 210 | + | |
| 211 | + return | |
| 212 | + ( ( (bits64) a.sign )<<63 ) | |
| 213 | + | LIT64( 0x7FF8000000000000 ) | |
| 214 | + | ( a.high>>12 ); | |
| 215 | + | |
| 216 | +} | |
| 217 | + | |
| 218 | +/*---------------------------------------------------------------------------- | |
| 219 | +| Takes two double-precision floating-point values `a' and `b', one of which | |
| 220 | +| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a | |
| 221 | +| signaling NaN, the invalid exception is raised. | |
| 222 | +*----------------------------------------------------------------------------*/ | |
| 223 | + | |
| 224 | +static float64 propagateFloat64NaN( float64 a, float64 b STATUS_PARAM) | |
| 225 | +{ | |
| 226 | + flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; | |
| 227 | + | |
| 228 | + aIsNaN = float64_is_nan( a ); | |
| 229 | + aIsSignalingNaN = float64_is_signaling_nan( a ); | |
| 230 | + bIsNaN = float64_is_nan( b ); | |
| 231 | + bIsSignalingNaN = float64_is_signaling_nan( b ); | |
| 232 | + a |= LIT64( 0x0008000000000000 ); | |
| 233 | + b |= LIT64( 0x0008000000000000 ); | |
| 234 | + if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR); | |
| 235 | + if ( aIsSignalingNaN ) { | |
| 236 | + if ( bIsSignalingNaN ) goto returnLargerSignificand; | |
| 237 | + return bIsNaN ? b : a; | |
| 238 | + } | |
| 239 | + else if ( aIsNaN ) { | |
| 240 | + if ( bIsSignalingNaN | ! bIsNaN ) return a; | |
| 241 | + returnLargerSignificand: | |
| 242 | + if ( (bits64) ( a<<1 ) < (bits64) ( b<<1 ) ) return b; | |
| 243 | + if ( (bits64) ( b<<1 ) < (bits64) ( a<<1 ) ) return a; | |
| 244 | + return ( a < b ) ? a : b; | |
| 245 | + } | |
| 246 | + else { | |
| 247 | + return b; | |
| 248 | + } | |
| 249 | + | |
| 250 | +} | |
| 251 | + | |
| 252 | +#ifdef FLOATX80 | |
| 253 | + | |
| 254 | +/*---------------------------------------------------------------------------- | |
| 255 | +| The pattern for a default generated extended double-precision NaN. The | |
| 256 | +| `high' and `low' values hold the most- and least-significant bits, | |
| 257 | +| respectively. | |
| 258 | +*----------------------------------------------------------------------------*/ | |
| 259 | +#define floatx80_default_nan_high 0xFFFF | |
| 260 | +#define floatx80_default_nan_low LIT64( 0xC000000000000000 ) | |
| 261 | + | |
| 262 | +/*---------------------------------------------------------------------------- | |
| 263 | +| Returns 1 if the extended double-precision floating-point value `a' is a | |
| 264 | +| NaN; otherwise returns 0. | |
| 265 | +*----------------------------------------------------------------------------*/ | |
| 266 | + | |
| 267 | +flag floatx80_is_nan( floatx80 a ) | |
| 268 | +{ | |
| 269 | + | |
| 270 | + return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 ); | |
| 271 | + | |
| 272 | +} | |
| 273 | + | |
| 274 | +/*---------------------------------------------------------------------------- | |
| 275 | +| Returns 1 if the extended double-precision floating-point value `a' is a | |
| 276 | +| signaling NaN; otherwise returns 0. | |
| 277 | +*----------------------------------------------------------------------------*/ | |
| 278 | + | |
| 279 | +flag floatx80_is_signaling_nan( floatx80 a ) | |
| 280 | +{ | |
| 281 | + bits64 aLow; | |
| 282 | + | |
| 283 | + aLow = a.low & ~ LIT64( 0x4000000000000000 ); | |
| 284 | + return | |
| 285 | + ( ( a.high & 0x7FFF ) == 0x7FFF ) | |
| 286 | + && (bits64) ( aLow<<1 ) | |
| 287 | + && ( a.low == aLow ); | |
| 288 | + | |
| 289 | +} | |
| 290 | + | |
| 291 | +/*---------------------------------------------------------------------------- | |
| 292 | +| Returns the result of converting the extended double-precision floating- | |
| 293 | +| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the | |
| 294 | +| invalid exception is raised. | |
| 295 | +*----------------------------------------------------------------------------*/ | |
| 296 | + | |
| 297 | +static commonNaNT floatx80ToCommonNaN( floatx80 a STATUS_PARAM) | |
| 298 | +{ | |
| 299 | + commonNaNT z; | |
| 300 | + | |
| 301 | + if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR); | |
| 302 | + z.sign = a.high>>15; | |
| 303 | + z.low = 0; | |
| 304 | + z.high = a.low<<1; | |
| 305 | + return z; | |
| 306 | + | |
| 307 | +} | |
| 308 | + | |
| 309 | +/*---------------------------------------------------------------------------- | |
| 310 | +| Returns the result of converting the canonical NaN `a' to the extended | |
| 311 | +| double-precision floating-point format. | |
| 312 | +*----------------------------------------------------------------------------*/ | |
| 313 | + | |
| 314 | +static floatx80 commonNaNToFloatx80( commonNaNT a ) | |
| 315 | +{ | |
| 316 | + floatx80 z; | |
| 317 | + | |
| 318 | + z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 ); | |
| 319 | + z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF; | |
| 320 | + return z; | |
| 321 | + | |
| 322 | +} | |
| 323 | + | |
| 324 | +/*---------------------------------------------------------------------------- | |
| 325 | +| Takes two extended double-precision floating-point values `a' and `b', one | |
| 326 | +| of which is a NaN, and returns the appropriate NaN result. If either `a' or | |
| 327 | +| `b' is a signaling NaN, the invalid exception is raised. | |
| 328 | +*----------------------------------------------------------------------------*/ | |
| 329 | + | |
| 330 | +static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM) | |
| 331 | +{ | |
| 332 | + flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; | |
| 333 | + | |
| 334 | + aIsNaN = floatx80_is_nan( a ); | |
| 335 | + aIsSignalingNaN = floatx80_is_signaling_nan( a ); | |
| 336 | + bIsNaN = floatx80_is_nan( b ); | |
| 337 | + bIsSignalingNaN = floatx80_is_signaling_nan( b ); | |
| 338 | + a.low |= LIT64( 0xC000000000000000 ); | |
| 339 | + b.low |= LIT64( 0xC000000000000000 ); | |
| 340 | + if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR); | |
| 341 | + if ( aIsSignalingNaN ) { | |
| 342 | + if ( bIsSignalingNaN ) goto returnLargerSignificand; | |
| 343 | + return bIsNaN ? b : a; | |
| 344 | + } | |
| 345 | + else if ( aIsNaN ) { | |
| 346 | + if ( bIsSignalingNaN | ! bIsNaN ) return a; | |
| 347 | + returnLargerSignificand: | |
| 348 | + if ( a.low < b.low ) return b; | |
| 349 | + if ( b.low < a.low ) return a; | |
| 350 | + return ( a.high < b.high ) ? a : b; | |
| 351 | + } | |
| 352 | + else { | |
| 353 | + return b; | |
| 354 | + } | |
| 355 | + | |
| 356 | +} | |
| 357 | + | |
| 358 | +#endif | |
| 359 | + | |
| 360 | +#ifdef FLOAT128 | |
| 361 | + | |
| 362 | +/*---------------------------------------------------------------------------- | |
| 363 | +| The pattern for a default generated quadruple-precision NaN. The `high' and | |
| 364 | +| `low' values hold the most- and least-significant bits, respectively. | |
| 365 | +*----------------------------------------------------------------------------*/ | |
| 366 | +#define float128_default_nan_high LIT64( 0xFFFF800000000000 ) | |
| 367 | +#define float128_default_nan_low LIT64( 0x0000000000000000 ) | |
| 368 | + | |
| 369 | +/*---------------------------------------------------------------------------- | |
| 370 | +| Returns 1 if the quadruple-precision floating-point value `a' is a NaN; | |
| 371 | +| otherwise returns 0. | |
| 372 | +*----------------------------------------------------------------------------*/ | |
| 373 | + | |
| 374 | +flag float128_is_nan( float128 a ) | |
| 375 | +{ | |
| 376 | + | |
| 377 | + return | |
| 378 | + ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) ) | |
| 379 | + && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) ); | |
| 380 | + | |
| 381 | +} | |
| 382 | + | |
| 383 | +/*---------------------------------------------------------------------------- | |
| 384 | +| Returns 1 if the quadruple-precision floating-point value `a' is a | |
| 385 | +| signaling NaN; otherwise returns 0. | |
| 386 | +*----------------------------------------------------------------------------*/ | |
| 387 | + | |
| 388 | +flag float128_is_signaling_nan( float128 a ) | |
| 389 | +{ | |
| 390 | + | |
| 391 | + return | |
| 392 | + ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE ) | |
| 393 | + && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) ); | |
| 394 | + | |
| 395 | +} | |
| 396 | + | |
| 397 | +/*---------------------------------------------------------------------------- | |
| 398 | +| Returns the result of converting the quadruple-precision floating-point NaN | |
| 399 | +| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid | |
| 400 | +| exception is raised. | |
| 401 | +*----------------------------------------------------------------------------*/ | |
| 402 | + | |
| 403 | +static commonNaNT float128ToCommonNaN( float128 a STATUS_PARAM) | |
| 404 | +{ | |
| 405 | + commonNaNT z; | |
| 406 | + | |
| 407 | + if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR); | |
| 408 | + z.sign = a.high>>63; | |
| 409 | + shortShift128Left( a.high, a.low, 16, &z.high, &z.low ); | |
| 410 | + return z; | |
| 411 | + | |
| 412 | +} | |
| 413 | + | |
| 414 | +/*---------------------------------------------------------------------------- | |
| 415 | +| Returns the result of converting the canonical NaN `a' to the quadruple- | |
| 416 | +| precision floating-point format. | |
| 417 | +*----------------------------------------------------------------------------*/ | |
| 418 | + | |
| 419 | +static float128 commonNaNToFloat128( commonNaNT a ) | |
| 420 | +{ | |
| 421 | + float128 z; | |
| 422 | + | |
| 423 | + shift128Right( a.high, a.low, 16, &z.high, &z.low ); | |
| 424 | + z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 ); | |
| 425 | + return z; | |
| 426 | + | |
| 427 | +} | |
| 428 | + | |
| 429 | +/*---------------------------------------------------------------------------- | |
| 430 | +| Takes two quadruple-precision floating-point values `a' and `b', one of | |
| 431 | +| which is a NaN, and returns the appropriate NaN result. If either `a' or | |
| 432 | +| `b' is a signaling NaN, the invalid exception is raised. | |
| 433 | +*----------------------------------------------------------------------------*/ | |
| 434 | + | |
| 435 | +static float128 propagateFloat128NaN( float128 a, float128 b STATUS_PARAM) | |
| 436 | +{ | |
| 437 | + flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; | |
| 438 | + | |
| 439 | + aIsNaN = float128_is_nan( a ); | |
| 440 | + aIsSignalingNaN = float128_is_signaling_nan( a ); | |
| 441 | + bIsNaN = float128_is_nan( b ); | |
| 442 | + bIsSignalingNaN = float128_is_signaling_nan( b ); | |
| 443 | + a.high |= LIT64( 0x0000800000000000 ); | |
| 444 | + b.high |= LIT64( 0x0000800000000000 ); | |
| 445 | + if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR); | |
| 446 | + if ( aIsSignalingNaN ) { | |
| 447 | + if ( bIsSignalingNaN ) goto returnLargerSignificand; | |
| 448 | + return bIsNaN ? b : a; | |
| 449 | + } | |
| 450 | + else if ( aIsNaN ) { | |
| 451 | + if ( bIsSignalingNaN | ! bIsNaN ) return a; | |
| 452 | + returnLargerSignificand: | |
| 453 | + if ( lt128( a.high<<1, a.low, b.high<<1, b.low ) ) return b; | |
| 454 | + if ( lt128( b.high<<1, b.low, a.high<<1, a.low ) ) return a; | |
| 455 | + return ( a.high < b.high ) ? a : b; | |
| 456 | + } | |
| 457 | + else { | |
| 458 | + return b; | |
| 459 | + } | |
| 460 | + | |
| 461 | +} | |
| 462 | + | |
| 463 | +#endif | |
| 464 | + | ... | ... |
fpu/softfloat.c
0 → 100644
| 1 | + | |
| 2 | +/*============================================================================ | |
| 3 | + | |
| 4 | +This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic | |
| 5 | +Package, Release 2b. | |
| 6 | + | |
| 7 | +Written by John R. Hauser. This work was made possible in part by the | |
| 8 | +International Computer Science Institute, located at Suite 600, 1947 Center | |
| 9 | +Street, Berkeley, California 94704. Funding was partially provided by the | |
| 10 | +National Science Foundation under grant MIP-9311980. The original version | |
| 11 | +of this code was written as part of a project to build a fixed-point vector | |
| 12 | +processor in collaboration with the University of California at Berkeley, | |
| 13 | +overseen by Profs. Nelson Morgan and John Wawrzynek. More information | |
| 14 | +is available through the Web page `http://www.cs.berkeley.edu/~jhauser/ | |
| 15 | +arithmetic/SoftFloat.html'. | |
| 16 | + | |
| 17 | +THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has | |
| 18 | +been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES | |
| 19 | +RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS | |
| 20 | +AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES, | |
| 21 | +COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE | |
| 22 | +EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE | |
| 23 | +INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR | |
| 24 | +OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE. | |
| 25 | + | |
| 26 | +Derivative works are acceptable, even for commercial purposes, so long as | |
| 27 | +(1) the source code for the derivative work includes prominent notice that | |
| 28 | +the work is derivative, and (2) the source code includes prominent notice with | |
| 29 | +these four paragraphs for those parts of this code that are retained. | |
| 30 | + | |
| 31 | +=============================================================================*/ | |
| 32 | + | |
| 33 | +#include "softfloat.h" | |
| 34 | + | |
| 35 | +/*---------------------------------------------------------------------------- | |
| 36 | +| Primitive arithmetic functions, including multi-word arithmetic, and | |
| 37 | +| division and square root approximations. (Can be specialized to target if | |
| 38 | +| desired.) | |
| 39 | +*----------------------------------------------------------------------------*/ | |
| 40 | +#include "softfloat-macros.h" | |
| 41 | + | |
| 42 | +/*---------------------------------------------------------------------------- | |
| 43 | +| Functions and definitions to determine: (1) whether tininess for underflow | |
| 44 | +| is detected before or after rounding by default, (2) what (if anything) | |
| 45 | +| happens when exceptions are raised, (3) how signaling NaNs are distinguished | |
| 46 | +| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs | |
| 47 | +| are propagated from function inputs to output. These details are target- | |
| 48 | +| specific. | |
| 49 | +*----------------------------------------------------------------------------*/ | |
| 50 | +#include "softfloat-specialize.h" | |
| 51 | + | |
| 52 | +void set_float_rounding_mode(int val STATUS_PARAM) | |
| 53 | +{ | |
| 54 | + STATUS(float_rounding_mode) = val; | |
| 55 | +} | |
| 56 | + | |
| 57 | +#ifdef FLOATX80 | |
| 58 | +void set_floatx80_rounding_precision(int val STATUS_PARAM) | |
| 59 | +{ | |
| 60 | + STATUS(floatx80_rounding_precision) = val; | |
| 61 | +} | |
| 62 | +#endif | |
| 63 | + | |
| 64 | +/*---------------------------------------------------------------------------- | |
| 65 | +| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 | |
| 66 | +| and 7, and returns the properly rounded 32-bit integer corresponding to the | |
| 67 | +| input. If `zSign' is 1, the input is negated before being converted to an | |
| 68 | +| integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input | |
| 69 | +| is simply rounded to an integer, with the inexact exception raised if the | |
| 70 | +| input cannot be represented exactly as an integer. However, if the fixed- | |
| 71 | +| point input is too large, the invalid exception is raised and the largest | |
| 72 | +| positive or negative integer is returned. | |
| 73 | +*----------------------------------------------------------------------------*/ | |
| 74 | + | |
| 75 | +static int32 roundAndPackInt32( flag zSign, bits64 absZ STATUS_PARAM) | |
| 76 | +{ | |
| 77 | + int8 roundingMode; | |
| 78 | + flag roundNearestEven; | |
| 79 | + int8 roundIncrement, roundBits; | |
| 80 | + int32 z; | |
| 81 | + | |
| 82 | + roundingMode = STATUS(float_rounding_mode); | |
| 83 | + roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
| 84 | + roundIncrement = 0x40; | |
| 85 | + if ( ! roundNearestEven ) { | |
| 86 | + if ( roundingMode == float_round_to_zero ) { | |
| 87 | + roundIncrement = 0; | |
| 88 | + } | |
| 89 | + else { | |
| 90 | + roundIncrement = 0x7F; | |
| 91 | + if ( zSign ) { | |
| 92 | + if ( roundingMode == float_round_up ) roundIncrement = 0; | |
| 93 | + } | |
| 94 | + else { | |
| 95 | + if ( roundingMode == float_round_down ) roundIncrement = 0; | |
| 96 | + } | |
| 97 | + } | |
| 98 | + } | |
| 99 | + roundBits = absZ & 0x7F; | |
| 100 | + absZ = ( absZ + roundIncrement )>>7; | |
| 101 | + absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | |
| 102 | + z = absZ; | |
| 103 | + if ( zSign ) z = - z; | |
| 104 | + if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { | |
| 105 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 106 | + return zSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; | |
| 107 | + } | |
| 108 | + if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; | |
| 109 | + return z; | |
| 110 | + | |
| 111 | +} | |
| 112 | + | |
| 113 | +/*---------------------------------------------------------------------------- | |
| 114 | +| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and | |
| 115 | +| `absZ1', with binary point between bits 63 and 64 (between the input words), | |
| 116 | +| and returns the properly rounded 64-bit integer corresponding to the input. | |
| 117 | +| If `zSign' is 1, the input is negated before being converted to an integer. | |
| 118 | +| Ordinarily, the fixed-point input is simply rounded to an integer, with | |
| 119 | +| the inexact exception raised if the input cannot be represented exactly as | |
| 120 | +| an integer. However, if the fixed-point input is too large, the invalid | |
| 121 | +| exception is raised and the largest positive or negative integer is | |
| 122 | +| returned. | |
| 123 | +*----------------------------------------------------------------------------*/ | |
| 124 | + | |
| 125 | +static int64 roundAndPackInt64( flag zSign, bits64 absZ0, bits64 absZ1 STATUS_PARAM) | |
| 126 | +{ | |
| 127 | + int8 roundingMode; | |
| 128 | + flag roundNearestEven, increment; | |
| 129 | + int64 z; | |
| 130 | + | |
| 131 | + roundingMode = STATUS(float_rounding_mode); | |
| 132 | + roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
| 133 | + increment = ( (sbits64) absZ1 < 0 ); | |
| 134 | + if ( ! roundNearestEven ) { | |
| 135 | + if ( roundingMode == float_round_to_zero ) { | |
| 136 | + increment = 0; | |
| 137 | + } | |
| 138 | + else { | |
| 139 | + if ( zSign ) { | |
| 140 | + increment = ( roundingMode == float_round_down ) && absZ1; | |
| 141 | + } | |
| 142 | + else { | |
| 143 | + increment = ( roundingMode == float_round_up ) && absZ1; | |
| 144 | + } | |
| 145 | + } | |
| 146 | + } | |
| 147 | + if ( increment ) { | |
| 148 | + ++absZ0; | |
| 149 | + if ( absZ0 == 0 ) goto overflow; | |
| 150 | + absZ0 &= ~ ( ( (bits64) ( absZ1<<1 ) == 0 ) & roundNearestEven ); | |
| 151 | + } | |
| 152 | + z = absZ0; | |
| 153 | + if ( zSign ) z = - z; | |
| 154 | + if ( z && ( ( z < 0 ) ^ zSign ) ) { | |
| 155 | + overflow: | |
| 156 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 157 | + return | |
| 158 | + zSign ? (sbits64) LIT64( 0x8000000000000000 ) | |
| 159 | + : LIT64( 0x7FFFFFFFFFFFFFFF ); | |
| 160 | + } | |
| 161 | + if ( absZ1 ) STATUS(float_exception_flags) |= float_flag_inexact; | |
| 162 | + return z; | |
| 163 | + | |
| 164 | +} | |
| 165 | + | |
| 166 | +/*---------------------------------------------------------------------------- | |
| 167 | +| Returns the fraction bits of the single-precision floating-point value `a'. | |
| 168 | +*----------------------------------------------------------------------------*/ | |
| 169 | + | |
| 170 | +INLINE bits32 extractFloat32Frac( float32 a ) | |
| 171 | +{ | |
| 172 | + | |
| 173 | + return a & 0x007FFFFF; | |
| 174 | + | |
| 175 | +} | |
| 176 | + | |
| 177 | +/*---------------------------------------------------------------------------- | |
| 178 | +| Returns the exponent bits of the single-precision floating-point value `a'. | |
| 179 | +*----------------------------------------------------------------------------*/ | |
| 180 | + | |
| 181 | +INLINE int16 extractFloat32Exp( float32 a ) | |
| 182 | +{ | |
| 183 | + | |
| 184 | + return ( a>>23 ) & 0xFF; | |
| 185 | + | |
| 186 | +} | |
| 187 | + | |
| 188 | +/*---------------------------------------------------------------------------- | |
| 189 | +| Returns the sign bit of the single-precision floating-point value `a'. | |
| 190 | +*----------------------------------------------------------------------------*/ | |
| 191 | + | |
| 192 | +INLINE flag extractFloat32Sign( float32 a ) | |
| 193 | +{ | |
| 194 | + | |
| 195 | + return a>>31; | |
| 196 | + | |
| 197 | +} | |
| 198 | + | |
| 199 | +/*---------------------------------------------------------------------------- | |
| 200 | +| Normalizes the subnormal single-precision floating-point value represented | |
| 201 | +| by the denormalized significand `aSig'. The normalized exponent and | |
| 202 | +| significand are stored at the locations pointed to by `zExpPtr' and | |
| 203 | +| `zSigPtr', respectively. | |
| 204 | +*----------------------------------------------------------------------------*/ | |
| 205 | + | |
| 206 | +static void | |
| 207 | + normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr ) | |
| 208 | +{ | |
| 209 | + int8 shiftCount; | |
| 210 | + | |
| 211 | + shiftCount = countLeadingZeros32( aSig ) - 8; | |
| 212 | + *zSigPtr = aSig<<shiftCount; | |
| 213 | + *zExpPtr = 1 - shiftCount; | |
| 214 | + | |
| 215 | +} | |
| 216 | + | |
| 217 | +/*---------------------------------------------------------------------------- | |
| 218 | +| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | |
| 219 | +| single-precision floating-point value, returning the result. After being | |
| 220 | +| shifted into the proper positions, the three fields are simply added | |
| 221 | +| together to form the result. This means that any integer portion of `zSig' | |
| 222 | +| will be added into the exponent. Since a properly normalized significand | |
| 223 | +| will have an integer portion equal to 1, the `zExp' input should be 1 less | |
| 224 | +| than the desired result exponent whenever `zSig' is a complete, normalized | |
| 225 | +| significand. | |
| 226 | +*----------------------------------------------------------------------------*/ | |
| 227 | + | |
| 228 | +INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig ) | |
| 229 | +{ | |
| 230 | + | |
| 231 | + return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig; | |
| 232 | + | |
| 233 | +} | |
| 234 | + | |
| 235 | +/*---------------------------------------------------------------------------- | |
| 236 | +| Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
| 237 | +| and significand `zSig', and returns the proper single-precision floating- | |
| 238 | +| point value corresponding to the abstract input. Ordinarily, the abstract | |
| 239 | +| value is simply rounded and packed into the single-precision format, with | |
| 240 | +| the inexact exception raised if the abstract input cannot be represented | |
| 241 | +| exactly. However, if the abstract value is too large, the overflow and | |
| 242 | +| inexact exceptions are raised and an infinity or maximal finite value is | |
| 243 | +| returned. If the abstract value is too small, the input value is rounded to | |
| 244 | +| a subnormal number, and the underflow and inexact exceptions are raised if | |
| 245 | +| the abstract input cannot be represented exactly as a subnormal single- | |
| 246 | +| precision floating-point number. | |
| 247 | +| The input significand `zSig' has its binary point between bits 30 | |
| 248 | +| and 29, which is 7 bits to the left of the usual location. This shifted | |
| 249 | +| significand must be normalized or smaller. If `zSig' is not normalized, | |
| 250 | +| `zExp' must be 0; in that case, the result returned is a subnormal number, | |
| 251 | +| and it must not require rounding. In the usual case that `zSig' is | |
| 252 | +| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | |
| 253 | +| The handling of underflow and overflow follows the IEC/IEEE Standard for | |
| 254 | +| Binary Floating-Point Arithmetic. | |
| 255 | +*----------------------------------------------------------------------------*/ | |
| 256 | + | |
| 257 | +static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig STATUS_PARAM) | |
| 258 | +{ | |
| 259 | + int8 roundingMode; | |
| 260 | + flag roundNearestEven; | |
| 261 | + int8 roundIncrement, roundBits; | |
| 262 | + flag isTiny; | |
| 263 | + | |
| 264 | + roundingMode = STATUS(float_rounding_mode); | |
| 265 | + roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
| 266 | + roundIncrement = 0x40; | |
| 267 | + if ( ! roundNearestEven ) { | |
| 268 | + if ( roundingMode == float_round_to_zero ) { | |
| 269 | + roundIncrement = 0; | |
| 270 | + } | |
| 271 | + else { | |
| 272 | + roundIncrement = 0x7F; | |
| 273 | + if ( zSign ) { | |
| 274 | + if ( roundingMode == float_round_up ) roundIncrement = 0; | |
| 275 | + } | |
| 276 | + else { | |
| 277 | + if ( roundingMode == float_round_down ) roundIncrement = 0; | |
| 278 | + } | |
| 279 | + } | |
| 280 | + } | |
| 281 | + roundBits = zSig & 0x7F; | |
| 282 | + if ( 0xFD <= (bits16) zExp ) { | |
| 283 | + if ( ( 0xFD < zExp ) | |
| 284 | + || ( ( zExp == 0xFD ) | |
| 285 | + && ( (sbits32) ( zSig + roundIncrement ) < 0 ) ) | |
| 286 | + ) { | |
| 287 | + float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); | |
| 288 | + return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 ); | |
| 289 | + } | |
| 290 | + if ( zExp < 0 ) { | |
| 291 | + isTiny = | |
| 292 | + ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) | |
| 293 | + || ( zExp < -1 ) | |
| 294 | + || ( zSig + roundIncrement < 0x80000000 ); | |
| 295 | + shift32RightJamming( zSig, - zExp, &zSig ); | |
| 296 | + zExp = 0; | |
| 297 | + roundBits = zSig & 0x7F; | |
| 298 | + if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR); | |
| 299 | + } | |
| 300 | + } | |
| 301 | + if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; | |
| 302 | + zSig = ( zSig + roundIncrement )>>7; | |
| 303 | + zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | |
| 304 | + if ( zSig == 0 ) zExp = 0; | |
| 305 | + return packFloat32( zSign, zExp, zSig ); | |
| 306 | + | |
| 307 | +} | |
| 308 | + | |
| 309 | +/*---------------------------------------------------------------------------- | |
| 310 | +| Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
| 311 | +| and significand `zSig', and returns the proper single-precision floating- | |
| 312 | +| point value corresponding to the abstract input. This routine is just like | |
| 313 | +| `roundAndPackFloat32' except that `zSig' does not have to be normalized. | |
| 314 | +| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' | |
| 315 | +| floating-point exponent. | |
| 316 | +*----------------------------------------------------------------------------*/ | |
| 317 | + | |
| 318 | +static float32 | |
| 319 | + normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig STATUS_PARAM) | |
| 320 | +{ | |
| 321 | + int8 shiftCount; | |
| 322 | + | |
| 323 | + shiftCount = countLeadingZeros32( zSig ) - 1; | |
| 324 | + return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR); | |
| 325 | + | |
| 326 | +} | |
| 327 | + | |
| 328 | +/*---------------------------------------------------------------------------- | |
| 329 | +| Returns the fraction bits of the double-precision floating-point value `a'. | |
| 330 | +*----------------------------------------------------------------------------*/ | |
| 331 | + | |
| 332 | +INLINE bits64 extractFloat64Frac( float64 a ) | |
| 333 | +{ | |
| 334 | + | |
| 335 | + return a & LIT64( 0x000FFFFFFFFFFFFF ); | |
| 336 | + | |
| 337 | +} | |
| 338 | + | |
| 339 | +/*---------------------------------------------------------------------------- | |
| 340 | +| Returns the exponent bits of the double-precision floating-point value `a'. | |
| 341 | +*----------------------------------------------------------------------------*/ | |
| 342 | + | |
| 343 | +INLINE int16 extractFloat64Exp( float64 a ) | |
| 344 | +{ | |
| 345 | + | |
| 346 | + return ( a>>52 ) & 0x7FF; | |
| 347 | + | |
| 348 | +} | |
| 349 | + | |
| 350 | +/*---------------------------------------------------------------------------- | |
| 351 | +| Returns the sign bit of the double-precision floating-point value `a'. | |
| 352 | +*----------------------------------------------------------------------------*/ | |
| 353 | + | |
| 354 | +INLINE flag extractFloat64Sign( float64 a ) | |
| 355 | +{ | |
| 356 | + | |
| 357 | + return a>>63; | |
| 358 | + | |
| 359 | +} | |
| 360 | + | |
| 361 | +/*---------------------------------------------------------------------------- | |
| 362 | +| Normalizes the subnormal double-precision floating-point value represented | |
| 363 | +| by the denormalized significand `aSig'. The normalized exponent and | |
| 364 | +| significand are stored at the locations pointed to by `zExpPtr' and | |
| 365 | +| `zSigPtr', respectively. | |
| 366 | +*----------------------------------------------------------------------------*/ | |
| 367 | + | |
| 368 | +static void | |
| 369 | + normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr ) | |
| 370 | +{ | |
| 371 | + int8 shiftCount; | |
| 372 | + | |
| 373 | + shiftCount = countLeadingZeros64( aSig ) - 11; | |
| 374 | + *zSigPtr = aSig<<shiftCount; | |
| 375 | + *zExpPtr = 1 - shiftCount; | |
| 376 | + | |
| 377 | +} | |
| 378 | + | |
| 379 | +/*---------------------------------------------------------------------------- | |
| 380 | +| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | |
| 381 | +| double-precision floating-point value, returning the result. After being | |
| 382 | +| shifted into the proper positions, the three fields are simply added | |
| 383 | +| together to form the result. This means that any integer portion of `zSig' | |
| 384 | +| will be added into the exponent. Since a properly normalized significand | |
| 385 | +| will have an integer portion equal to 1, the `zExp' input should be 1 less | |
| 386 | +| than the desired result exponent whenever `zSig' is a complete, normalized | |
| 387 | +| significand. | |
| 388 | +*----------------------------------------------------------------------------*/ | |
| 389 | + | |
| 390 | +INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig ) | |
| 391 | +{ | |
| 392 | + | |
| 393 | + return ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<52 ) + zSig; | |
| 394 | + | |
| 395 | +} | |
| 396 | + | |
| 397 | +/*---------------------------------------------------------------------------- | |
| 398 | +| Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
| 399 | +| and significand `zSig', and returns the proper double-precision floating- | |
| 400 | +| point value corresponding to the abstract input. Ordinarily, the abstract | |
| 401 | +| value is simply rounded and packed into the double-precision format, with | |
| 402 | +| the inexact exception raised if the abstract input cannot be represented | |
| 403 | +| exactly. However, if the abstract value is too large, the overflow and | |
| 404 | +| inexact exceptions are raised and an infinity or maximal finite value is | |
| 405 | +| returned. If the abstract value is too small, the input value is rounded | |
| 406 | +| to a subnormal number, and the underflow and inexact exceptions are raised | |
| 407 | +| if the abstract input cannot be represented exactly as a subnormal double- | |
| 408 | +| precision floating-point number. | |
| 409 | +| The input significand `zSig' has its binary point between bits 62 | |
| 410 | +| and 61, which is 10 bits to the left of the usual location. This shifted | |
| 411 | +| significand must be normalized or smaller. If `zSig' is not normalized, | |
| 412 | +| `zExp' must be 0; in that case, the result returned is a subnormal number, | |
| 413 | +| and it must not require rounding. In the usual case that `zSig' is | |
| 414 | +| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | |
| 415 | +| The handling of underflow and overflow follows the IEC/IEEE Standard for | |
| 416 | +| Binary Floating-Point Arithmetic. | |
| 417 | +*----------------------------------------------------------------------------*/ | |
| 418 | + | |
| 419 | +static float64 roundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig STATUS_PARAM) | |
| 420 | +{ | |
| 421 | + int8 roundingMode; | |
| 422 | + flag roundNearestEven; | |
| 423 | + int16 roundIncrement, roundBits; | |
| 424 | + flag isTiny; | |
| 425 | + | |
| 426 | + roundingMode = STATUS(float_rounding_mode); | |
| 427 | + roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
| 428 | + roundIncrement = 0x200; | |
| 429 | + if ( ! roundNearestEven ) { | |
| 430 | + if ( roundingMode == float_round_to_zero ) { | |
| 431 | + roundIncrement = 0; | |
| 432 | + } | |
| 433 | + else { | |
| 434 | + roundIncrement = 0x3FF; | |
| 435 | + if ( zSign ) { | |
| 436 | + if ( roundingMode == float_round_up ) roundIncrement = 0; | |
| 437 | + } | |
| 438 | + else { | |
| 439 | + if ( roundingMode == float_round_down ) roundIncrement = 0; | |
| 440 | + } | |
| 441 | + } | |
| 442 | + } | |
| 443 | + roundBits = zSig & 0x3FF; | |
| 444 | + if ( 0x7FD <= (bits16) zExp ) { | |
| 445 | + if ( ( 0x7FD < zExp ) | |
| 446 | + || ( ( zExp == 0x7FD ) | |
| 447 | + && ( (sbits64) ( zSig + roundIncrement ) < 0 ) ) | |
| 448 | + ) { | |
| 449 | + float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); | |
| 450 | + return packFloat64( zSign, 0x7FF, 0 ) - ( roundIncrement == 0 ); | |
| 451 | + } | |
| 452 | + if ( zExp < 0 ) { | |
| 453 | + isTiny = | |
| 454 | + ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) | |
| 455 | + || ( zExp < -1 ) | |
| 456 | + || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) ); | |
| 457 | + shift64RightJamming( zSig, - zExp, &zSig ); | |
| 458 | + zExp = 0; | |
| 459 | + roundBits = zSig & 0x3FF; | |
| 460 | + if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR); | |
| 461 | + } | |
| 462 | + } | |
| 463 | + if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; | |
| 464 | + zSig = ( zSig + roundIncrement )>>10; | |
| 465 | + zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven ); | |
| 466 | + if ( zSig == 0 ) zExp = 0; | |
| 467 | + return packFloat64( zSign, zExp, zSig ); | |
| 468 | + | |
| 469 | +} | |
| 470 | + | |
| 471 | +/*---------------------------------------------------------------------------- | |
| 472 | +| Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
| 473 | +| and significand `zSig', and returns the proper double-precision floating- | |
| 474 | +| point value corresponding to the abstract input. This routine is just like | |
| 475 | +| `roundAndPackFloat64' except that `zSig' does not have to be normalized. | |
| 476 | +| Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' | |
| 477 | +| floating-point exponent. | |
| 478 | +*----------------------------------------------------------------------------*/ | |
| 479 | + | |
| 480 | +static float64 | |
| 481 | + normalizeRoundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig STATUS_PARAM) | |
| 482 | +{ | |
| 483 | + int8 shiftCount; | |
| 484 | + | |
| 485 | + shiftCount = countLeadingZeros64( zSig ) - 1; | |
| 486 | + return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR); | |
| 487 | + | |
| 488 | +} | |
| 489 | + | |
| 490 | +#ifdef FLOATX80 | |
| 491 | + | |
| 492 | +/*---------------------------------------------------------------------------- | |
| 493 | +| Returns the fraction bits of the extended double-precision floating-point | |
| 494 | +| value `a'. | |
| 495 | +*----------------------------------------------------------------------------*/ | |
| 496 | + | |
| 497 | +INLINE bits64 extractFloatx80Frac( floatx80 a ) | |
| 498 | +{ | |
| 499 | + | |
| 500 | + return a.low; | |
| 501 | + | |
| 502 | +} | |
| 503 | + | |
| 504 | +/*---------------------------------------------------------------------------- | |
| 505 | +| Returns the exponent bits of the extended double-precision floating-point | |
| 506 | +| value `a'. | |
| 507 | +*----------------------------------------------------------------------------*/ | |
| 508 | + | |
| 509 | +INLINE int32 extractFloatx80Exp( floatx80 a ) | |
| 510 | +{ | |
| 511 | + | |
| 512 | + return a.high & 0x7FFF; | |
| 513 | + | |
| 514 | +} | |
| 515 | + | |
| 516 | +/*---------------------------------------------------------------------------- | |
| 517 | +| Returns the sign bit of the extended double-precision floating-point value | |
| 518 | +| `a'. | |
| 519 | +*----------------------------------------------------------------------------*/ | |
| 520 | + | |
| 521 | +INLINE flag extractFloatx80Sign( floatx80 a ) | |
| 522 | +{ | |
| 523 | + | |
| 524 | + return a.high>>15; | |
| 525 | + | |
| 526 | +} | |
| 527 | + | |
| 528 | +/*---------------------------------------------------------------------------- | |
| 529 | +| Normalizes the subnormal extended double-precision floating-point value | |
| 530 | +| represented by the denormalized significand `aSig'. The normalized exponent | |
| 531 | +| and significand are stored at the locations pointed to by `zExpPtr' and | |
| 532 | +| `zSigPtr', respectively. | |
| 533 | +*----------------------------------------------------------------------------*/ | |
| 534 | + | |
| 535 | +static void | |
| 536 | + normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr ) | |
| 537 | +{ | |
| 538 | + int8 shiftCount; | |
| 539 | + | |
| 540 | + shiftCount = countLeadingZeros64( aSig ); | |
| 541 | + *zSigPtr = aSig<<shiftCount; | |
| 542 | + *zExpPtr = 1 - shiftCount; | |
| 543 | + | |
| 544 | +} | |
| 545 | + | |
| 546 | +/*---------------------------------------------------------------------------- | |
| 547 | +| Packs the sign `zSign', exponent `zExp', and significand `zSig' into an | |
| 548 | +| extended double-precision floating-point value, returning the result. | |
| 549 | +*----------------------------------------------------------------------------*/ | |
| 550 | + | |
| 551 | +INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig ) | |
| 552 | +{ | |
| 553 | + floatx80 z; | |
| 554 | + | |
| 555 | + z.low = zSig; | |
| 556 | + z.high = ( ( (bits16) zSign )<<15 ) + zExp; | |
| 557 | + return z; | |
| 558 | + | |
| 559 | +} | |
| 560 | + | |
| 561 | +/*---------------------------------------------------------------------------- | |
| 562 | +| Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
| 563 | +| and extended significand formed by the concatenation of `zSig0' and `zSig1', | |
| 564 | +| and returns the proper extended double-precision floating-point value | |
| 565 | +| corresponding to the abstract input. Ordinarily, the abstract value is | |
| 566 | +| rounded and packed into the extended double-precision format, with the | |
| 567 | +| inexact exception raised if the abstract input cannot be represented | |
| 568 | +| exactly. However, if the abstract value is too large, the overflow and | |
| 569 | +| inexact exceptions are raised and an infinity or maximal finite value is | |
| 570 | +| returned. If the abstract value is too small, the input value is rounded to | |
| 571 | +| a subnormal number, and the underflow and inexact exceptions are raised if | |
| 572 | +| the abstract input cannot be represented exactly as a subnormal extended | |
| 573 | +| double-precision floating-point number. | |
| 574 | +| If `roundingPrecision' is 32 or 64, the result is rounded to the same | |
| 575 | +| number of bits as single or double precision, respectively. Otherwise, the | |
| 576 | +| result is rounded to the full precision of the extended double-precision | |
| 577 | +| format. | |
| 578 | +| The input significand must be normalized or smaller. If the input | |
| 579 | +| significand is not normalized, `zExp' must be 0; in that case, the result | |
| 580 | +| returned is a subnormal number, and it must not require rounding. The | |
| 581 | +| handling of underflow and overflow follows the IEC/IEEE Standard for Binary | |
| 582 | +| Floating-Point Arithmetic. | |
| 583 | +*----------------------------------------------------------------------------*/ | |
| 584 | + | |
| 585 | +static floatx80 | |
| 586 | + roundAndPackFloatx80( | |
| 587 | + int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 | |
| 588 | + STATUS_PARAM) | |
| 589 | +{ | |
| 590 | + int8 roundingMode; | |
| 591 | + flag roundNearestEven, increment, isTiny; | |
| 592 | + int64 roundIncrement, roundMask, roundBits; | |
| 593 | + | |
| 594 | + roundingMode = STATUS(float_rounding_mode); | |
| 595 | + roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
| 596 | + if ( roundingPrecision == 80 ) goto precision80; | |
| 597 | + if ( roundingPrecision == 64 ) { | |
| 598 | + roundIncrement = LIT64( 0x0000000000000400 ); | |
| 599 | + roundMask = LIT64( 0x00000000000007FF ); | |
| 600 | + } | |
| 601 | + else if ( roundingPrecision == 32 ) { | |
| 602 | + roundIncrement = LIT64( 0x0000008000000000 ); | |
| 603 | + roundMask = LIT64( 0x000000FFFFFFFFFF ); | |
| 604 | + } | |
| 605 | + else { | |
| 606 | + goto precision80; | |
| 607 | + } | |
| 608 | + zSig0 |= ( zSig1 != 0 ); | |
| 609 | + if ( ! roundNearestEven ) { | |
| 610 | + if ( roundingMode == float_round_to_zero ) { | |
| 611 | + roundIncrement = 0; | |
| 612 | + } | |
| 613 | + else { | |
| 614 | + roundIncrement = roundMask; | |
| 615 | + if ( zSign ) { | |
| 616 | + if ( roundingMode == float_round_up ) roundIncrement = 0; | |
| 617 | + } | |
| 618 | + else { | |
| 619 | + if ( roundingMode == float_round_down ) roundIncrement = 0; | |
| 620 | + } | |
| 621 | + } | |
| 622 | + } | |
| 623 | + roundBits = zSig0 & roundMask; | |
| 624 | + if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) { | |
| 625 | + if ( ( 0x7FFE < zExp ) | |
| 626 | + || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) ) | |
| 627 | + ) { | |
| 628 | + goto overflow; | |
| 629 | + } | |
| 630 | + if ( zExp <= 0 ) { | |
| 631 | + isTiny = | |
| 632 | + ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) | |
| 633 | + || ( zExp < 0 ) | |
| 634 | + || ( zSig0 <= zSig0 + roundIncrement ); | |
| 635 | + shift64RightJamming( zSig0, 1 - zExp, &zSig0 ); | |
| 636 | + zExp = 0; | |
| 637 | + roundBits = zSig0 & roundMask; | |
| 638 | + if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR); | |
| 639 | + if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; | |
| 640 | + zSig0 += roundIncrement; | |
| 641 | + if ( (sbits64) zSig0 < 0 ) zExp = 1; | |
| 642 | + roundIncrement = roundMask + 1; | |
| 643 | + if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | |
| 644 | + roundMask |= roundIncrement; | |
| 645 | + } | |
| 646 | + zSig0 &= ~ roundMask; | |
| 647 | + return packFloatx80( zSign, zExp, zSig0 ); | |
| 648 | + } | |
| 649 | + } | |
| 650 | + if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; | |
| 651 | + zSig0 += roundIncrement; | |
| 652 | + if ( zSig0 < roundIncrement ) { | |
| 653 | + ++zExp; | |
| 654 | + zSig0 = LIT64( 0x8000000000000000 ); | |
| 655 | + } | |
| 656 | + roundIncrement = roundMask + 1; | |
| 657 | + if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | |
| 658 | + roundMask |= roundIncrement; | |
| 659 | + } | |
| 660 | + zSig0 &= ~ roundMask; | |
| 661 | + if ( zSig0 == 0 ) zExp = 0; | |
| 662 | + return packFloatx80( zSign, zExp, zSig0 ); | |
| 663 | + precision80: | |
| 664 | + increment = ( (sbits64) zSig1 < 0 ); | |
| 665 | + if ( ! roundNearestEven ) { | |
| 666 | + if ( roundingMode == float_round_to_zero ) { | |
| 667 | + increment = 0; | |
| 668 | + } | |
| 669 | + else { | |
| 670 | + if ( zSign ) { | |
| 671 | + increment = ( roundingMode == float_round_down ) && zSig1; | |
| 672 | + } | |
| 673 | + else { | |
| 674 | + increment = ( roundingMode == float_round_up ) && zSig1; | |
| 675 | + } | |
| 676 | + } | |
| 677 | + } | |
| 678 | + if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) { | |
| 679 | + if ( ( 0x7FFE < zExp ) | |
| 680 | + || ( ( zExp == 0x7FFE ) | |
| 681 | + && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) ) | |
| 682 | + && increment | |
| 683 | + ) | |
| 684 | + ) { | |
| 685 | + roundMask = 0; | |
| 686 | + overflow: | |
| 687 | + float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); | |
| 688 | + if ( ( roundingMode == float_round_to_zero ) | |
| 689 | + || ( zSign && ( roundingMode == float_round_up ) ) | |
| 690 | + || ( ! zSign && ( roundingMode == float_round_down ) ) | |
| 691 | + ) { | |
| 692 | + return packFloatx80( zSign, 0x7FFE, ~ roundMask ); | |
| 693 | + } | |
| 694 | + return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
| 695 | + } | |
| 696 | + if ( zExp <= 0 ) { | |
| 697 | + isTiny = | |
| 698 | + ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) | |
| 699 | + || ( zExp < 0 ) | |
| 700 | + || ! increment | |
| 701 | + || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) ); | |
| 702 | + shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 ); | |
| 703 | + zExp = 0; | |
| 704 | + if ( isTiny && zSig1 ) float_raise( float_flag_underflow STATUS_VAR); | |
| 705 | + if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact; | |
| 706 | + if ( roundNearestEven ) { | |
| 707 | + increment = ( (sbits64) zSig1 < 0 ); | |
| 708 | + } | |
| 709 | + else { | |
| 710 | + if ( zSign ) { | |
| 711 | + increment = ( roundingMode == float_round_down ) && zSig1; | |
| 712 | + } | |
| 713 | + else { | |
| 714 | + increment = ( roundingMode == float_round_up ) && zSig1; | |
| 715 | + } | |
| 716 | + } | |
| 717 | + if ( increment ) { | |
| 718 | + ++zSig0; | |
| 719 | + zSig0 &= | |
| 720 | + ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven ); | |
| 721 | + if ( (sbits64) zSig0 < 0 ) zExp = 1; | |
| 722 | + } | |
| 723 | + return packFloatx80( zSign, zExp, zSig0 ); | |
| 724 | + } | |
| 725 | + } | |
| 726 | + if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact; | |
| 727 | + if ( increment ) { | |
| 728 | + ++zSig0; | |
| 729 | + if ( zSig0 == 0 ) { | |
| 730 | + ++zExp; | |
| 731 | + zSig0 = LIT64( 0x8000000000000000 ); | |
| 732 | + } | |
| 733 | + else { | |
| 734 | + zSig0 &= ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven ); | |
| 735 | + } | |
| 736 | + } | |
| 737 | + else { | |
| 738 | + if ( zSig0 == 0 ) zExp = 0; | |
| 739 | + } | |
| 740 | + return packFloatx80( zSign, zExp, zSig0 ); | |
| 741 | + | |
| 742 | +} | |
| 743 | + | |
| 744 | +/*---------------------------------------------------------------------------- | |
| 745 | +| Takes an abstract floating-point value having sign `zSign', exponent | |
| 746 | +| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1', | |
| 747 | +| and returns the proper extended double-precision floating-point value | |
| 748 | +| corresponding to the abstract input. This routine is just like | |
| 749 | +| `roundAndPackFloatx80' except that the input significand does not have to be | |
| 750 | +| normalized. | |
| 751 | +*----------------------------------------------------------------------------*/ | |
| 752 | + | |
| 753 | +static floatx80 | |
| 754 | + normalizeRoundAndPackFloatx80( | |
| 755 | + int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 | |
| 756 | + STATUS_PARAM) | |
| 757 | +{ | |
| 758 | + int8 shiftCount; | |
| 759 | + | |
| 760 | + if ( zSig0 == 0 ) { | |
| 761 | + zSig0 = zSig1; | |
| 762 | + zSig1 = 0; | |
| 763 | + zExp -= 64; | |
| 764 | + } | |
| 765 | + shiftCount = countLeadingZeros64( zSig0 ); | |
| 766 | + shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
| 767 | + zExp -= shiftCount; | |
| 768 | + return | |
| 769 | + roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 STATUS_VAR); | |
| 770 | + | |
| 771 | +} | |
| 772 | + | |
| 773 | +#endif | |
| 774 | + | |
| 775 | +#ifdef FLOAT128 | |
| 776 | + | |
| 777 | +/*---------------------------------------------------------------------------- | |
| 778 | +| Returns the least-significant 64 fraction bits of the quadruple-precision | |
| 779 | +| floating-point value `a'. | |
| 780 | +*----------------------------------------------------------------------------*/ | |
| 781 | + | |
| 782 | +INLINE bits64 extractFloat128Frac1( float128 a ) | |
| 783 | +{ | |
| 784 | + | |
| 785 | + return a.low; | |
| 786 | + | |
| 787 | +} | |
| 788 | + | |
| 789 | +/*---------------------------------------------------------------------------- | |
| 790 | +| Returns the most-significant 48 fraction bits of the quadruple-precision | |
| 791 | +| floating-point value `a'. | |
| 792 | +*----------------------------------------------------------------------------*/ | |
| 793 | + | |
| 794 | +INLINE bits64 extractFloat128Frac0( float128 a ) | |
| 795 | +{ | |
| 796 | + | |
| 797 | + return a.high & LIT64( 0x0000FFFFFFFFFFFF ); | |
| 798 | + | |
| 799 | +} | |
| 800 | + | |
| 801 | +/*---------------------------------------------------------------------------- | |
| 802 | +| Returns the exponent bits of the quadruple-precision floating-point value | |
| 803 | +| `a'. | |
| 804 | +*----------------------------------------------------------------------------*/ | |
| 805 | + | |
| 806 | +INLINE int32 extractFloat128Exp( float128 a ) | |
| 807 | +{ | |
| 808 | + | |
| 809 | + return ( a.high>>48 ) & 0x7FFF; | |
| 810 | + | |
| 811 | +} | |
| 812 | + | |
| 813 | +/*---------------------------------------------------------------------------- | |
| 814 | +| Returns the sign bit of the quadruple-precision floating-point value `a'. | |
| 815 | +*----------------------------------------------------------------------------*/ | |
| 816 | + | |
| 817 | +INLINE flag extractFloat128Sign( float128 a ) | |
| 818 | +{ | |
| 819 | + | |
| 820 | + return a.high>>63; | |
| 821 | + | |
| 822 | +} | |
| 823 | + | |
| 824 | +/*---------------------------------------------------------------------------- | |
| 825 | +| Normalizes the subnormal quadruple-precision floating-point value | |
| 826 | +| represented by the denormalized significand formed by the concatenation of | |
| 827 | +| `aSig0' and `aSig1'. The normalized exponent is stored at the location | |
| 828 | +| pointed to by `zExpPtr'. The most significant 49 bits of the normalized | |
| 829 | +| significand are stored at the location pointed to by `zSig0Ptr', and the | |
| 830 | +| least significant 64 bits of the normalized significand are stored at the | |
| 831 | +| location pointed to by `zSig1Ptr'. | |
| 832 | +*----------------------------------------------------------------------------*/ | |
| 833 | + | |
| 834 | +static void | |
| 835 | + normalizeFloat128Subnormal( | |
| 836 | + bits64 aSig0, | |
| 837 | + bits64 aSig1, | |
| 838 | + int32 *zExpPtr, | |
| 839 | + bits64 *zSig0Ptr, | |
| 840 | + bits64 *zSig1Ptr | |
| 841 | + ) | |
| 842 | +{ | |
| 843 | + int8 shiftCount; | |
| 844 | + | |
| 845 | + if ( aSig0 == 0 ) { | |
| 846 | + shiftCount = countLeadingZeros64( aSig1 ) - 15; | |
| 847 | + if ( shiftCount < 0 ) { | |
| 848 | + *zSig0Ptr = aSig1>>( - shiftCount ); | |
| 849 | + *zSig1Ptr = aSig1<<( shiftCount & 63 ); | |
| 850 | + } | |
| 851 | + else { | |
| 852 | + *zSig0Ptr = aSig1<<shiftCount; | |
| 853 | + *zSig1Ptr = 0; | |
| 854 | + } | |
| 855 | + *zExpPtr = - shiftCount - 63; | |
| 856 | + } | |
| 857 | + else { | |
| 858 | + shiftCount = countLeadingZeros64( aSig0 ) - 15; | |
| 859 | + shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr ); | |
| 860 | + *zExpPtr = 1 - shiftCount; | |
| 861 | + } | |
| 862 | + | |
| 863 | +} | |
| 864 | + | |
| 865 | +/*---------------------------------------------------------------------------- | |
| 866 | +| Packs the sign `zSign', the exponent `zExp', and the significand formed | |
| 867 | +| by the concatenation of `zSig0' and `zSig1' into a quadruple-precision | |
| 868 | +| floating-point value, returning the result. After being shifted into the | |
| 869 | +| proper positions, the three fields `zSign', `zExp', and `zSig0' are simply | |
| 870 | +| added together to form the most significant 32 bits of the result. This | |
| 871 | +| means that any integer portion of `zSig0' will be added into the exponent. | |
| 872 | +| Since a properly normalized significand will have an integer portion equal | |
| 873 | +| to 1, the `zExp' input should be 1 less than the desired result exponent | |
| 874 | +| whenever `zSig0' and `zSig1' concatenated form a complete, normalized | |
| 875 | +| significand. | |
| 876 | +*----------------------------------------------------------------------------*/ | |
| 877 | + | |
| 878 | +INLINE float128 | |
| 879 | + packFloat128( flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 ) | |
| 880 | +{ | |
| 881 | + float128 z; | |
| 882 | + | |
| 883 | + z.low = zSig1; | |
| 884 | + z.high = ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<48 ) + zSig0; | |
| 885 | + return z; | |
| 886 | + | |
| 887 | +} | |
| 888 | + | |
| 889 | +/*---------------------------------------------------------------------------- | |
| 890 | +| Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
| 891 | +| and extended significand formed by the concatenation of `zSig0', `zSig1', | |
| 892 | +| and `zSig2', and returns the proper quadruple-precision floating-point value | |
| 893 | +| corresponding to the abstract input. Ordinarily, the abstract value is | |
| 894 | +| simply rounded and packed into the quadruple-precision format, with the | |
| 895 | +| inexact exception raised if the abstract input cannot be represented | |
| 896 | +| exactly. However, if the abstract value is too large, the overflow and | |
| 897 | +| inexact exceptions are raised and an infinity or maximal finite value is | |
| 898 | +| returned. If the abstract value is too small, the input value is rounded to | |
| 899 | +| a subnormal number, and the underflow and inexact exceptions are raised if | |
| 900 | +| the abstract input cannot be represented exactly as a subnormal quadruple- | |
| 901 | +| precision floating-point number. | |
| 902 | +| The input significand must be normalized or smaller. If the input | |
| 903 | +| significand is not normalized, `zExp' must be 0; in that case, the result | |
| 904 | +| returned is a subnormal number, and it must not require rounding. In the | |
| 905 | +| usual case that the input significand is normalized, `zExp' must be 1 less | |
| 906 | +| than the ``true'' floating-point exponent. The handling of underflow and | |
| 907 | +| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 908 | +*----------------------------------------------------------------------------*/ | |
| 909 | + | |
| 910 | +static float128 | |
| 911 | + roundAndPackFloat128( | |
| 912 | + flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1, bits64 zSig2 STATUS_PARAM) | |
| 913 | +{ | |
| 914 | + int8 roundingMode; | |
| 915 | + flag roundNearestEven, increment, isTiny; | |
| 916 | + | |
| 917 | + roundingMode = STATUS(float_rounding_mode); | |
| 918 | + roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
| 919 | + increment = ( (sbits64) zSig2 < 0 ); | |
| 920 | + if ( ! roundNearestEven ) { | |
| 921 | + if ( roundingMode == float_round_to_zero ) { | |
| 922 | + increment = 0; | |
| 923 | + } | |
| 924 | + else { | |
| 925 | + if ( zSign ) { | |
| 926 | + increment = ( roundingMode == float_round_down ) && zSig2; | |
| 927 | + } | |
| 928 | + else { | |
| 929 | + increment = ( roundingMode == float_round_up ) && zSig2; | |
| 930 | + } | |
| 931 | + } | |
| 932 | + } | |
| 933 | + if ( 0x7FFD <= (bits32) zExp ) { | |
| 934 | + if ( ( 0x7FFD < zExp ) | |
| 935 | + || ( ( zExp == 0x7FFD ) | |
| 936 | + && eq128( | |
| 937 | + LIT64( 0x0001FFFFFFFFFFFF ), | |
| 938 | + LIT64( 0xFFFFFFFFFFFFFFFF ), | |
| 939 | + zSig0, | |
| 940 | + zSig1 | |
| 941 | + ) | |
| 942 | + && increment | |
| 943 | + ) | |
| 944 | + ) { | |
| 945 | + float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); | |
| 946 | + if ( ( roundingMode == float_round_to_zero ) | |
| 947 | + || ( zSign && ( roundingMode == float_round_up ) ) | |
| 948 | + || ( ! zSign && ( roundingMode == float_round_down ) ) | |
| 949 | + ) { | |
| 950 | + return | |
| 951 | + packFloat128( | |
| 952 | + zSign, | |
| 953 | + 0x7FFE, | |
| 954 | + LIT64( 0x0000FFFFFFFFFFFF ), | |
| 955 | + LIT64( 0xFFFFFFFFFFFFFFFF ) | |
| 956 | + ); | |
| 957 | + } | |
| 958 | + return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
| 959 | + } | |
| 960 | + if ( zExp < 0 ) { | |
| 961 | + isTiny = | |
| 962 | + ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) | |
| 963 | + || ( zExp < -1 ) | |
| 964 | + || ! increment | |
| 965 | + || lt128( | |
| 966 | + zSig0, | |
| 967 | + zSig1, | |
| 968 | + LIT64( 0x0001FFFFFFFFFFFF ), | |
| 969 | + LIT64( 0xFFFFFFFFFFFFFFFF ) | |
| 970 | + ); | |
| 971 | + shift128ExtraRightJamming( | |
| 972 | + zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 ); | |
| 973 | + zExp = 0; | |
| 974 | + if ( isTiny && zSig2 ) float_raise( float_flag_underflow STATUS_VAR); | |
| 975 | + if ( roundNearestEven ) { | |
| 976 | + increment = ( (sbits64) zSig2 < 0 ); | |
| 977 | + } | |
| 978 | + else { | |
| 979 | + if ( zSign ) { | |
| 980 | + increment = ( roundingMode == float_round_down ) && zSig2; | |
| 981 | + } | |
| 982 | + else { | |
| 983 | + increment = ( roundingMode == float_round_up ) && zSig2; | |
| 984 | + } | |
| 985 | + } | |
| 986 | + } | |
| 987 | + } | |
| 988 | + if ( zSig2 ) STATUS(float_exception_flags) |= float_flag_inexact; | |
| 989 | + if ( increment ) { | |
| 990 | + add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 ); | |
| 991 | + zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven ); | |
| 992 | + } | |
| 993 | + else { | |
| 994 | + if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0; | |
| 995 | + } | |
| 996 | + return packFloat128( zSign, zExp, zSig0, zSig1 ); | |
| 997 | + | |
| 998 | +} | |
| 999 | + | |
| 1000 | +/*---------------------------------------------------------------------------- | |
| 1001 | +| Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
| 1002 | +| and significand formed by the concatenation of `zSig0' and `zSig1', and | |
| 1003 | +| returns the proper quadruple-precision floating-point value corresponding | |
| 1004 | +| to the abstract input. This routine is just like `roundAndPackFloat128' | |
| 1005 | +| except that the input significand has fewer bits and does not have to be | |
| 1006 | +| normalized. In all cases, `zExp' must be 1 less than the ``true'' floating- | |
| 1007 | +| point exponent. | |
| 1008 | +*----------------------------------------------------------------------------*/ | |
| 1009 | + | |
| 1010 | +static float128 | |
| 1011 | + normalizeRoundAndPackFloat128( | |
| 1012 | + flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 STATUS_PARAM) | |
| 1013 | +{ | |
| 1014 | + int8 shiftCount; | |
| 1015 | + bits64 zSig2; | |
| 1016 | + | |
| 1017 | + if ( zSig0 == 0 ) { | |
| 1018 | + zSig0 = zSig1; | |
| 1019 | + zSig1 = 0; | |
| 1020 | + zExp -= 64; | |
| 1021 | + } | |
| 1022 | + shiftCount = countLeadingZeros64( zSig0 ) - 15; | |
| 1023 | + if ( 0 <= shiftCount ) { | |
| 1024 | + zSig2 = 0; | |
| 1025 | + shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
| 1026 | + } | |
| 1027 | + else { | |
| 1028 | + shift128ExtraRightJamming( | |
| 1029 | + zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 ); | |
| 1030 | + } | |
| 1031 | + zExp -= shiftCount; | |
| 1032 | + return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR); | |
| 1033 | + | |
| 1034 | +} | |
| 1035 | + | |
| 1036 | +#endif | |
| 1037 | + | |
| 1038 | +/*---------------------------------------------------------------------------- | |
| 1039 | +| Returns the result of converting the 32-bit two's complement integer `a' | |
| 1040 | +| to the single-precision floating-point format. The conversion is performed | |
| 1041 | +| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 1042 | +*----------------------------------------------------------------------------*/ | |
| 1043 | + | |
| 1044 | +float32 int32_to_float32( int32 a STATUS_PARAM ) | |
| 1045 | +{ | |
| 1046 | + flag zSign; | |
| 1047 | + | |
| 1048 | + if ( a == 0 ) return 0; | |
| 1049 | + if ( a == (sbits32) 0x80000000 ) return packFloat32( 1, 0x9E, 0 ); | |
| 1050 | + zSign = ( a < 0 ); | |
| 1051 | + return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a STATUS_VAR ); | |
| 1052 | + | |
| 1053 | +} | |
| 1054 | + | |
| 1055 | +/*---------------------------------------------------------------------------- | |
| 1056 | +| Returns the result of converting the 32-bit two's complement integer `a' | |
| 1057 | +| to the double-precision floating-point format. The conversion is performed | |
| 1058 | +| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 1059 | +*----------------------------------------------------------------------------*/ | |
| 1060 | + | |
| 1061 | +float64 int32_to_float64( int32 a STATUS_PARAM ) | |
| 1062 | +{ | |
| 1063 | + flag zSign; | |
| 1064 | + uint32 absA; | |
| 1065 | + int8 shiftCount; | |
| 1066 | + bits64 zSig; | |
| 1067 | + | |
| 1068 | + if ( a == 0 ) return 0; | |
| 1069 | + zSign = ( a < 0 ); | |
| 1070 | + absA = zSign ? - a : a; | |
| 1071 | + shiftCount = countLeadingZeros32( absA ) + 21; | |
| 1072 | + zSig = absA; | |
| 1073 | + return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount ); | |
| 1074 | + | |
| 1075 | +} | |
| 1076 | + | |
| 1077 | +#ifdef FLOATX80 | |
| 1078 | + | |
| 1079 | +/*---------------------------------------------------------------------------- | |
| 1080 | +| Returns the result of converting the 32-bit two's complement integer `a' | |
| 1081 | +| to the extended double-precision floating-point format. The conversion | |
| 1082 | +| is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 1083 | +| Arithmetic. | |
| 1084 | +*----------------------------------------------------------------------------*/ | |
| 1085 | + | |
| 1086 | +floatx80 int32_to_floatx80( int32 a STATUS_PARAM ) | |
| 1087 | +{ | |
| 1088 | + flag zSign; | |
| 1089 | + uint32 absA; | |
| 1090 | + int8 shiftCount; | |
| 1091 | + bits64 zSig; | |
| 1092 | + | |
| 1093 | + if ( a == 0 ) return packFloatx80( 0, 0, 0 ); | |
| 1094 | + zSign = ( a < 0 ); | |
| 1095 | + absA = zSign ? - a : a; | |
| 1096 | + shiftCount = countLeadingZeros32( absA ) + 32; | |
| 1097 | + zSig = absA; | |
| 1098 | + return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount ); | |
| 1099 | + | |
| 1100 | +} | |
| 1101 | + | |
| 1102 | +#endif | |
| 1103 | + | |
| 1104 | +#ifdef FLOAT128 | |
| 1105 | + | |
| 1106 | +/*---------------------------------------------------------------------------- | |
| 1107 | +| Returns the result of converting the 32-bit two's complement integer `a' to | |
| 1108 | +| the quadruple-precision floating-point format. The conversion is performed | |
| 1109 | +| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 1110 | +*----------------------------------------------------------------------------*/ | |
| 1111 | + | |
| 1112 | +float128 int32_to_float128( int32 a STATUS_PARAM ) | |
| 1113 | +{ | |
| 1114 | + flag zSign; | |
| 1115 | + uint32 absA; | |
| 1116 | + int8 shiftCount; | |
| 1117 | + bits64 zSig0; | |
| 1118 | + | |
| 1119 | + if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
| 1120 | + zSign = ( a < 0 ); | |
| 1121 | + absA = zSign ? - a : a; | |
| 1122 | + shiftCount = countLeadingZeros32( absA ) + 17; | |
| 1123 | + zSig0 = absA; | |
| 1124 | + return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 ); | |
| 1125 | + | |
| 1126 | +} | |
| 1127 | + | |
| 1128 | +#endif | |
| 1129 | + | |
| 1130 | +/*---------------------------------------------------------------------------- | |
| 1131 | +| Returns the result of converting the 64-bit two's complement integer `a' | |
| 1132 | +| to the single-precision floating-point format. The conversion is performed | |
| 1133 | +| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 1134 | +*----------------------------------------------------------------------------*/ | |
| 1135 | + | |
| 1136 | +float32 int64_to_float32( int64 a STATUS_PARAM ) | |
| 1137 | +{ | |
| 1138 | + flag zSign; | |
| 1139 | + uint64 absA; | |
| 1140 | + int8 shiftCount; | |
| 1141 | + | |
| 1142 | + if ( a == 0 ) return 0; | |
| 1143 | + zSign = ( a < 0 ); | |
| 1144 | + absA = zSign ? - a : a; | |
| 1145 | + shiftCount = countLeadingZeros64( absA ) - 40; | |
| 1146 | + if ( 0 <= shiftCount ) { | |
| 1147 | + return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount ); | |
| 1148 | + } | |
| 1149 | + else { | |
| 1150 | + shiftCount += 7; | |
| 1151 | + if ( shiftCount < 0 ) { | |
| 1152 | + shift64RightJamming( absA, - shiftCount, &absA ); | |
| 1153 | + } | |
| 1154 | + else { | |
| 1155 | + absA <<= shiftCount; | |
| 1156 | + } | |
| 1157 | + return roundAndPackFloat32( zSign, 0x9C - shiftCount, absA STATUS_VAR ); | |
| 1158 | + } | |
| 1159 | + | |
| 1160 | +} | |
| 1161 | + | |
| 1162 | +/*---------------------------------------------------------------------------- | |
| 1163 | +| Returns the result of converting the 64-bit two's complement integer `a' | |
| 1164 | +| to the double-precision floating-point format. The conversion is performed | |
| 1165 | +| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 1166 | +*----------------------------------------------------------------------------*/ | |
| 1167 | + | |
| 1168 | +float64 int64_to_float64( int64 a STATUS_PARAM ) | |
| 1169 | +{ | |
| 1170 | + flag zSign; | |
| 1171 | + | |
| 1172 | + if ( a == 0 ) return 0; | |
| 1173 | + if ( a == (sbits64) LIT64( 0x8000000000000000 ) ) { | |
| 1174 | + return packFloat64( 1, 0x43E, 0 ); | |
| 1175 | + } | |
| 1176 | + zSign = ( a < 0 ); | |
| 1177 | + return normalizeRoundAndPackFloat64( zSign, 0x43C, zSign ? - a : a STATUS_VAR ); | |
| 1178 | + | |
| 1179 | +} | |
| 1180 | + | |
| 1181 | +#ifdef FLOATX80 | |
| 1182 | + | |
| 1183 | +/*---------------------------------------------------------------------------- | |
| 1184 | +| Returns the result of converting the 64-bit two's complement integer `a' | |
| 1185 | +| to the extended double-precision floating-point format. The conversion | |
| 1186 | +| is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 1187 | +| Arithmetic. | |
| 1188 | +*----------------------------------------------------------------------------*/ | |
| 1189 | + | |
| 1190 | +floatx80 int64_to_floatx80( int64 a STATUS_PARAM ) | |
| 1191 | +{ | |
| 1192 | + flag zSign; | |
| 1193 | + uint64 absA; | |
| 1194 | + int8 shiftCount; | |
| 1195 | + | |
| 1196 | + if ( a == 0 ) return packFloatx80( 0, 0, 0 ); | |
| 1197 | + zSign = ( a < 0 ); | |
| 1198 | + absA = zSign ? - a : a; | |
| 1199 | + shiftCount = countLeadingZeros64( absA ); | |
| 1200 | + return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount ); | |
| 1201 | + | |
| 1202 | +} | |
| 1203 | + | |
| 1204 | +#endif | |
| 1205 | + | |
| 1206 | +#ifdef FLOAT128 | |
| 1207 | + | |
| 1208 | +/*---------------------------------------------------------------------------- | |
| 1209 | +| Returns the result of converting the 64-bit two's complement integer `a' to | |
| 1210 | +| the quadruple-precision floating-point format. The conversion is performed | |
| 1211 | +| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 1212 | +*----------------------------------------------------------------------------*/ | |
| 1213 | + | |
| 1214 | +float128 int64_to_float128( int64 a STATUS_PARAM ) | |
| 1215 | +{ | |
| 1216 | + flag zSign; | |
| 1217 | + uint64 absA; | |
| 1218 | + int8 shiftCount; | |
| 1219 | + int32 zExp; | |
| 1220 | + bits64 zSig0, zSig1; | |
| 1221 | + | |
| 1222 | + if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
| 1223 | + zSign = ( a < 0 ); | |
| 1224 | + absA = zSign ? - a : a; | |
| 1225 | + shiftCount = countLeadingZeros64( absA ) + 49; | |
| 1226 | + zExp = 0x406E - shiftCount; | |
| 1227 | + if ( 64 <= shiftCount ) { | |
| 1228 | + zSig1 = 0; | |
| 1229 | + zSig0 = absA; | |
| 1230 | + shiftCount -= 64; | |
| 1231 | + } | |
| 1232 | + else { | |
| 1233 | + zSig1 = absA; | |
| 1234 | + zSig0 = 0; | |
| 1235 | + } | |
| 1236 | + shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
| 1237 | + return packFloat128( zSign, zExp, zSig0, zSig1 ); | |
| 1238 | + | |
| 1239 | +} | |
| 1240 | + | |
| 1241 | +#endif | |
| 1242 | + | |
| 1243 | +/*---------------------------------------------------------------------------- | |
| 1244 | +| Returns the result of converting the single-precision floating-point value | |
| 1245 | +| `a' to the 32-bit two's complement integer format. The conversion is | |
| 1246 | +| performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 1247 | +| Arithmetic---which means in particular that the conversion is rounded | |
| 1248 | +| according to the current rounding mode. If `a' is a NaN, the largest | |
| 1249 | +| positive integer is returned. Otherwise, if the conversion overflows, the | |
| 1250 | +| largest integer with the same sign as `a' is returned. | |
| 1251 | +*----------------------------------------------------------------------------*/ | |
| 1252 | + | |
| 1253 | +int32 float32_to_int32( float32 a STATUS_PARAM ) | |
| 1254 | +{ | |
| 1255 | + flag aSign; | |
| 1256 | + int16 aExp, shiftCount; | |
| 1257 | + bits32 aSig; | |
| 1258 | + bits64 aSig64; | |
| 1259 | + | |
| 1260 | + aSig = extractFloat32Frac( a ); | |
| 1261 | + aExp = extractFloat32Exp( a ); | |
| 1262 | + aSign = extractFloat32Sign( a ); | |
| 1263 | + if ( ( aExp == 0xFF ) && aSig ) aSign = 0; | |
| 1264 | + if ( aExp ) aSig |= 0x00800000; | |
| 1265 | + shiftCount = 0xAF - aExp; | |
| 1266 | + aSig64 = aSig; | |
| 1267 | + aSig64 <<= 32; | |
| 1268 | + if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 ); | |
| 1269 | + return roundAndPackInt32( aSign, aSig64 STATUS_VAR ); | |
| 1270 | + | |
| 1271 | +} | |
| 1272 | + | |
| 1273 | +/*---------------------------------------------------------------------------- | |
| 1274 | +| Returns the result of converting the single-precision floating-point value | |
| 1275 | +| `a' to the 32-bit two's complement integer format. The conversion is | |
| 1276 | +| performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 1277 | +| Arithmetic, except that the conversion is always rounded toward zero. | |
| 1278 | +| If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
| 1279 | +| the conversion overflows, the largest integer with the same sign as `a' is | |
| 1280 | +| returned. | |
| 1281 | +*----------------------------------------------------------------------------*/ | |
| 1282 | + | |
| 1283 | +int32 float32_to_int32_round_to_zero( float32 a STATUS_PARAM ) | |
| 1284 | +{ | |
| 1285 | + flag aSign; | |
| 1286 | + int16 aExp, shiftCount; | |
| 1287 | + bits32 aSig; | |
| 1288 | + int32 z; | |
| 1289 | + | |
| 1290 | + aSig = extractFloat32Frac( a ); | |
| 1291 | + aExp = extractFloat32Exp( a ); | |
| 1292 | + aSign = extractFloat32Sign( a ); | |
| 1293 | + shiftCount = aExp - 0x9E; | |
| 1294 | + if ( 0 <= shiftCount ) { | |
| 1295 | + if ( a != 0xCF000000 ) { | |
| 1296 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 1297 | + if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF; | |
| 1298 | + } | |
| 1299 | + return (sbits32) 0x80000000; | |
| 1300 | + } | |
| 1301 | + else if ( aExp <= 0x7E ) { | |
| 1302 | + if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | |
| 1303 | + return 0; | |
| 1304 | + } | |
| 1305 | + aSig = ( aSig | 0x00800000 )<<8; | |
| 1306 | + z = aSig>>( - shiftCount ); | |
| 1307 | + if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) { | |
| 1308 | + STATUS(float_exception_flags) |= float_flag_inexact; | |
| 1309 | + } | |
| 1310 | + if ( aSign ) z = - z; | |
| 1311 | + return z; | |
| 1312 | + | |
| 1313 | +} | |
| 1314 | + | |
| 1315 | +/*---------------------------------------------------------------------------- | |
| 1316 | +| Returns the result of converting the single-precision floating-point value | |
| 1317 | +| `a' to the 64-bit two's complement integer format. The conversion is | |
| 1318 | +| performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 1319 | +| Arithmetic---which means in particular that the conversion is rounded | |
| 1320 | +| according to the current rounding mode. If `a' is a NaN, the largest | |
| 1321 | +| positive integer is returned. Otherwise, if the conversion overflows, the | |
| 1322 | +| largest integer with the same sign as `a' is returned. | |
| 1323 | +*----------------------------------------------------------------------------*/ | |
| 1324 | + | |
| 1325 | +int64 float32_to_int64( float32 a STATUS_PARAM ) | |
| 1326 | +{ | |
| 1327 | + flag aSign; | |
| 1328 | + int16 aExp, shiftCount; | |
| 1329 | + bits32 aSig; | |
| 1330 | + bits64 aSig64, aSigExtra; | |
| 1331 | + | |
| 1332 | + aSig = extractFloat32Frac( a ); | |
| 1333 | + aExp = extractFloat32Exp( a ); | |
| 1334 | + aSign = extractFloat32Sign( a ); | |
| 1335 | + shiftCount = 0xBE - aExp; | |
| 1336 | + if ( shiftCount < 0 ) { | |
| 1337 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 1338 | + if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { | |
| 1339 | + return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
| 1340 | + } | |
| 1341 | + return (sbits64) LIT64( 0x8000000000000000 ); | |
| 1342 | + } | |
| 1343 | + if ( aExp ) aSig |= 0x00800000; | |
| 1344 | + aSig64 = aSig; | |
| 1345 | + aSig64 <<= 40; | |
| 1346 | + shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra ); | |
| 1347 | + return roundAndPackInt64( aSign, aSig64, aSigExtra STATUS_VAR ); | |
| 1348 | + | |
| 1349 | +} | |
| 1350 | + | |
| 1351 | +/*---------------------------------------------------------------------------- | |
| 1352 | +| Returns the result of converting the single-precision floating-point value | |
| 1353 | +| `a' to the 64-bit two's complement integer format. The conversion is | |
| 1354 | +| performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 1355 | +| Arithmetic, except that the conversion is always rounded toward zero. If | |
| 1356 | +| `a' is a NaN, the largest positive integer is returned. Otherwise, if the | |
| 1357 | +| conversion overflows, the largest integer with the same sign as `a' is | |
| 1358 | +| returned. | |
| 1359 | +*----------------------------------------------------------------------------*/ | |
| 1360 | + | |
| 1361 | +int64 float32_to_int64_round_to_zero( float32 a STATUS_PARAM ) | |
| 1362 | +{ | |
| 1363 | + flag aSign; | |
| 1364 | + int16 aExp, shiftCount; | |
| 1365 | + bits32 aSig; | |
| 1366 | + bits64 aSig64; | |
| 1367 | + int64 z; | |
| 1368 | + | |
| 1369 | + aSig = extractFloat32Frac( a ); | |
| 1370 | + aExp = extractFloat32Exp( a ); | |
| 1371 | + aSign = extractFloat32Sign( a ); | |
| 1372 | + shiftCount = aExp - 0xBE; | |
| 1373 | + if ( 0 <= shiftCount ) { | |
| 1374 | + if ( a != 0xDF000000 ) { | |
| 1375 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 1376 | + if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { | |
| 1377 | + return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
| 1378 | + } | |
| 1379 | + } | |
| 1380 | + return (sbits64) LIT64( 0x8000000000000000 ); | |
| 1381 | + } | |
| 1382 | + else if ( aExp <= 0x7E ) { | |
| 1383 | + if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | |
| 1384 | + return 0; | |
| 1385 | + } | |
| 1386 | + aSig64 = aSig | 0x00800000; | |
| 1387 | + aSig64 <<= 40; | |
| 1388 | + z = aSig64>>( - shiftCount ); | |
| 1389 | + if ( (bits64) ( aSig64<<( shiftCount & 63 ) ) ) { | |
| 1390 | + STATUS(float_exception_flags) |= float_flag_inexact; | |
| 1391 | + } | |
| 1392 | + if ( aSign ) z = - z; | |
| 1393 | + return z; | |
| 1394 | + | |
| 1395 | +} | |
| 1396 | + | |
| 1397 | +/*---------------------------------------------------------------------------- | |
| 1398 | +| Returns the result of converting the single-precision floating-point value | |
| 1399 | +| `a' to the double-precision floating-point format. The conversion is | |
| 1400 | +| performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 1401 | +| Arithmetic. | |
| 1402 | +*----------------------------------------------------------------------------*/ | |
| 1403 | + | |
| 1404 | +float64 float32_to_float64( float32 a STATUS_PARAM ) | |
| 1405 | +{ | |
| 1406 | + flag aSign; | |
| 1407 | + int16 aExp; | |
| 1408 | + bits32 aSig; | |
| 1409 | + | |
| 1410 | + aSig = extractFloat32Frac( a ); | |
| 1411 | + aExp = extractFloat32Exp( a ); | |
| 1412 | + aSign = extractFloat32Sign( a ); | |
| 1413 | + if ( aExp == 0xFF ) { | |
| 1414 | + if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a STATUS_VAR )); | |
| 1415 | + return packFloat64( aSign, 0x7FF, 0 ); | |
| 1416 | + } | |
| 1417 | + if ( aExp == 0 ) { | |
| 1418 | + if ( aSig == 0 ) return packFloat64( aSign, 0, 0 ); | |
| 1419 | + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
| 1420 | + --aExp; | |
| 1421 | + } | |
| 1422 | + return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 ); | |
| 1423 | + | |
| 1424 | +} | |
| 1425 | + | |
| 1426 | +#ifdef FLOATX80 | |
| 1427 | + | |
| 1428 | +/*---------------------------------------------------------------------------- | |
| 1429 | +| Returns the result of converting the single-precision floating-point value | |
| 1430 | +| `a' to the extended double-precision floating-point format. The conversion | |
| 1431 | +| is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 1432 | +| Arithmetic. | |
| 1433 | +*----------------------------------------------------------------------------*/ | |
| 1434 | + | |
| 1435 | +floatx80 float32_to_floatx80( float32 a STATUS_PARAM ) | |
| 1436 | +{ | |
| 1437 | + flag aSign; | |
| 1438 | + int16 aExp; | |
| 1439 | + bits32 aSig; | |
| 1440 | + | |
| 1441 | + aSig = extractFloat32Frac( a ); | |
| 1442 | + aExp = extractFloat32Exp( a ); | |
| 1443 | + aSign = extractFloat32Sign( a ); | |
| 1444 | + if ( aExp == 0xFF ) { | |
| 1445 | + if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a STATUS_VAR ) ); | |
| 1446 | + return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
| 1447 | + } | |
| 1448 | + if ( aExp == 0 ) { | |
| 1449 | + if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | |
| 1450 | + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
| 1451 | + } | |
| 1452 | + aSig |= 0x00800000; | |
| 1453 | + return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 ); | |
| 1454 | + | |
| 1455 | +} | |
| 1456 | + | |
| 1457 | +#endif | |
| 1458 | + | |
| 1459 | +#ifdef FLOAT128 | |
| 1460 | + | |
| 1461 | +/*---------------------------------------------------------------------------- | |
| 1462 | +| Returns the result of converting the single-precision floating-point value | |
| 1463 | +| `a' to the double-precision floating-point format. The conversion is | |
| 1464 | +| performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 1465 | +| Arithmetic. | |
| 1466 | +*----------------------------------------------------------------------------*/ | |
| 1467 | + | |
| 1468 | +float128 float32_to_float128( float32 a STATUS_PARAM ) | |
| 1469 | +{ | |
| 1470 | + flag aSign; | |
| 1471 | + int16 aExp; | |
| 1472 | + bits32 aSig; | |
| 1473 | + | |
| 1474 | + aSig = extractFloat32Frac( a ); | |
| 1475 | + aExp = extractFloat32Exp( a ); | |
| 1476 | + aSign = extractFloat32Sign( a ); | |
| 1477 | + if ( aExp == 0xFF ) { | |
| 1478 | + if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a STATUS_VAR ) ); | |
| 1479 | + return packFloat128( aSign, 0x7FFF, 0, 0 ); | |
| 1480 | + } | |
| 1481 | + if ( aExp == 0 ) { | |
| 1482 | + if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); | |
| 1483 | + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
| 1484 | + --aExp; | |
| 1485 | + } | |
| 1486 | + return packFloat128( aSign, aExp + 0x3F80, ( (bits64) aSig )<<25, 0 ); | |
| 1487 | + | |
| 1488 | +} | |
| 1489 | + | |
| 1490 | +#endif | |
| 1491 | + | |
| 1492 | +/*---------------------------------------------------------------------------- | |
| 1493 | +| Rounds the single-precision floating-point value `a' to an integer, and | |
| 1494 | +| returns the result as a single-precision floating-point value. The | |
| 1495 | +| operation is performed according to the IEC/IEEE Standard for Binary | |
| 1496 | +| Floating-Point Arithmetic. | |
| 1497 | +*----------------------------------------------------------------------------*/ | |
| 1498 | + | |
| 1499 | +float32 float32_round_to_int( float32 a STATUS_PARAM) | |
| 1500 | +{ | |
| 1501 | + flag aSign; | |
| 1502 | + int16 aExp; | |
| 1503 | + bits32 lastBitMask, roundBitsMask; | |
| 1504 | + int8 roundingMode; | |
| 1505 | + float32 z; | |
| 1506 | + | |
| 1507 | + aExp = extractFloat32Exp( a ); | |
| 1508 | + if ( 0x96 <= aExp ) { | |
| 1509 | + if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) { | |
| 1510 | + return propagateFloat32NaN( a, a STATUS_VAR ); | |
| 1511 | + } | |
| 1512 | + return a; | |
| 1513 | + } | |
| 1514 | + if ( aExp <= 0x7E ) { | |
| 1515 | + if ( (bits32) ( a<<1 ) == 0 ) return a; | |
| 1516 | + STATUS(float_exception_flags) |= float_flag_inexact; | |
| 1517 | + aSign = extractFloat32Sign( a ); | |
| 1518 | + switch ( STATUS(float_rounding_mode) ) { | |
| 1519 | + case float_round_nearest_even: | |
| 1520 | + if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) { | |
| 1521 | + return packFloat32( aSign, 0x7F, 0 ); | |
| 1522 | + } | |
| 1523 | + break; | |
| 1524 | + case float_round_down: | |
| 1525 | + return aSign ? 0xBF800000 : 0; | |
| 1526 | + case float_round_up: | |
| 1527 | + return aSign ? 0x80000000 : 0x3F800000; | |
| 1528 | + } | |
| 1529 | + return packFloat32( aSign, 0, 0 ); | |
| 1530 | + } | |
| 1531 | + lastBitMask = 1; | |
| 1532 | + lastBitMask <<= 0x96 - aExp; | |
| 1533 | + roundBitsMask = lastBitMask - 1; | |
| 1534 | + z = a; | |
| 1535 | + roundingMode = STATUS(float_rounding_mode); | |
| 1536 | + if ( roundingMode == float_round_nearest_even ) { | |
| 1537 | + z += lastBitMask>>1; | |
| 1538 | + if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; | |
| 1539 | + } | |
| 1540 | + else if ( roundingMode != float_round_to_zero ) { | |
| 1541 | + if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) { | |
| 1542 | + z += roundBitsMask; | |
| 1543 | + } | |
| 1544 | + } | |
| 1545 | + z &= ~ roundBitsMask; | |
| 1546 | + if ( z != a ) STATUS(float_exception_flags) |= float_flag_inexact; | |
| 1547 | + return z; | |
| 1548 | + | |
| 1549 | +} | |
| 1550 | + | |
| 1551 | +/*---------------------------------------------------------------------------- | |
| 1552 | +| Returns the result of adding the absolute values of the single-precision | |
| 1553 | +| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated | |
| 1554 | +| before being returned. `zSign' is ignored if the result is a NaN. | |
| 1555 | +| The addition is performed according to the IEC/IEEE Standard for Binary | |
| 1556 | +| Floating-Point Arithmetic. | |
| 1557 | +*----------------------------------------------------------------------------*/ | |
| 1558 | + | |
| 1559 | +static float32 addFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM) | |
| 1560 | +{ | |
| 1561 | + int16 aExp, bExp, zExp; | |
| 1562 | + bits32 aSig, bSig, zSig; | |
| 1563 | + int16 expDiff; | |
| 1564 | + | |
| 1565 | + aSig = extractFloat32Frac( a ); | |
| 1566 | + aExp = extractFloat32Exp( a ); | |
| 1567 | + bSig = extractFloat32Frac( b ); | |
| 1568 | + bExp = extractFloat32Exp( b ); | |
| 1569 | + expDiff = aExp - bExp; | |
| 1570 | + aSig <<= 6; | |
| 1571 | + bSig <<= 6; | |
| 1572 | + if ( 0 < expDiff ) { | |
| 1573 | + if ( aExp == 0xFF ) { | |
| 1574 | + if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
| 1575 | + return a; | |
| 1576 | + } | |
| 1577 | + if ( bExp == 0 ) { | |
| 1578 | + --expDiff; | |
| 1579 | + } | |
| 1580 | + else { | |
| 1581 | + bSig |= 0x20000000; | |
| 1582 | + } | |
| 1583 | + shift32RightJamming( bSig, expDiff, &bSig ); | |
| 1584 | + zExp = aExp; | |
| 1585 | + } | |
| 1586 | + else if ( expDiff < 0 ) { | |
| 1587 | + if ( bExp == 0xFF ) { | |
| 1588 | + if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
| 1589 | + return packFloat32( zSign, 0xFF, 0 ); | |
| 1590 | + } | |
| 1591 | + if ( aExp == 0 ) { | |
| 1592 | + ++expDiff; | |
| 1593 | + } | |
| 1594 | + else { | |
| 1595 | + aSig |= 0x20000000; | |
| 1596 | + } | |
| 1597 | + shift32RightJamming( aSig, - expDiff, &aSig ); | |
| 1598 | + zExp = bExp; | |
| 1599 | + } | |
| 1600 | + else { | |
| 1601 | + if ( aExp == 0xFF ) { | |
| 1602 | + if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
| 1603 | + return a; | |
| 1604 | + } | |
| 1605 | + if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 ); | |
| 1606 | + zSig = 0x40000000 + aSig + bSig; | |
| 1607 | + zExp = aExp; | |
| 1608 | + goto roundAndPack; | |
| 1609 | + } | |
| 1610 | + aSig |= 0x20000000; | |
| 1611 | + zSig = ( aSig + bSig )<<1; | |
| 1612 | + --zExp; | |
| 1613 | + if ( (sbits32) zSig < 0 ) { | |
| 1614 | + zSig = aSig + bSig; | |
| 1615 | + ++zExp; | |
| 1616 | + } | |
| 1617 | + roundAndPack: | |
| 1618 | + return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); | |
| 1619 | + | |
| 1620 | +} | |
| 1621 | + | |
| 1622 | +/*---------------------------------------------------------------------------- | |
| 1623 | +| Returns the result of subtracting the absolute values of the single- | |
| 1624 | +| precision floating-point values `a' and `b'. If `zSign' is 1, the | |
| 1625 | +| difference is negated before being returned. `zSign' is ignored if the | |
| 1626 | +| result is a NaN. The subtraction is performed according to the IEC/IEEE | |
| 1627 | +| Standard for Binary Floating-Point Arithmetic. | |
| 1628 | +*----------------------------------------------------------------------------*/ | |
| 1629 | + | |
| 1630 | +static float32 subFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM) | |
| 1631 | +{ | |
| 1632 | + int16 aExp, bExp, zExp; | |
| 1633 | + bits32 aSig, bSig, zSig; | |
| 1634 | + int16 expDiff; | |
| 1635 | + | |
| 1636 | + aSig = extractFloat32Frac( a ); | |
| 1637 | + aExp = extractFloat32Exp( a ); | |
| 1638 | + bSig = extractFloat32Frac( b ); | |
| 1639 | + bExp = extractFloat32Exp( b ); | |
| 1640 | + expDiff = aExp - bExp; | |
| 1641 | + aSig <<= 7; | |
| 1642 | + bSig <<= 7; | |
| 1643 | + if ( 0 < expDiff ) goto aExpBigger; | |
| 1644 | + if ( expDiff < 0 ) goto bExpBigger; | |
| 1645 | + if ( aExp == 0xFF ) { | |
| 1646 | + if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
| 1647 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 1648 | + return float32_default_nan; | |
| 1649 | + } | |
| 1650 | + if ( aExp == 0 ) { | |
| 1651 | + aExp = 1; | |
| 1652 | + bExp = 1; | |
| 1653 | + } | |
| 1654 | + if ( bSig < aSig ) goto aBigger; | |
| 1655 | + if ( aSig < bSig ) goto bBigger; | |
| 1656 | + return packFloat32( STATUS(float_rounding_mode) == float_round_down, 0, 0 ); | |
| 1657 | + bExpBigger: | |
| 1658 | + if ( bExp == 0xFF ) { | |
| 1659 | + if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
| 1660 | + return packFloat32( zSign ^ 1, 0xFF, 0 ); | |
| 1661 | + } | |
| 1662 | + if ( aExp == 0 ) { | |
| 1663 | + ++expDiff; | |
| 1664 | + } | |
| 1665 | + else { | |
| 1666 | + aSig |= 0x40000000; | |
| 1667 | + } | |
| 1668 | + shift32RightJamming( aSig, - expDiff, &aSig ); | |
| 1669 | + bSig |= 0x40000000; | |
| 1670 | + bBigger: | |
| 1671 | + zSig = bSig - aSig; | |
| 1672 | + zExp = bExp; | |
| 1673 | + zSign ^= 1; | |
| 1674 | + goto normalizeRoundAndPack; | |
| 1675 | + aExpBigger: | |
| 1676 | + if ( aExp == 0xFF ) { | |
| 1677 | + if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
| 1678 | + return a; | |
| 1679 | + } | |
| 1680 | + if ( bExp == 0 ) { | |
| 1681 | + --expDiff; | |
| 1682 | + } | |
| 1683 | + else { | |
| 1684 | + bSig |= 0x40000000; | |
| 1685 | + } | |
| 1686 | + shift32RightJamming( bSig, expDiff, &bSig ); | |
| 1687 | + aSig |= 0x40000000; | |
| 1688 | + aBigger: | |
| 1689 | + zSig = aSig - bSig; | |
| 1690 | + zExp = aExp; | |
| 1691 | + normalizeRoundAndPack: | |
| 1692 | + --zExp; | |
| 1693 | + return normalizeRoundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); | |
| 1694 | + | |
| 1695 | +} | |
| 1696 | + | |
| 1697 | +/*---------------------------------------------------------------------------- | |
| 1698 | +| Returns the result of adding the single-precision floating-point values `a' | |
| 1699 | +| and `b'. The operation is performed according to the IEC/IEEE Standard for | |
| 1700 | +| Binary Floating-Point Arithmetic. | |
| 1701 | +*----------------------------------------------------------------------------*/ | |
| 1702 | + | |
| 1703 | +float32 float32_add( float32 a, float32 b STATUS_PARAM ) | |
| 1704 | +{ | |
| 1705 | + flag aSign, bSign; | |
| 1706 | + | |
| 1707 | + aSign = extractFloat32Sign( a ); | |
| 1708 | + bSign = extractFloat32Sign( b ); | |
| 1709 | + if ( aSign == bSign ) { | |
| 1710 | + return addFloat32Sigs( a, b, aSign STATUS_VAR); | |
| 1711 | + } | |
| 1712 | + else { | |
| 1713 | + return subFloat32Sigs( a, b, aSign STATUS_VAR ); | |
| 1714 | + } | |
| 1715 | + | |
| 1716 | +} | |
| 1717 | + | |
| 1718 | +/*---------------------------------------------------------------------------- | |
| 1719 | +| Returns the result of subtracting the single-precision floating-point values | |
| 1720 | +| `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
| 1721 | +| for Binary Floating-Point Arithmetic. | |
| 1722 | +*----------------------------------------------------------------------------*/ | |
| 1723 | + | |
| 1724 | +float32 float32_sub( float32 a, float32 b STATUS_PARAM ) | |
| 1725 | +{ | |
| 1726 | + flag aSign, bSign; | |
| 1727 | + | |
| 1728 | + aSign = extractFloat32Sign( a ); | |
| 1729 | + bSign = extractFloat32Sign( b ); | |
| 1730 | + if ( aSign == bSign ) { | |
| 1731 | + return subFloat32Sigs( a, b, aSign STATUS_VAR ); | |
| 1732 | + } | |
| 1733 | + else { | |
| 1734 | + return addFloat32Sigs( a, b, aSign STATUS_VAR ); | |
| 1735 | + } | |
| 1736 | + | |
| 1737 | +} | |
| 1738 | + | |
| 1739 | +/*---------------------------------------------------------------------------- | |
| 1740 | +| Returns the result of multiplying the single-precision floating-point values | |
| 1741 | +| `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
| 1742 | +| for Binary Floating-Point Arithmetic. | |
| 1743 | +*----------------------------------------------------------------------------*/ | |
| 1744 | + | |
| 1745 | +float32 float32_mul( float32 a, float32 b STATUS_PARAM ) | |
| 1746 | +{ | |
| 1747 | + flag aSign, bSign, zSign; | |
| 1748 | + int16 aExp, bExp, zExp; | |
| 1749 | + bits32 aSig, bSig; | |
| 1750 | + bits64 zSig64; | |
| 1751 | + bits32 zSig; | |
| 1752 | + | |
| 1753 | + aSig = extractFloat32Frac( a ); | |
| 1754 | + aExp = extractFloat32Exp( a ); | |
| 1755 | + aSign = extractFloat32Sign( a ); | |
| 1756 | + bSig = extractFloat32Frac( b ); | |
| 1757 | + bExp = extractFloat32Exp( b ); | |
| 1758 | + bSign = extractFloat32Sign( b ); | |
| 1759 | + zSign = aSign ^ bSign; | |
| 1760 | + if ( aExp == 0xFF ) { | |
| 1761 | + if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { | |
| 1762 | + return propagateFloat32NaN( a, b STATUS_VAR ); | |
| 1763 | + } | |
| 1764 | + if ( ( bExp | bSig ) == 0 ) { | |
| 1765 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 1766 | + return float32_default_nan; | |
| 1767 | + } | |
| 1768 | + return packFloat32( zSign, 0xFF, 0 ); | |
| 1769 | + } | |
| 1770 | + if ( bExp == 0xFF ) { | |
| 1771 | + if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
| 1772 | + if ( ( aExp | aSig ) == 0 ) { | |
| 1773 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 1774 | + return float32_default_nan; | |
| 1775 | + } | |
| 1776 | + return packFloat32( zSign, 0xFF, 0 ); | |
| 1777 | + } | |
| 1778 | + if ( aExp == 0 ) { | |
| 1779 | + if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); | |
| 1780 | + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
| 1781 | + } | |
| 1782 | + if ( bExp == 0 ) { | |
| 1783 | + if ( bSig == 0 ) return packFloat32( zSign, 0, 0 ); | |
| 1784 | + normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | |
| 1785 | + } | |
| 1786 | + zExp = aExp + bExp - 0x7F; | |
| 1787 | + aSig = ( aSig | 0x00800000 )<<7; | |
| 1788 | + bSig = ( bSig | 0x00800000 )<<8; | |
| 1789 | + shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 ); | |
| 1790 | + zSig = zSig64; | |
| 1791 | + if ( 0 <= (sbits32) ( zSig<<1 ) ) { | |
| 1792 | + zSig <<= 1; | |
| 1793 | + --zExp; | |
| 1794 | + } | |
| 1795 | + return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); | |
| 1796 | + | |
| 1797 | +} | |
| 1798 | + | |
| 1799 | +/*---------------------------------------------------------------------------- | |
| 1800 | +| Returns the result of dividing the single-precision floating-point value `a' | |
| 1801 | +| by the corresponding value `b'. The operation is performed according to the | |
| 1802 | +| IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 1803 | +*----------------------------------------------------------------------------*/ | |
| 1804 | + | |
| 1805 | +float32 float32_div( float32 a, float32 b STATUS_PARAM ) | |
| 1806 | +{ | |
| 1807 | + flag aSign, bSign, zSign; | |
| 1808 | + int16 aExp, bExp, zExp; | |
| 1809 | + bits32 aSig, bSig, zSig; | |
| 1810 | + | |
| 1811 | + aSig = extractFloat32Frac( a ); | |
| 1812 | + aExp = extractFloat32Exp( a ); | |
| 1813 | + aSign = extractFloat32Sign( a ); | |
| 1814 | + bSig = extractFloat32Frac( b ); | |
| 1815 | + bExp = extractFloat32Exp( b ); | |
| 1816 | + bSign = extractFloat32Sign( b ); | |
| 1817 | + zSign = aSign ^ bSign; | |
| 1818 | + if ( aExp == 0xFF ) { | |
| 1819 | + if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
| 1820 | + if ( bExp == 0xFF ) { | |
| 1821 | + if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
| 1822 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 1823 | + return float32_default_nan; | |
| 1824 | + } | |
| 1825 | + return packFloat32( zSign, 0xFF, 0 ); | |
| 1826 | + } | |
| 1827 | + if ( bExp == 0xFF ) { | |
| 1828 | + if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
| 1829 | + return packFloat32( zSign, 0, 0 ); | |
| 1830 | + } | |
| 1831 | + if ( bExp == 0 ) { | |
| 1832 | + if ( bSig == 0 ) { | |
| 1833 | + if ( ( aExp | aSig ) == 0 ) { | |
| 1834 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 1835 | + return float32_default_nan; | |
| 1836 | + } | |
| 1837 | + float_raise( float_flag_divbyzero STATUS_VAR); | |
| 1838 | + return packFloat32( zSign, 0xFF, 0 ); | |
| 1839 | + } | |
| 1840 | + normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | |
| 1841 | + } | |
| 1842 | + if ( aExp == 0 ) { | |
| 1843 | + if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); | |
| 1844 | + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
| 1845 | + } | |
| 1846 | + zExp = aExp - bExp + 0x7D; | |
| 1847 | + aSig = ( aSig | 0x00800000 )<<7; | |
| 1848 | + bSig = ( bSig | 0x00800000 )<<8; | |
| 1849 | + if ( bSig <= ( aSig + aSig ) ) { | |
| 1850 | + aSig >>= 1; | |
| 1851 | + ++zExp; | |
| 1852 | + } | |
| 1853 | + zSig = ( ( (bits64) aSig )<<32 ) / bSig; | |
| 1854 | + if ( ( zSig & 0x3F ) == 0 ) { | |
| 1855 | + zSig |= ( (bits64) bSig * zSig != ( (bits64) aSig )<<32 ); | |
| 1856 | + } | |
| 1857 | + return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); | |
| 1858 | + | |
| 1859 | +} | |
| 1860 | + | |
| 1861 | +/*---------------------------------------------------------------------------- | |
| 1862 | +| Returns the remainder of the single-precision floating-point value `a' | |
| 1863 | +| with respect to the corresponding value `b'. The operation is performed | |
| 1864 | +| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 1865 | +*----------------------------------------------------------------------------*/ | |
| 1866 | + | |
| 1867 | +float32 float32_rem( float32 a, float32 b STATUS_PARAM ) | |
| 1868 | +{ | |
| 1869 | + flag aSign, bSign, zSign; | |
| 1870 | + int16 aExp, bExp, expDiff; | |
| 1871 | + bits32 aSig, bSig; | |
| 1872 | + bits32 q; | |
| 1873 | + bits64 aSig64, bSig64, q64; | |
| 1874 | + bits32 alternateASig; | |
| 1875 | + sbits32 sigMean; | |
| 1876 | + | |
| 1877 | + aSig = extractFloat32Frac( a ); | |
| 1878 | + aExp = extractFloat32Exp( a ); | |
| 1879 | + aSign = extractFloat32Sign( a ); | |
| 1880 | + bSig = extractFloat32Frac( b ); | |
| 1881 | + bExp = extractFloat32Exp( b ); | |
| 1882 | + bSign = extractFloat32Sign( b ); | |
| 1883 | + if ( aExp == 0xFF ) { | |
| 1884 | + if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { | |
| 1885 | + return propagateFloat32NaN( a, b STATUS_VAR ); | |
| 1886 | + } | |
| 1887 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 1888 | + return float32_default_nan; | |
| 1889 | + } | |
| 1890 | + if ( bExp == 0xFF ) { | |
| 1891 | + if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
| 1892 | + return a; | |
| 1893 | + } | |
| 1894 | + if ( bExp == 0 ) { | |
| 1895 | + if ( bSig == 0 ) { | |
| 1896 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 1897 | + return float32_default_nan; | |
| 1898 | + } | |
| 1899 | + normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | |
| 1900 | + } | |
| 1901 | + if ( aExp == 0 ) { | |
| 1902 | + if ( aSig == 0 ) return a; | |
| 1903 | + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
| 1904 | + } | |
| 1905 | + expDiff = aExp - bExp; | |
| 1906 | + aSig |= 0x00800000; | |
| 1907 | + bSig |= 0x00800000; | |
| 1908 | + if ( expDiff < 32 ) { | |
| 1909 | + aSig <<= 8; | |
| 1910 | + bSig <<= 8; | |
| 1911 | + if ( expDiff < 0 ) { | |
| 1912 | + if ( expDiff < -1 ) return a; | |
| 1913 | + aSig >>= 1; | |
| 1914 | + } | |
| 1915 | + q = ( bSig <= aSig ); | |
| 1916 | + if ( q ) aSig -= bSig; | |
| 1917 | + if ( 0 < expDiff ) { | |
| 1918 | + q = ( ( (bits64) aSig )<<32 ) / bSig; | |
| 1919 | + q >>= 32 - expDiff; | |
| 1920 | + bSig >>= 2; | |
| 1921 | + aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | |
| 1922 | + } | |
| 1923 | + else { | |
| 1924 | + aSig >>= 2; | |
| 1925 | + bSig >>= 2; | |
| 1926 | + } | |
| 1927 | + } | |
| 1928 | + else { | |
| 1929 | + if ( bSig <= aSig ) aSig -= bSig; | |
| 1930 | + aSig64 = ( (bits64) aSig )<<40; | |
| 1931 | + bSig64 = ( (bits64) bSig )<<40; | |
| 1932 | + expDiff -= 64; | |
| 1933 | + while ( 0 < expDiff ) { | |
| 1934 | + q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | |
| 1935 | + q64 = ( 2 < q64 ) ? q64 - 2 : 0; | |
| 1936 | + aSig64 = - ( ( bSig * q64 )<<38 ); | |
| 1937 | + expDiff -= 62; | |
| 1938 | + } | |
| 1939 | + expDiff += 64; | |
| 1940 | + q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | |
| 1941 | + q64 = ( 2 < q64 ) ? q64 - 2 : 0; | |
| 1942 | + q = q64>>( 64 - expDiff ); | |
| 1943 | + bSig <<= 6; | |
| 1944 | + aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; | |
| 1945 | + } | |
| 1946 | + do { | |
| 1947 | + alternateASig = aSig; | |
| 1948 | + ++q; | |
| 1949 | + aSig -= bSig; | |
| 1950 | + } while ( 0 <= (sbits32) aSig ); | |
| 1951 | + sigMean = aSig + alternateASig; | |
| 1952 | + if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | |
| 1953 | + aSig = alternateASig; | |
| 1954 | + } | |
| 1955 | + zSign = ( (sbits32) aSig < 0 ); | |
| 1956 | + if ( zSign ) aSig = - aSig; | |
| 1957 | + return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig STATUS_VAR ); | |
| 1958 | + | |
| 1959 | +} | |
| 1960 | + | |
| 1961 | +/*---------------------------------------------------------------------------- | |
| 1962 | +| Returns the square root of the single-precision floating-point value `a'. | |
| 1963 | +| The operation is performed according to the IEC/IEEE Standard for Binary | |
| 1964 | +| Floating-Point Arithmetic. | |
| 1965 | +*----------------------------------------------------------------------------*/ | |
| 1966 | + | |
| 1967 | +float32 float32_sqrt( float32 a STATUS_PARAM ) | |
| 1968 | +{ | |
| 1969 | + flag aSign; | |
| 1970 | + int16 aExp, zExp; | |
| 1971 | + bits32 aSig, zSig; | |
| 1972 | + bits64 rem, term; | |
| 1973 | + | |
| 1974 | + aSig = extractFloat32Frac( a ); | |
| 1975 | + aExp = extractFloat32Exp( a ); | |
| 1976 | + aSign = extractFloat32Sign( a ); | |
| 1977 | + if ( aExp == 0xFF ) { | |
| 1978 | + if ( aSig ) return propagateFloat32NaN( a, 0 STATUS_VAR ); | |
| 1979 | + if ( ! aSign ) return a; | |
| 1980 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 1981 | + return float32_default_nan; | |
| 1982 | + } | |
| 1983 | + if ( aSign ) { | |
| 1984 | + if ( ( aExp | aSig ) == 0 ) return a; | |
| 1985 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 1986 | + return float32_default_nan; | |
| 1987 | + } | |
| 1988 | + if ( aExp == 0 ) { | |
| 1989 | + if ( aSig == 0 ) return 0; | |
| 1990 | + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
| 1991 | + } | |
| 1992 | + zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; | |
| 1993 | + aSig = ( aSig | 0x00800000 )<<8; | |
| 1994 | + zSig = estimateSqrt32( aExp, aSig ) + 2; | |
| 1995 | + if ( ( zSig & 0x7F ) <= 5 ) { | |
| 1996 | + if ( zSig < 2 ) { | |
| 1997 | + zSig = 0x7FFFFFFF; | |
| 1998 | + goto roundAndPack; | |
| 1999 | + } | |
| 2000 | + aSig >>= aExp & 1; | |
| 2001 | + term = ( (bits64) zSig ) * zSig; | |
| 2002 | + rem = ( ( (bits64) aSig )<<32 ) - term; | |
| 2003 | + while ( (sbits64) rem < 0 ) { | |
| 2004 | + --zSig; | |
| 2005 | + rem += ( ( (bits64) zSig )<<1 ) | 1; | |
| 2006 | + } | |
| 2007 | + zSig |= ( rem != 0 ); | |
| 2008 | + } | |
| 2009 | + shift32RightJamming( zSig, 1, &zSig ); | |
| 2010 | + roundAndPack: | |
| 2011 | + return roundAndPackFloat32( 0, zExp, zSig STATUS_VAR ); | |
| 2012 | + | |
| 2013 | +} | |
| 2014 | + | |
| 2015 | +/*---------------------------------------------------------------------------- | |
| 2016 | +| Returns 1 if the single-precision floating-point value `a' is equal to | |
| 2017 | +| the corresponding value `b', and 0 otherwise. The comparison is performed | |
| 2018 | +| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 2019 | +*----------------------------------------------------------------------------*/ | |
| 2020 | + | |
| 2021 | +flag float32_eq( float32 a, float32 b STATUS_PARAM ) | |
| 2022 | +{ | |
| 2023 | + | |
| 2024 | + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
| 2025 | + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
| 2026 | + ) { | |
| 2027 | + if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | |
| 2028 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 2029 | + } | |
| 2030 | + return 0; | |
| 2031 | + } | |
| 2032 | + return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); | |
| 2033 | + | |
| 2034 | +} | |
| 2035 | + | |
| 2036 | +/*---------------------------------------------------------------------------- | |
| 2037 | +| Returns 1 if the single-precision floating-point value `a' is less than | |
| 2038 | +| or equal to the corresponding value `b', and 0 otherwise. The comparison | |
| 2039 | +| is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 2040 | +| Arithmetic. | |
| 2041 | +*----------------------------------------------------------------------------*/ | |
| 2042 | + | |
| 2043 | +flag float32_le( float32 a, float32 b STATUS_PARAM ) | |
| 2044 | +{ | |
| 2045 | + flag aSign, bSign; | |
| 2046 | + | |
| 2047 | + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
| 2048 | + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
| 2049 | + ) { | |
| 2050 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 2051 | + return 0; | |
| 2052 | + } | |
| 2053 | + aSign = extractFloat32Sign( a ); | |
| 2054 | + bSign = extractFloat32Sign( b ); | |
| 2055 | + if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); | |
| 2056 | + return ( a == b ) || ( aSign ^ ( a < b ) ); | |
| 2057 | + | |
| 2058 | +} | |
| 2059 | + | |
| 2060 | +/*---------------------------------------------------------------------------- | |
| 2061 | +| Returns 1 if the single-precision floating-point value `a' is less than | |
| 2062 | +| the corresponding value `b', and 0 otherwise. The comparison is performed | |
| 2063 | +| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 2064 | +*----------------------------------------------------------------------------*/ | |
| 2065 | + | |
| 2066 | +flag float32_lt( float32 a, float32 b STATUS_PARAM ) | |
| 2067 | +{ | |
| 2068 | + flag aSign, bSign; | |
| 2069 | + | |
| 2070 | + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
| 2071 | + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
| 2072 | + ) { | |
| 2073 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 2074 | + return 0; | |
| 2075 | + } | |
| 2076 | + aSign = extractFloat32Sign( a ); | |
| 2077 | + bSign = extractFloat32Sign( b ); | |
| 2078 | + if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); | |
| 2079 | + return ( a != b ) && ( aSign ^ ( a < b ) ); | |
| 2080 | + | |
| 2081 | +} | |
| 2082 | + | |
| 2083 | +/*---------------------------------------------------------------------------- | |
| 2084 | +| Returns 1 if the single-precision floating-point value `a' is equal to | |
| 2085 | +| the corresponding value `b', and 0 otherwise. The invalid exception is | |
| 2086 | +| raised if either operand is a NaN. Otherwise, the comparison is performed | |
| 2087 | +| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 2088 | +*----------------------------------------------------------------------------*/ | |
| 2089 | + | |
| 2090 | +flag float32_eq_signaling( float32 a, float32 b STATUS_PARAM ) | |
| 2091 | +{ | |
| 2092 | + | |
| 2093 | + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
| 2094 | + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
| 2095 | + ) { | |
| 2096 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 2097 | + return 0; | |
| 2098 | + } | |
| 2099 | + return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); | |
| 2100 | + | |
| 2101 | +} | |
| 2102 | + | |
| 2103 | +/*---------------------------------------------------------------------------- | |
| 2104 | +| Returns 1 if the single-precision floating-point value `a' is less than or | |
| 2105 | +| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
| 2106 | +| cause an exception. Otherwise, the comparison is performed according to the | |
| 2107 | +| IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 2108 | +*----------------------------------------------------------------------------*/ | |
| 2109 | + | |
| 2110 | +flag float32_le_quiet( float32 a, float32 b STATUS_PARAM ) | |
| 2111 | +{ | |
| 2112 | + flag aSign, bSign; | |
| 2113 | + | |
| 2114 | + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
| 2115 | + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
| 2116 | + ) { | |
| 2117 | + if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | |
| 2118 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 2119 | + } | |
| 2120 | + return 0; | |
| 2121 | + } | |
| 2122 | + aSign = extractFloat32Sign( a ); | |
| 2123 | + bSign = extractFloat32Sign( b ); | |
| 2124 | + if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); | |
| 2125 | + return ( a == b ) || ( aSign ^ ( a < b ) ); | |
| 2126 | + | |
| 2127 | +} | |
| 2128 | + | |
| 2129 | +/*---------------------------------------------------------------------------- | |
| 2130 | +| Returns 1 if the single-precision floating-point value `a' is less than | |
| 2131 | +| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
| 2132 | +| exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
| 2133 | +| Standard for Binary Floating-Point Arithmetic. | |
| 2134 | +*----------------------------------------------------------------------------*/ | |
| 2135 | + | |
| 2136 | +flag float32_lt_quiet( float32 a, float32 b STATUS_PARAM ) | |
| 2137 | +{ | |
| 2138 | + flag aSign, bSign; | |
| 2139 | + | |
| 2140 | + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
| 2141 | + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
| 2142 | + ) { | |
| 2143 | + if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | |
| 2144 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 2145 | + } | |
| 2146 | + return 0; | |
| 2147 | + } | |
| 2148 | + aSign = extractFloat32Sign( a ); | |
| 2149 | + bSign = extractFloat32Sign( b ); | |
| 2150 | + if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); | |
| 2151 | + return ( a != b ) && ( aSign ^ ( a < b ) ); | |
| 2152 | + | |
| 2153 | +} | |
| 2154 | + | |
| 2155 | +/*---------------------------------------------------------------------------- | |
| 2156 | +| Returns the result of converting the double-precision floating-point value | |
| 2157 | +| `a' to the 32-bit two's complement integer format. The conversion is | |
| 2158 | +| performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 2159 | +| Arithmetic---which means in particular that the conversion is rounded | |
| 2160 | +| according to the current rounding mode. If `a' is a NaN, the largest | |
| 2161 | +| positive integer is returned. Otherwise, if the conversion overflows, the | |
| 2162 | +| largest integer with the same sign as `a' is returned. | |
| 2163 | +*----------------------------------------------------------------------------*/ | |
| 2164 | + | |
| 2165 | +int32 float64_to_int32( float64 a STATUS_PARAM ) | |
| 2166 | +{ | |
| 2167 | + flag aSign; | |
| 2168 | + int16 aExp, shiftCount; | |
| 2169 | + bits64 aSig; | |
| 2170 | + | |
| 2171 | + aSig = extractFloat64Frac( a ); | |
| 2172 | + aExp = extractFloat64Exp( a ); | |
| 2173 | + aSign = extractFloat64Sign( a ); | |
| 2174 | + if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | |
| 2175 | + if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | |
| 2176 | + shiftCount = 0x42C - aExp; | |
| 2177 | + if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); | |
| 2178 | + return roundAndPackInt32( aSign, aSig STATUS_VAR ); | |
| 2179 | + | |
| 2180 | +} | |
| 2181 | + | |
| 2182 | +/*---------------------------------------------------------------------------- | |
| 2183 | +| Returns the result of converting the double-precision floating-point value | |
| 2184 | +| `a' to the 32-bit two's complement integer format. The conversion is | |
| 2185 | +| performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 2186 | +| Arithmetic, except that the conversion is always rounded toward zero. | |
| 2187 | +| If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
| 2188 | +| the conversion overflows, the largest integer with the same sign as `a' is | |
| 2189 | +| returned. | |
| 2190 | +*----------------------------------------------------------------------------*/ | |
| 2191 | + | |
| 2192 | +int32 float64_to_int32_round_to_zero( float64 a STATUS_PARAM ) | |
| 2193 | +{ | |
| 2194 | + flag aSign; | |
| 2195 | + int16 aExp, shiftCount; | |
| 2196 | + bits64 aSig, savedASig; | |
| 2197 | + int32 z; | |
| 2198 | + | |
| 2199 | + aSig = extractFloat64Frac( a ); | |
| 2200 | + aExp = extractFloat64Exp( a ); | |
| 2201 | + aSign = extractFloat64Sign( a ); | |
| 2202 | + if ( 0x41E < aExp ) { | |
| 2203 | + if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | |
| 2204 | + goto invalid; | |
| 2205 | + } | |
| 2206 | + else if ( aExp < 0x3FF ) { | |
| 2207 | + if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | |
| 2208 | + return 0; | |
| 2209 | + } | |
| 2210 | + aSig |= LIT64( 0x0010000000000000 ); | |
| 2211 | + shiftCount = 0x433 - aExp; | |
| 2212 | + savedASig = aSig; | |
| 2213 | + aSig >>= shiftCount; | |
| 2214 | + z = aSig; | |
| 2215 | + if ( aSign ) z = - z; | |
| 2216 | + if ( ( z < 0 ) ^ aSign ) { | |
| 2217 | + invalid: | |
| 2218 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 2219 | + return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; | |
| 2220 | + } | |
| 2221 | + if ( ( aSig<<shiftCount ) != savedASig ) { | |
| 2222 | + STATUS(float_exception_flags) |= float_flag_inexact; | |
| 2223 | + } | |
| 2224 | + return z; | |
| 2225 | + | |
| 2226 | +} | |
| 2227 | + | |
| 2228 | +/*---------------------------------------------------------------------------- | |
| 2229 | +| Returns the result of converting the double-precision floating-point value | |
| 2230 | +| `a' to the 64-bit two's complement integer format. The conversion is | |
| 2231 | +| performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 2232 | +| Arithmetic---which means in particular that the conversion is rounded | |
| 2233 | +| according to the current rounding mode. If `a' is a NaN, the largest | |
| 2234 | +| positive integer is returned. Otherwise, if the conversion overflows, the | |
| 2235 | +| largest integer with the same sign as `a' is returned. | |
| 2236 | +*----------------------------------------------------------------------------*/ | |
| 2237 | + | |
| 2238 | +int64 float64_to_int64( float64 a STATUS_PARAM ) | |
| 2239 | +{ | |
| 2240 | + flag aSign; | |
| 2241 | + int16 aExp, shiftCount; | |
| 2242 | + bits64 aSig, aSigExtra; | |
| 2243 | + | |
| 2244 | + aSig = extractFloat64Frac( a ); | |
| 2245 | + aExp = extractFloat64Exp( a ); | |
| 2246 | + aSign = extractFloat64Sign( a ); | |
| 2247 | + if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | |
| 2248 | + shiftCount = 0x433 - aExp; | |
| 2249 | + if ( shiftCount <= 0 ) { | |
| 2250 | + if ( 0x43E < aExp ) { | |
| 2251 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 2252 | + if ( ! aSign | |
| 2253 | + || ( ( aExp == 0x7FF ) | |
| 2254 | + && ( aSig != LIT64( 0x0010000000000000 ) ) ) | |
| 2255 | + ) { | |
| 2256 | + return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
| 2257 | + } | |
| 2258 | + return (sbits64) LIT64( 0x8000000000000000 ); | |
| 2259 | + } | |
| 2260 | + aSigExtra = 0; | |
| 2261 | + aSig <<= - shiftCount; | |
| 2262 | + } | |
| 2263 | + else { | |
| 2264 | + shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); | |
| 2265 | + } | |
| 2266 | + return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR ); | |
| 2267 | + | |
| 2268 | +} | |
| 2269 | + | |
| 2270 | +/*---------------------------------------------------------------------------- | |
| 2271 | +| Returns the result of converting the double-precision floating-point value | |
| 2272 | +| `a' to the 64-bit two's complement integer format. The conversion is | |
| 2273 | +| performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 2274 | +| Arithmetic, except that the conversion is always rounded toward zero. | |
| 2275 | +| If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
| 2276 | +| the conversion overflows, the largest integer with the same sign as `a' is | |
| 2277 | +| returned. | |
| 2278 | +*----------------------------------------------------------------------------*/ | |
| 2279 | + | |
| 2280 | +int64 float64_to_int64_round_to_zero( float64 a STATUS_PARAM ) | |
| 2281 | +{ | |
| 2282 | + flag aSign; | |
| 2283 | + int16 aExp, shiftCount; | |
| 2284 | + bits64 aSig; | |
| 2285 | + int64 z; | |
| 2286 | + | |
| 2287 | + aSig = extractFloat64Frac( a ); | |
| 2288 | + aExp = extractFloat64Exp( a ); | |
| 2289 | + aSign = extractFloat64Sign( a ); | |
| 2290 | + if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | |
| 2291 | + shiftCount = aExp - 0x433; | |
| 2292 | + if ( 0 <= shiftCount ) { | |
| 2293 | + if ( 0x43E <= aExp ) { | |
| 2294 | + if ( a != LIT64( 0xC3E0000000000000 ) ) { | |
| 2295 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 2296 | + if ( ! aSign | |
| 2297 | + || ( ( aExp == 0x7FF ) | |
| 2298 | + && ( aSig != LIT64( 0x0010000000000000 ) ) ) | |
| 2299 | + ) { | |
| 2300 | + return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
| 2301 | + } | |
| 2302 | + } | |
| 2303 | + return (sbits64) LIT64( 0x8000000000000000 ); | |
| 2304 | + } | |
| 2305 | + z = aSig<<shiftCount; | |
| 2306 | + } | |
| 2307 | + else { | |
| 2308 | + if ( aExp < 0x3FE ) { | |
| 2309 | + if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | |
| 2310 | + return 0; | |
| 2311 | + } | |
| 2312 | + z = aSig>>( - shiftCount ); | |
| 2313 | + if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) { | |
| 2314 | + STATUS(float_exception_flags) |= float_flag_inexact; | |
| 2315 | + } | |
| 2316 | + } | |
| 2317 | + if ( aSign ) z = - z; | |
| 2318 | + return z; | |
| 2319 | + | |
| 2320 | +} | |
| 2321 | + | |
| 2322 | +/*---------------------------------------------------------------------------- | |
| 2323 | +| Returns the result of converting the double-precision floating-point value | |
| 2324 | +| `a' to the single-precision floating-point format. The conversion is | |
| 2325 | +| performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 2326 | +| Arithmetic. | |
| 2327 | +*----------------------------------------------------------------------------*/ | |
| 2328 | + | |
| 2329 | +float32 float64_to_float32( float64 a STATUS_PARAM ) | |
| 2330 | +{ | |
| 2331 | + flag aSign; | |
| 2332 | + int16 aExp; | |
| 2333 | + bits64 aSig; | |
| 2334 | + bits32 zSig; | |
| 2335 | + | |
| 2336 | + aSig = extractFloat64Frac( a ); | |
| 2337 | + aExp = extractFloat64Exp( a ); | |
| 2338 | + aSign = extractFloat64Sign( a ); | |
| 2339 | + if ( aExp == 0x7FF ) { | |
| 2340 | + if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a STATUS_VAR ) ); | |
| 2341 | + return packFloat32( aSign, 0xFF, 0 ); | |
| 2342 | + } | |
| 2343 | + shift64RightJamming( aSig, 22, &aSig ); | |
| 2344 | + zSig = aSig; | |
| 2345 | + if ( aExp || zSig ) { | |
| 2346 | + zSig |= 0x40000000; | |
| 2347 | + aExp -= 0x381; | |
| 2348 | + } | |
| 2349 | + return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR ); | |
| 2350 | + | |
| 2351 | +} | |
| 2352 | + | |
| 2353 | +#ifdef FLOATX80 | |
| 2354 | + | |
| 2355 | +/*---------------------------------------------------------------------------- | |
| 2356 | +| Returns the result of converting the double-precision floating-point value | |
| 2357 | +| `a' to the extended double-precision floating-point format. The conversion | |
| 2358 | +| is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 2359 | +| Arithmetic. | |
| 2360 | +*----------------------------------------------------------------------------*/ | |
| 2361 | + | |
| 2362 | +floatx80 float64_to_floatx80( float64 a STATUS_PARAM ) | |
| 2363 | +{ | |
| 2364 | + flag aSign; | |
| 2365 | + int16 aExp; | |
| 2366 | + bits64 aSig; | |
| 2367 | + | |
| 2368 | + aSig = extractFloat64Frac( a ); | |
| 2369 | + aExp = extractFloat64Exp( a ); | |
| 2370 | + aSign = extractFloat64Sign( a ); | |
| 2371 | + if ( aExp == 0x7FF ) { | |
| 2372 | + if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a STATUS_VAR ) ); | |
| 2373 | + return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
| 2374 | + } | |
| 2375 | + if ( aExp == 0 ) { | |
| 2376 | + if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | |
| 2377 | + normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
| 2378 | + } | |
| 2379 | + return | |
| 2380 | + packFloatx80( | |
| 2381 | + aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 ); | |
| 2382 | + | |
| 2383 | +} | |
| 2384 | + | |
| 2385 | +#endif | |
| 2386 | + | |
| 2387 | +#ifdef FLOAT128 | |
| 2388 | + | |
| 2389 | +/*---------------------------------------------------------------------------- | |
| 2390 | +| Returns the result of converting the double-precision floating-point value | |
| 2391 | +| `a' to the quadruple-precision floating-point format. The conversion is | |
| 2392 | +| performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 2393 | +| Arithmetic. | |
| 2394 | +*----------------------------------------------------------------------------*/ | |
| 2395 | + | |
| 2396 | +float128 float64_to_float128( float64 a STATUS_PARAM ) | |
| 2397 | +{ | |
| 2398 | + flag aSign; | |
| 2399 | + int16 aExp; | |
| 2400 | + bits64 aSig, zSig0, zSig1; | |
| 2401 | + | |
| 2402 | + aSig = extractFloat64Frac( a ); | |
| 2403 | + aExp = extractFloat64Exp( a ); | |
| 2404 | + aSign = extractFloat64Sign( a ); | |
| 2405 | + if ( aExp == 0x7FF ) { | |
| 2406 | + if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a STATUS_VAR ) ); | |
| 2407 | + return packFloat128( aSign, 0x7FFF, 0, 0 ); | |
| 2408 | + } | |
| 2409 | + if ( aExp == 0 ) { | |
| 2410 | + if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); | |
| 2411 | + normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
| 2412 | + --aExp; | |
| 2413 | + } | |
| 2414 | + shift128Right( aSig, 0, 4, &zSig0, &zSig1 ); | |
| 2415 | + return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 ); | |
| 2416 | + | |
| 2417 | +} | |
| 2418 | + | |
| 2419 | +#endif | |
| 2420 | + | |
| 2421 | +/*---------------------------------------------------------------------------- | |
| 2422 | +| Rounds the double-precision floating-point value `a' to an integer, and | |
| 2423 | +| returns the result as a double-precision floating-point value. The | |
| 2424 | +| operation is performed according to the IEC/IEEE Standard for Binary | |
| 2425 | +| Floating-Point Arithmetic. | |
| 2426 | +*----------------------------------------------------------------------------*/ | |
| 2427 | + | |
| 2428 | +float64 float64_round_to_int( float64 a STATUS_PARAM ) | |
| 2429 | +{ | |
| 2430 | + flag aSign; | |
| 2431 | + int16 aExp; | |
| 2432 | + bits64 lastBitMask, roundBitsMask; | |
| 2433 | + int8 roundingMode; | |
| 2434 | + float64 z; | |
| 2435 | + | |
| 2436 | + aExp = extractFloat64Exp( a ); | |
| 2437 | + if ( 0x433 <= aExp ) { | |
| 2438 | + if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) { | |
| 2439 | + return propagateFloat64NaN( a, a STATUS_VAR ); | |
| 2440 | + } | |
| 2441 | + return a; | |
| 2442 | + } | |
| 2443 | + if ( aExp < 0x3FF ) { | |
| 2444 | + if ( (bits64) ( a<<1 ) == 0 ) return a; | |
| 2445 | + STATUS(float_exception_flags) |= float_flag_inexact; | |
| 2446 | + aSign = extractFloat64Sign( a ); | |
| 2447 | + switch ( STATUS(float_rounding_mode) ) { | |
| 2448 | + case float_round_nearest_even: | |
| 2449 | + if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) { | |
| 2450 | + return packFloat64( aSign, 0x3FF, 0 ); | |
| 2451 | + } | |
| 2452 | + break; | |
| 2453 | + case float_round_down: | |
| 2454 | + return aSign ? LIT64( 0xBFF0000000000000 ) : 0; | |
| 2455 | + case float_round_up: | |
| 2456 | + return | |
| 2457 | + aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ); | |
| 2458 | + } | |
| 2459 | + return packFloat64( aSign, 0, 0 ); | |
| 2460 | + } | |
| 2461 | + lastBitMask = 1; | |
| 2462 | + lastBitMask <<= 0x433 - aExp; | |
| 2463 | + roundBitsMask = lastBitMask - 1; | |
| 2464 | + z = a; | |
| 2465 | + roundingMode = STATUS(float_rounding_mode); | |
| 2466 | + if ( roundingMode == float_round_nearest_even ) { | |
| 2467 | + z += lastBitMask>>1; | |
| 2468 | + if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; | |
| 2469 | + } | |
| 2470 | + else if ( roundingMode != float_round_to_zero ) { | |
| 2471 | + if ( extractFloat64Sign( z ) ^ ( roundingMode == float_round_up ) ) { | |
| 2472 | + z += roundBitsMask; | |
| 2473 | + } | |
| 2474 | + } | |
| 2475 | + z &= ~ roundBitsMask; | |
| 2476 | + if ( z != a ) STATUS(float_exception_flags) |= float_flag_inexact; | |
| 2477 | + return z; | |
| 2478 | + | |
| 2479 | +} | |
| 2480 | + | |
| 2481 | +/*---------------------------------------------------------------------------- | |
| 2482 | +| Returns the result of adding the absolute values of the double-precision | |
| 2483 | +| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated | |
| 2484 | +| before being returned. `zSign' is ignored if the result is a NaN. | |
| 2485 | +| The addition is performed according to the IEC/IEEE Standard for Binary | |
| 2486 | +| Floating-Point Arithmetic. | |
| 2487 | +*----------------------------------------------------------------------------*/ | |
| 2488 | + | |
| 2489 | +static float64 addFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM ) | |
| 2490 | +{ | |
| 2491 | + int16 aExp, bExp, zExp; | |
| 2492 | + bits64 aSig, bSig, zSig; | |
| 2493 | + int16 expDiff; | |
| 2494 | + | |
| 2495 | + aSig = extractFloat64Frac( a ); | |
| 2496 | + aExp = extractFloat64Exp( a ); | |
| 2497 | + bSig = extractFloat64Frac( b ); | |
| 2498 | + bExp = extractFloat64Exp( b ); | |
| 2499 | + expDiff = aExp - bExp; | |
| 2500 | + aSig <<= 9; | |
| 2501 | + bSig <<= 9; | |
| 2502 | + if ( 0 < expDiff ) { | |
| 2503 | + if ( aExp == 0x7FF ) { | |
| 2504 | + if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
| 2505 | + return a; | |
| 2506 | + } | |
| 2507 | + if ( bExp == 0 ) { | |
| 2508 | + --expDiff; | |
| 2509 | + } | |
| 2510 | + else { | |
| 2511 | + bSig |= LIT64( 0x2000000000000000 ); | |
| 2512 | + } | |
| 2513 | + shift64RightJamming( bSig, expDiff, &bSig ); | |
| 2514 | + zExp = aExp; | |
| 2515 | + } | |
| 2516 | + else if ( expDiff < 0 ) { | |
| 2517 | + if ( bExp == 0x7FF ) { | |
| 2518 | + if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
| 2519 | + return packFloat64( zSign, 0x7FF, 0 ); | |
| 2520 | + } | |
| 2521 | + if ( aExp == 0 ) { | |
| 2522 | + ++expDiff; | |
| 2523 | + } | |
| 2524 | + else { | |
| 2525 | + aSig |= LIT64( 0x2000000000000000 ); | |
| 2526 | + } | |
| 2527 | + shift64RightJamming( aSig, - expDiff, &aSig ); | |
| 2528 | + zExp = bExp; | |
| 2529 | + } | |
| 2530 | + else { | |
| 2531 | + if ( aExp == 0x7FF ) { | |
| 2532 | + if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
| 2533 | + return a; | |
| 2534 | + } | |
| 2535 | + if ( aExp == 0 ) return packFloat64( zSign, 0, ( aSig + bSig )>>9 ); | |
| 2536 | + zSig = LIT64( 0x4000000000000000 ) + aSig + bSig; | |
| 2537 | + zExp = aExp; | |
| 2538 | + goto roundAndPack; | |
| 2539 | + } | |
| 2540 | + aSig |= LIT64( 0x2000000000000000 ); | |
| 2541 | + zSig = ( aSig + bSig )<<1; | |
| 2542 | + --zExp; | |
| 2543 | + if ( (sbits64) zSig < 0 ) { | |
| 2544 | + zSig = aSig + bSig; | |
| 2545 | + ++zExp; | |
| 2546 | + } | |
| 2547 | + roundAndPack: | |
| 2548 | + return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR ); | |
| 2549 | + | |
| 2550 | +} | |
| 2551 | + | |
| 2552 | +/*---------------------------------------------------------------------------- | |
| 2553 | +| Returns the result of subtracting the absolute values of the double- | |
| 2554 | +| precision floating-point values `a' and `b'. If `zSign' is 1, the | |
| 2555 | +| difference is negated before being returned. `zSign' is ignored if the | |
| 2556 | +| result is a NaN. The subtraction is performed according to the IEC/IEEE | |
| 2557 | +| Standard for Binary Floating-Point Arithmetic. | |
| 2558 | +*----------------------------------------------------------------------------*/ | |
| 2559 | + | |
| 2560 | +static float64 subFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM ) | |
| 2561 | +{ | |
| 2562 | + int16 aExp, bExp, zExp; | |
| 2563 | + bits64 aSig, bSig, zSig; | |
| 2564 | + int16 expDiff; | |
| 2565 | + | |
| 2566 | + aSig = extractFloat64Frac( a ); | |
| 2567 | + aExp = extractFloat64Exp( a ); | |
| 2568 | + bSig = extractFloat64Frac( b ); | |
| 2569 | + bExp = extractFloat64Exp( b ); | |
| 2570 | + expDiff = aExp - bExp; | |
| 2571 | + aSig <<= 10; | |
| 2572 | + bSig <<= 10; | |
| 2573 | + if ( 0 < expDiff ) goto aExpBigger; | |
| 2574 | + if ( expDiff < 0 ) goto bExpBigger; | |
| 2575 | + if ( aExp == 0x7FF ) { | |
| 2576 | + if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
| 2577 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 2578 | + return float64_default_nan; | |
| 2579 | + } | |
| 2580 | + if ( aExp == 0 ) { | |
| 2581 | + aExp = 1; | |
| 2582 | + bExp = 1; | |
| 2583 | + } | |
| 2584 | + if ( bSig < aSig ) goto aBigger; | |
| 2585 | + if ( aSig < bSig ) goto bBigger; | |
| 2586 | + return packFloat64( STATUS(float_rounding_mode) == float_round_down, 0, 0 ); | |
| 2587 | + bExpBigger: | |
| 2588 | + if ( bExp == 0x7FF ) { | |
| 2589 | + if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
| 2590 | + return packFloat64( zSign ^ 1, 0x7FF, 0 ); | |
| 2591 | + } | |
| 2592 | + if ( aExp == 0 ) { | |
| 2593 | + ++expDiff; | |
| 2594 | + } | |
| 2595 | + else { | |
| 2596 | + aSig |= LIT64( 0x4000000000000000 ); | |
| 2597 | + } | |
| 2598 | + shift64RightJamming( aSig, - expDiff, &aSig ); | |
| 2599 | + bSig |= LIT64( 0x4000000000000000 ); | |
| 2600 | + bBigger: | |
| 2601 | + zSig = bSig - aSig; | |
| 2602 | + zExp = bExp; | |
| 2603 | + zSign ^= 1; | |
| 2604 | + goto normalizeRoundAndPack; | |
| 2605 | + aExpBigger: | |
| 2606 | + if ( aExp == 0x7FF ) { | |
| 2607 | + if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
| 2608 | + return a; | |
| 2609 | + } | |
| 2610 | + if ( bExp == 0 ) { | |
| 2611 | + --expDiff; | |
| 2612 | + } | |
| 2613 | + else { | |
| 2614 | + bSig |= LIT64( 0x4000000000000000 ); | |
| 2615 | + } | |
| 2616 | + shift64RightJamming( bSig, expDiff, &bSig ); | |
| 2617 | + aSig |= LIT64( 0x4000000000000000 ); | |
| 2618 | + aBigger: | |
| 2619 | + zSig = aSig - bSig; | |
| 2620 | + zExp = aExp; | |
| 2621 | + normalizeRoundAndPack: | |
| 2622 | + --zExp; | |
| 2623 | + return normalizeRoundAndPackFloat64( zSign, zExp, zSig STATUS_VAR ); | |
| 2624 | + | |
| 2625 | +} | |
| 2626 | + | |
| 2627 | +/*---------------------------------------------------------------------------- | |
| 2628 | +| Returns the result of adding the double-precision floating-point values `a' | |
| 2629 | +| and `b'. The operation is performed according to the IEC/IEEE Standard for | |
| 2630 | +| Binary Floating-Point Arithmetic. | |
| 2631 | +*----------------------------------------------------------------------------*/ | |
| 2632 | + | |
| 2633 | +float64 float64_add( float64 a, float64 b STATUS_PARAM ) | |
| 2634 | +{ | |
| 2635 | + flag aSign, bSign; | |
| 2636 | + | |
| 2637 | + aSign = extractFloat64Sign( a ); | |
| 2638 | + bSign = extractFloat64Sign( b ); | |
| 2639 | + if ( aSign == bSign ) { | |
| 2640 | + return addFloat64Sigs( a, b, aSign STATUS_VAR ); | |
| 2641 | + } | |
| 2642 | + else { | |
| 2643 | + return subFloat64Sigs( a, b, aSign STATUS_VAR ); | |
| 2644 | + } | |
| 2645 | + | |
| 2646 | +} | |
| 2647 | + | |
| 2648 | +/*---------------------------------------------------------------------------- | |
| 2649 | +| Returns the result of subtracting the double-precision floating-point values | |
| 2650 | +| `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
| 2651 | +| for Binary Floating-Point Arithmetic. | |
| 2652 | +*----------------------------------------------------------------------------*/ | |
| 2653 | + | |
| 2654 | +float64 float64_sub( float64 a, float64 b STATUS_PARAM ) | |
| 2655 | +{ | |
| 2656 | + flag aSign, bSign; | |
| 2657 | + | |
| 2658 | + aSign = extractFloat64Sign( a ); | |
| 2659 | + bSign = extractFloat64Sign( b ); | |
| 2660 | + if ( aSign == bSign ) { | |
| 2661 | + return subFloat64Sigs( a, b, aSign STATUS_VAR ); | |
| 2662 | + } | |
| 2663 | + else { | |
| 2664 | + return addFloat64Sigs( a, b, aSign STATUS_VAR ); | |
| 2665 | + } | |
| 2666 | + | |
| 2667 | +} | |
| 2668 | + | |
| 2669 | +/*---------------------------------------------------------------------------- | |
| 2670 | +| Returns the result of multiplying the double-precision floating-point values | |
| 2671 | +| `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
| 2672 | +| for Binary Floating-Point Arithmetic. | |
| 2673 | +*----------------------------------------------------------------------------*/ | |
| 2674 | + | |
| 2675 | +float64 float64_mul( float64 a, float64 b STATUS_PARAM ) | |
| 2676 | +{ | |
| 2677 | + flag aSign, bSign, zSign; | |
| 2678 | + int16 aExp, bExp, zExp; | |
| 2679 | + bits64 aSig, bSig, zSig0, zSig1; | |
| 2680 | + | |
| 2681 | + aSig = extractFloat64Frac( a ); | |
| 2682 | + aExp = extractFloat64Exp( a ); | |
| 2683 | + aSign = extractFloat64Sign( a ); | |
| 2684 | + bSig = extractFloat64Frac( b ); | |
| 2685 | + bExp = extractFloat64Exp( b ); | |
| 2686 | + bSign = extractFloat64Sign( b ); | |
| 2687 | + zSign = aSign ^ bSign; | |
| 2688 | + if ( aExp == 0x7FF ) { | |
| 2689 | + if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { | |
| 2690 | + return propagateFloat64NaN( a, b STATUS_VAR ); | |
| 2691 | + } | |
| 2692 | + if ( ( bExp | bSig ) == 0 ) { | |
| 2693 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 2694 | + return float64_default_nan; | |
| 2695 | + } | |
| 2696 | + return packFloat64( zSign, 0x7FF, 0 ); | |
| 2697 | + } | |
| 2698 | + if ( bExp == 0x7FF ) { | |
| 2699 | + if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
| 2700 | + if ( ( aExp | aSig ) == 0 ) { | |
| 2701 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 2702 | + return float64_default_nan; | |
| 2703 | + } | |
| 2704 | + return packFloat64( zSign, 0x7FF, 0 ); | |
| 2705 | + } | |
| 2706 | + if ( aExp == 0 ) { | |
| 2707 | + if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); | |
| 2708 | + normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
| 2709 | + } | |
| 2710 | + if ( bExp == 0 ) { | |
| 2711 | + if ( bSig == 0 ) return packFloat64( zSign, 0, 0 ); | |
| 2712 | + normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | |
| 2713 | + } | |
| 2714 | + zExp = aExp + bExp - 0x3FF; | |
| 2715 | + aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; | |
| 2716 | + bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | |
| 2717 | + mul64To128( aSig, bSig, &zSig0, &zSig1 ); | |
| 2718 | + zSig0 |= ( zSig1 != 0 ); | |
| 2719 | + if ( 0 <= (sbits64) ( zSig0<<1 ) ) { | |
| 2720 | + zSig0 <<= 1; | |
| 2721 | + --zExp; | |
| 2722 | + } | |
| 2723 | + return roundAndPackFloat64( zSign, zExp, zSig0 STATUS_VAR ); | |
| 2724 | + | |
| 2725 | +} | |
| 2726 | + | |
| 2727 | +/*---------------------------------------------------------------------------- | |
| 2728 | +| Returns the result of dividing the double-precision floating-point value `a' | |
| 2729 | +| by the corresponding value `b'. The operation is performed according to | |
| 2730 | +| the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 2731 | +*----------------------------------------------------------------------------*/ | |
| 2732 | + | |
| 2733 | +float64 float64_div( float64 a, float64 b STATUS_PARAM ) | |
| 2734 | +{ | |
| 2735 | + flag aSign, bSign, zSign; | |
| 2736 | + int16 aExp, bExp, zExp; | |
| 2737 | + bits64 aSig, bSig, zSig; | |
| 2738 | + bits64 rem0, rem1; | |
| 2739 | + bits64 term0, term1; | |
| 2740 | + | |
| 2741 | + aSig = extractFloat64Frac( a ); | |
| 2742 | + aExp = extractFloat64Exp( a ); | |
| 2743 | + aSign = extractFloat64Sign( a ); | |
| 2744 | + bSig = extractFloat64Frac( b ); | |
| 2745 | + bExp = extractFloat64Exp( b ); | |
| 2746 | + bSign = extractFloat64Sign( b ); | |
| 2747 | + zSign = aSign ^ bSign; | |
| 2748 | + if ( aExp == 0x7FF ) { | |
| 2749 | + if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
| 2750 | + if ( bExp == 0x7FF ) { | |
| 2751 | + if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
| 2752 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 2753 | + return float64_default_nan; | |
| 2754 | + } | |
| 2755 | + return packFloat64( zSign, 0x7FF, 0 ); | |
| 2756 | + } | |
| 2757 | + if ( bExp == 0x7FF ) { | |
| 2758 | + if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
| 2759 | + return packFloat64( zSign, 0, 0 ); | |
| 2760 | + } | |
| 2761 | + if ( bExp == 0 ) { | |
| 2762 | + if ( bSig == 0 ) { | |
| 2763 | + if ( ( aExp | aSig ) == 0 ) { | |
| 2764 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 2765 | + return float64_default_nan; | |
| 2766 | + } | |
| 2767 | + float_raise( float_flag_divbyzero STATUS_VAR); | |
| 2768 | + return packFloat64( zSign, 0x7FF, 0 ); | |
| 2769 | + } | |
| 2770 | + normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | |
| 2771 | + } | |
| 2772 | + if ( aExp == 0 ) { | |
| 2773 | + if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); | |
| 2774 | + normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
| 2775 | + } | |
| 2776 | + zExp = aExp - bExp + 0x3FD; | |
| 2777 | + aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; | |
| 2778 | + bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | |
| 2779 | + if ( bSig <= ( aSig + aSig ) ) { | |
| 2780 | + aSig >>= 1; | |
| 2781 | + ++zExp; | |
| 2782 | + } | |
| 2783 | + zSig = estimateDiv128To64( aSig, 0, bSig ); | |
| 2784 | + if ( ( zSig & 0x1FF ) <= 2 ) { | |
| 2785 | + mul64To128( bSig, zSig, &term0, &term1 ); | |
| 2786 | + sub128( aSig, 0, term0, term1, &rem0, &rem1 ); | |
| 2787 | + while ( (sbits64) rem0 < 0 ) { | |
| 2788 | + --zSig; | |
| 2789 | + add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); | |
| 2790 | + } | |
| 2791 | + zSig |= ( rem1 != 0 ); | |
| 2792 | + } | |
| 2793 | + return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR ); | |
| 2794 | + | |
| 2795 | +} | |
| 2796 | + | |
| 2797 | +/*---------------------------------------------------------------------------- | |
| 2798 | +| Returns the remainder of the double-precision floating-point value `a' | |
| 2799 | +| with respect to the corresponding value `b'. The operation is performed | |
| 2800 | +| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 2801 | +*----------------------------------------------------------------------------*/ | |
| 2802 | + | |
| 2803 | +float64 float64_rem( float64 a, float64 b STATUS_PARAM ) | |
| 2804 | +{ | |
| 2805 | + flag aSign, bSign, zSign; | |
| 2806 | + int16 aExp, bExp, expDiff; | |
| 2807 | + bits64 aSig, bSig; | |
| 2808 | + bits64 q, alternateASig; | |
| 2809 | + sbits64 sigMean; | |
| 2810 | + | |
| 2811 | + aSig = extractFloat64Frac( a ); | |
| 2812 | + aExp = extractFloat64Exp( a ); | |
| 2813 | + aSign = extractFloat64Sign( a ); | |
| 2814 | + bSig = extractFloat64Frac( b ); | |
| 2815 | + bExp = extractFloat64Exp( b ); | |
| 2816 | + bSign = extractFloat64Sign( b ); | |
| 2817 | + if ( aExp == 0x7FF ) { | |
| 2818 | + if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { | |
| 2819 | + return propagateFloat64NaN( a, b STATUS_VAR ); | |
| 2820 | + } | |
| 2821 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 2822 | + return float64_default_nan; | |
| 2823 | + } | |
| 2824 | + if ( bExp == 0x7FF ) { | |
| 2825 | + if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
| 2826 | + return a; | |
| 2827 | + } | |
| 2828 | + if ( bExp == 0 ) { | |
| 2829 | + if ( bSig == 0 ) { | |
| 2830 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 2831 | + return float64_default_nan; | |
| 2832 | + } | |
| 2833 | + normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | |
| 2834 | + } | |
| 2835 | + if ( aExp == 0 ) { | |
| 2836 | + if ( aSig == 0 ) return a; | |
| 2837 | + normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
| 2838 | + } | |
| 2839 | + expDiff = aExp - bExp; | |
| 2840 | + aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11; | |
| 2841 | + bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | |
| 2842 | + if ( expDiff < 0 ) { | |
| 2843 | + if ( expDiff < -1 ) return a; | |
| 2844 | + aSig >>= 1; | |
| 2845 | + } | |
| 2846 | + q = ( bSig <= aSig ); | |
| 2847 | + if ( q ) aSig -= bSig; | |
| 2848 | + expDiff -= 64; | |
| 2849 | + while ( 0 < expDiff ) { | |
| 2850 | + q = estimateDiv128To64( aSig, 0, bSig ); | |
| 2851 | + q = ( 2 < q ) ? q - 2 : 0; | |
| 2852 | + aSig = - ( ( bSig>>2 ) * q ); | |
| 2853 | + expDiff -= 62; | |
| 2854 | + } | |
| 2855 | + expDiff += 64; | |
| 2856 | + if ( 0 < expDiff ) { | |
| 2857 | + q = estimateDiv128To64( aSig, 0, bSig ); | |
| 2858 | + q = ( 2 < q ) ? q - 2 : 0; | |
| 2859 | + q >>= 64 - expDiff; | |
| 2860 | + bSig >>= 2; | |
| 2861 | + aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | |
| 2862 | + } | |
| 2863 | + else { | |
| 2864 | + aSig >>= 2; | |
| 2865 | + bSig >>= 2; | |
| 2866 | + } | |
| 2867 | + do { | |
| 2868 | + alternateASig = aSig; | |
| 2869 | + ++q; | |
| 2870 | + aSig -= bSig; | |
| 2871 | + } while ( 0 <= (sbits64) aSig ); | |
| 2872 | + sigMean = aSig + alternateASig; | |
| 2873 | + if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | |
| 2874 | + aSig = alternateASig; | |
| 2875 | + } | |
| 2876 | + zSign = ( (sbits64) aSig < 0 ); | |
| 2877 | + if ( zSign ) aSig = - aSig; | |
| 2878 | + return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig STATUS_VAR ); | |
| 2879 | + | |
| 2880 | +} | |
| 2881 | + | |
| 2882 | +/*---------------------------------------------------------------------------- | |
| 2883 | +| Returns the square root of the double-precision floating-point value `a'. | |
| 2884 | +| The operation is performed according to the IEC/IEEE Standard for Binary | |
| 2885 | +| Floating-Point Arithmetic. | |
| 2886 | +*----------------------------------------------------------------------------*/ | |
| 2887 | + | |
| 2888 | +float64 float64_sqrt( float64 a STATUS_PARAM ) | |
| 2889 | +{ | |
| 2890 | + flag aSign; | |
| 2891 | + int16 aExp, zExp; | |
| 2892 | + bits64 aSig, zSig, doubleZSig; | |
| 2893 | + bits64 rem0, rem1, term0, term1; | |
| 2894 | + | |
| 2895 | + aSig = extractFloat64Frac( a ); | |
| 2896 | + aExp = extractFloat64Exp( a ); | |
| 2897 | + aSign = extractFloat64Sign( a ); | |
| 2898 | + if ( aExp == 0x7FF ) { | |
| 2899 | + if ( aSig ) return propagateFloat64NaN( a, a STATUS_VAR ); | |
| 2900 | + if ( ! aSign ) return a; | |
| 2901 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 2902 | + return float64_default_nan; | |
| 2903 | + } | |
| 2904 | + if ( aSign ) { | |
| 2905 | + if ( ( aExp | aSig ) == 0 ) return a; | |
| 2906 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 2907 | + return float64_default_nan; | |
| 2908 | + } | |
| 2909 | + if ( aExp == 0 ) { | |
| 2910 | + if ( aSig == 0 ) return 0; | |
| 2911 | + normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
| 2912 | + } | |
| 2913 | + zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; | |
| 2914 | + aSig |= LIT64( 0x0010000000000000 ); | |
| 2915 | + zSig = estimateSqrt32( aExp, aSig>>21 ); | |
| 2916 | + aSig <<= 9 - ( aExp & 1 ); | |
| 2917 | + zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 ); | |
| 2918 | + if ( ( zSig & 0x1FF ) <= 5 ) { | |
| 2919 | + doubleZSig = zSig<<1; | |
| 2920 | + mul64To128( zSig, zSig, &term0, &term1 ); | |
| 2921 | + sub128( aSig, 0, term0, term1, &rem0, &rem1 ); | |
| 2922 | + while ( (sbits64) rem0 < 0 ) { | |
| 2923 | + --zSig; | |
| 2924 | + doubleZSig -= 2; | |
| 2925 | + add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 ); | |
| 2926 | + } | |
| 2927 | + zSig |= ( ( rem0 | rem1 ) != 0 ); | |
| 2928 | + } | |
| 2929 | + return roundAndPackFloat64( 0, zExp, zSig STATUS_VAR ); | |
| 2930 | + | |
| 2931 | +} | |
| 2932 | + | |
| 2933 | +/*---------------------------------------------------------------------------- | |
| 2934 | +| Returns 1 if the double-precision floating-point value `a' is equal to the | |
| 2935 | +| corresponding value `b', and 0 otherwise. The comparison is performed | |
| 2936 | +| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 2937 | +*----------------------------------------------------------------------------*/ | |
| 2938 | + | |
| 2939 | +flag float64_eq( float64 a, float64 b STATUS_PARAM ) | |
| 2940 | +{ | |
| 2941 | + | |
| 2942 | + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
| 2943 | + || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
| 2944 | + ) { | |
| 2945 | + if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | |
| 2946 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 2947 | + } | |
| 2948 | + return 0; | |
| 2949 | + } | |
| 2950 | + return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 ); | |
| 2951 | + | |
| 2952 | +} | |
| 2953 | + | |
| 2954 | +/*---------------------------------------------------------------------------- | |
| 2955 | +| Returns 1 if the double-precision floating-point value `a' is less than or | |
| 2956 | +| equal to the corresponding value `b', and 0 otherwise. The comparison is | |
| 2957 | +| performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 2958 | +| Arithmetic. | |
| 2959 | +*----------------------------------------------------------------------------*/ | |
| 2960 | + | |
| 2961 | +flag float64_le( float64 a, float64 b STATUS_PARAM ) | |
| 2962 | +{ | |
| 2963 | + flag aSign, bSign; | |
| 2964 | + | |
| 2965 | + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
| 2966 | + || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
| 2967 | + ) { | |
| 2968 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 2969 | + return 0; | |
| 2970 | + } | |
| 2971 | + aSign = extractFloat64Sign( a ); | |
| 2972 | + bSign = extractFloat64Sign( b ); | |
| 2973 | + if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 ); | |
| 2974 | + return ( a == b ) || ( aSign ^ ( a < b ) ); | |
| 2975 | + | |
| 2976 | +} | |
| 2977 | + | |
| 2978 | +/*---------------------------------------------------------------------------- | |
| 2979 | +| Returns 1 if the double-precision floating-point value `a' is less than | |
| 2980 | +| the corresponding value `b', and 0 otherwise. The comparison is performed | |
| 2981 | +| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 2982 | +*----------------------------------------------------------------------------*/ | |
| 2983 | + | |
| 2984 | +flag float64_lt( float64 a, float64 b STATUS_PARAM ) | |
| 2985 | +{ | |
| 2986 | + flag aSign, bSign; | |
| 2987 | + | |
| 2988 | + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
| 2989 | + || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
| 2990 | + ) { | |
| 2991 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 2992 | + return 0; | |
| 2993 | + } | |
| 2994 | + aSign = extractFloat64Sign( a ); | |
| 2995 | + bSign = extractFloat64Sign( b ); | |
| 2996 | + if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 ); | |
| 2997 | + return ( a != b ) && ( aSign ^ ( a < b ) ); | |
| 2998 | + | |
| 2999 | +} | |
| 3000 | + | |
| 3001 | +/*---------------------------------------------------------------------------- | |
| 3002 | +| Returns 1 if the double-precision floating-point value `a' is equal to the | |
| 3003 | +| corresponding value `b', and 0 otherwise. The invalid exception is raised | |
| 3004 | +| if either operand is a NaN. Otherwise, the comparison is performed | |
| 3005 | +| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 3006 | +*----------------------------------------------------------------------------*/ | |
| 3007 | + | |
| 3008 | +flag float64_eq_signaling( float64 a, float64 b STATUS_PARAM ) | |
| 3009 | +{ | |
| 3010 | + | |
| 3011 | + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
| 3012 | + || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
| 3013 | + ) { | |
| 3014 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 3015 | + return 0; | |
| 3016 | + } | |
| 3017 | + return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 ); | |
| 3018 | + | |
| 3019 | +} | |
| 3020 | + | |
| 3021 | +/*---------------------------------------------------------------------------- | |
| 3022 | +| Returns 1 if the double-precision floating-point value `a' is less than or | |
| 3023 | +| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
| 3024 | +| cause an exception. Otherwise, the comparison is performed according to the | |
| 3025 | +| IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 3026 | +*----------------------------------------------------------------------------*/ | |
| 3027 | + | |
| 3028 | +flag float64_le_quiet( float64 a, float64 b STATUS_PARAM ) | |
| 3029 | +{ | |
| 3030 | + flag aSign, bSign; | |
| 3031 | + | |
| 3032 | + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
| 3033 | + || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
| 3034 | + ) { | |
| 3035 | + if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | |
| 3036 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 3037 | + } | |
| 3038 | + return 0; | |
| 3039 | + } | |
| 3040 | + aSign = extractFloat64Sign( a ); | |
| 3041 | + bSign = extractFloat64Sign( b ); | |
| 3042 | + if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 ); | |
| 3043 | + return ( a == b ) || ( aSign ^ ( a < b ) ); | |
| 3044 | + | |
| 3045 | +} | |
| 3046 | + | |
| 3047 | +/*---------------------------------------------------------------------------- | |
| 3048 | +| Returns 1 if the double-precision floating-point value `a' is less than | |
| 3049 | +| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
| 3050 | +| exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
| 3051 | +| Standard for Binary Floating-Point Arithmetic. | |
| 3052 | +*----------------------------------------------------------------------------*/ | |
| 3053 | + | |
| 3054 | +flag float64_lt_quiet( float64 a, float64 b STATUS_PARAM ) | |
| 3055 | +{ | |
| 3056 | + flag aSign, bSign; | |
| 3057 | + | |
| 3058 | + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
| 3059 | + || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
| 3060 | + ) { | |
| 3061 | + if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | |
| 3062 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 3063 | + } | |
| 3064 | + return 0; | |
| 3065 | + } | |
| 3066 | + aSign = extractFloat64Sign( a ); | |
| 3067 | + bSign = extractFloat64Sign( b ); | |
| 3068 | + if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 ); | |
| 3069 | + return ( a != b ) && ( aSign ^ ( a < b ) ); | |
| 3070 | + | |
| 3071 | +} | |
| 3072 | + | |
| 3073 | +#ifdef FLOATX80 | |
| 3074 | + | |
| 3075 | +/*---------------------------------------------------------------------------- | |
| 3076 | +| Returns the result of converting the extended double-precision floating- | |
| 3077 | +| point value `a' to the 32-bit two's complement integer format. The | |
| 3078 | +| conversion is performed according to the IEC/IEEE Standard for Binary | |
| 3079 | +| Floating-Point Arithmetic---which means in particular that the conversion | |
| 3080 | +| is rounded according to the current rounding mode. If `a' is a NaN, the | |
| 3081 | +| largest positive integer is returned. Otherwise, if the conversion | |
| 3082 | +| overflows, the largest integer with the same sign as `a' is returned. | |
| 3083 | +*----------------------------------------------------------------------------*/ | |
| 3084 | + | |
| 3085 | +int32 floatx80_to_int32( floatx80 a STATUS_PARAM ) | |
| 3086 | +{ | |
| 3087 | + flag aSign; | |
| 3088 | + int32 aExp, shiftCount; | |
| 3089 | + bits64 aSig; | |
| 3090 | + | |
| 3091 | + aSig = extractFloatx80Frac( a ); | |
| 3092 | + aExp = extractFloatx80Exp( a ); | |
| 3093 | + aSign = extractFloatx80Sign( a ); | |
| 3094 | + if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; | |
| 3095 | + shiftCount = 0x4037 - aExp; | |
| 3096 | + if ( shiftCount <= 0 ) shiftCount = 1; | |
| 3097 | + shift64RightJamming( aSig, shiftCount, &aSig ); | |
| 3098 | + return roundAndPackInt32( aSign, aSig STATUS_VAR ); | |
| 3099 | + | |
| 3100 | +} | |
| 3101 | + | |
| 3102 | +/*---------------------------------------------------------------------------- | |
| 3103 | +| Returns the result of converting the extended double-precision floating- | |
| 3104 | +| point value `a' to the 32-bit two's complement integer format. The | |
| 3105 | +| conversion is performed according to the IEC/IEEE Standard for Binary | |
| 3106 | +| Floating-Point Arithmetic, except that the conversion is always rounded | |
| 3107 | +| toward zero. If `a' is a NaN, the largest positive integer is returned. | |
| 3108 | +| Otherwise, if the conversion overflows, the largest integer with the same | |
| 3109 | +| sign as `a' is returned. | |
| 3110 | +*----------------------------------------------------------------------------*/ | |
| 3111 | + | |
| 3112 | +int32 floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM ) | |
| 3113 | +{ | |
| 3114 | + flag aSign; | |
| 3115 | + int32 aExp, shiftCount; | |
| 3116 | + bits64 aSig, savedASig; | |
| 3117 | + int32 z; | |
| 3118 | + | |
| 3119 | + aSig = extractFloatx80Frac( a ); | |
| 3120 | + aExp = extractFloatx80Exp( a ); | |
| 3121 | + aSign = extractFloatx80Sign( a ); | |
| 3122 | + if ( 0x401E < aExp ) { | |
| 3123 | + if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; | |
| 3124 | + goto invalid; | |
| 3125 | + } | |
| 3126 | + else if ( aExp < 0x3FFF ) { | |
| 3127 | + if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | |
| 3128 | + return 0; | |
| 3129 | + } | |
| 3130 | + shiftCount = 0x403E - aExp; | |
| 3131 | + savedASig = aSig; | |
| 3132 | + aSig >>= shiftCount; | |
| 3133 | + z = aSig; | |
| 3134 | + if ( aSign ) z = - z; | |
| 3135 | + if ( ( z < 0 ) ^ aSign ) { | |
| 3136 | + invalid: | |
| 3137 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 3138 | + return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; | |
| 3139 | + } | |
| 3140 | + if ( ( aSig<<shiftCount ) != savedASig ) { | |
| 3141 | + STATUS(float_exception_flags) |= float_flag_inexact; | |
| 3142 | + } | |
| 3143 | + return z; | |
| 3144 | + | |
| 3145 | +} | |
| 3146 | + | |
| 3147 | +/*---------------------------------------------------------------------------- | |
| 3148 | +| Returns the result of converting the extended double-precision floating- | |
| 3149 | +| point value `a' to the 64-bit two's complement integer format. The | |
| 3150 | +| conversion is performed according to the IEC/IEEE Standard for Binary | |
| 3151 | +| Floating-Point Arithmetic---which means in particular that the conversion | |
| 3152 | +| is rounded according to the current rounding mode. If `a' is a NaN, | |
| 3153 | +| the largest positive integer is returned. Otherwise, if the conversion | |
| 3154 | +| overflows, the largest integer with the same sign as `a' is returned. | |
| 3155 | +*----------------------------------------------------------------------------*/ | |
| 3156 | + | |
| 3157 | +int64 floatx80_to_int64( floatx80 a STATUS_PARAM ) | |
| 3158 | +{ | |
| 3159 | + flag aSign; | |
| 3160 | + int32 aExp, shiftCount; | |
| 3161 | + bits64 aSig, aSigExtra; | |
| 3162 | + | |
| 3163 | + aSig = extractFloatx80Frac( a ); | |
| 3164 | + aExp = extractFloatx80Exp( a ); | |
| 3165 | + aSign = extractFloatx80Sign( a ); | |
| 3166 | + shiftCount = 0x403E - aExp; | |
| 3167 | + if ( shiftCount <= 0 ) { | |
| 3168 | + if ( shiftCount ) { | |
| 3169 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 3170 | + if ( ! aSign | |
| 3171 | + || ( ( aExp == 0x7FFF ) | |
| 3172 | + && ( aSig != LIT64( 0x8000000000000000 ) ) ) | |
| 3173 | + ) { | |
| 3174 | + return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
| 3175 | + } | |
| 3176 | + return (sbits64) LIT64( 0x8000000000000000 ); | |
| 3177 | + } | |
| 3178 | + aSigExtra = 0; | |
| 3179 | + } | |
| 3180 | + else { | |
| 3181 | + shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); | |
| 3182 | + } | |
| 3183 | + return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR ); | |
| 3184 | + | |
| 3185 | +} | |
| 3186 | + | |
| 3187 | +/*---------------------------------------------------------------------------- | |
| 3188 | +| Returns the result of converting the extended double-precision floating- | |
| 3189 | +| point value `a' to the 64-bit two's complement integer format. The | |
| 3190 | +| conversion is performed according to the IEC/IEEE Standard for Binary | |
| 3191 | +| Floating-Point Arithmetic, except that the conversion is always rounded | |
| 3192 | +| toward zero. If `a' is a NaN, the largest positive integer is returned. | |
| 3193 | +| Otherwise, if the conversion overflows, the largest integer with the same | |
| 3194 | +| sign as `a' is returned. | |
| 3195 | +*----------------------------------------------------------------------------*/ | |
| 3196 | + | |
| 3197 | +int64 floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM ) | |
| 3198 | +{ | |
| 3199 | + flag aSign; | |
| 3200 | + int32 aExp, shiftCount; | |
| 3201 | + bits64 aSig; | |
| 3202 | + int64 z; | |
| 3203 | + | |
| 3204 | + aSig = extractFloatx80Frac( a ); | |
| 3205 | + aExp = extractFloatx80Exp( a ); | |
| 3206 | + aSign = extractFloatx80Sign( a ); | |
| 3207 | + shiftCount = aExp - 0x403E; | |
| 3208 | + if ( 0 <= shiftCount ) { | |
| 3209 | + aSig &= LIT64( 0x7FFFFFFFFFFFFFFF ); | |
| 3210 | + if ( ( a.high != 0xC03E ) || aSig ) { | |
| 3211 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 3212 | + if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) { | |
| 3213 | + return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
| 3214 | + } | |
| 3215 | + } | |
| 3216 | + return (sbits64) LIT64( 0x8000000000000000 ); | |
| 3217 | + } | |
| 3218 | + else if ( aExp < 0x3FFF ) { | |
| 3219 | + if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | |
| 3220 | + return 0; | |
| 3221 | + } | |
| 3222 | + z = aSig>>( - shiftCount ); | |
| 3223 | + if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) { | |
| 3224 | + STATUS(float_exception_flags) |= float_flag_inexact; | |
| 3225 | + } | |
| 3226 | + if ( aSign ) z = - z; | |
| 3227 | + return z; | |
| 3228 | + | |
| 3229 | +} | |
| 3230 | + | |
| 3231 | +/*---------------------------------------------------------------------------- | |
| 3232 | +| Returns the result of converting the extended double-precision floating- | |
| 3233 | +| point value `a' to the single-precision floating-point format. The | |
| 3234 | +| conversion is performed according to the IEC/IEEE Standard for Binary | |
| 3235 | +| Floating-Point Arithmetic. | |
| 3236 | +*----------------------------------------------------------------------------*/ | |
| 3237 | + | |
| 3238 | +float32 floatx80_to_float32( floatx80 a STATUS_PARAM ) | |
| 3239 | +{ | |
| 3240 | + flag aSign; | |
| 3241 | + int32 aExp; | |
| 3242 | + bits64 aSig; | |
| 3243 | + | |
| 3244 | + aSig = extractFloatx80Frac( a ); | |
| 3245 | + aExp = extractFloatx80Exp( a ); | |
| 3246 | + aSign = extractFloatx80Sign( a ); | |
| 3247 | + if ( aExp == 0x7FFF ) { | |
| 3248 | + if ( (bits64) ( aSig<<1 ) ) { | |
| 3249 | + return commonNaNToFloat32( floatx80ToCommonNaN( a STATUS_VAR ) ); | |
| 3250 | + } | |
| 3251 | + return packFloat32( aSign, 0xFF, 0 ); | |
| 3252 | + } | |
| 3253 | + shift64RightJamming( aSig, 33, &aSig ); | |
| 3254 | + if ( aExp || aSig ) aExp -= 0x3F81; | |
| 3255 | + return roundAndPackFloat32( aSign, aExp, aSig STATUS_VAR ); | |
| 3256 | + | |
| 3257 | +} | |
| 3258 | + | |
| 3259 | +/*---------------------------------------------------------------------------- | |
| 3260 | +| Returns the result of converting the extended double-precision floating- | |
| 3261 | +| point value `a' to the double-precision floating-point format. The | |
| 3262 | +| conversion is performed according to the IEC/IEEE Standard for Binary | |
| 3263 | +| Floating-Point Arithmetic. | |
| 3264 | +*----------------------------------------------------------------------------*/ | |
| 3265 | + | |
| 3266 | +float64 floatx80_to_float64( floatx80 a STATUS_PARAM ) | |
| 3267 | +{ | |
| 3268 | + flag aSign; | |
| 3269 | + int32 aExp; | |
| 3270 | + bits64 aSig, zSig; | |
| 3271 | + | |
| 3272 | + aSig = extractFloatx80Frac( a ); | |
| 3273 | + aExp = extractFloatx80Exp( a ); | |
| 3274 | + aSign = extractFloatx80Sign( a ); | |
| 3275 | + if ( aExp == 0x7FFF ) { | |
| 3276 | + if ( (bits64) ( aSig<<1 ) ) { | |
| 3277 | + return commonNaNToFloat64( floatx80ToCommonNaN( a STATUS_VAR ) ); | |
| 3278 | + } | |
| 3279 | + return packFloat64( aSign, 0x7FF, 0 ); | |
| 3280 | + } | |
| 3281 | + shift64RightJamming( aSig, 1, &zSig ); | |
| 3282 | + if ( aExp || aSig ) aExp -= 0x3C01; | |
| 3283 | + return roundAndPackFloat64( aSign, aExp, zSig STATUS_VAR ); | |
| 3284 | + | |
| 3285 | +} | |
| 3286 | + | |
| 3287 | +#ifdef FLOAT128 | |
| 3288 | + | |
| 3289 | +/*---------------------------------------------------------------------------- | |
| 3290 | +| Returns the result of converting the extended double-precision floating- | |
| 3291 | +| point value `a' to the quadruple-precision floating-point format. The | |
| 3292 | +| conversion is performed according to the IEC/IEEE Standard for Binary | |
| 3293 | +| Floating-Point Arithmetic. | |
| 3294 | +*----------------------------------------------------------------------------*/ | |
| 3295 | + | |
| 3296 | +float128 floatx80_to_float128( floatx80 a STATUS_PARAM ) | |
| 3297 | +{ | |
| 3298 | + flag aSign; | |
| 3299 | + int16 aExp; | |
| 3300 | + bits64 aSig, zSig0, zSig1; | |
| 3301 | + | |
| 3302 | + aSig = extractFloatx80Frac( a ); | |
| 3303 | + aExp = extractFloatx80Exp( a ); | |
| 3304 | + aSign = extractFloatx80Sign( a ); | |
| 3305 | + if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) { | |
| 3306 | + return commonNaNToFloat128( floatx80ToCommonNaN( a STATUS_VAR ) ); | |
| 3307 | + } | |
| 3308 | + shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 ); | |
| 3309 | + return packFloat128( aSign, aExp, zSig0, zSig1 ); | |
| 3310 | + | |
| 3311 | +} | |
| 3312 | + | |
| 3313 | +#endif | |
| 3314 | + | |
| 3315 | +/*---------------------------------------------------------------------------- | |
| 3316 | +| Rounds the extended double-precision floating-point value `a' to an integer, | |
| 3317 | +| and returns the result as an extended quadruple-precision floating-point | |
| 3318 | +| value. The operation is performed according to the IEC/IEEE Standard for | |
| 3319 | +| Binary Floating-Point Arithmetic. | |
| 3320 | +*----------------------------------------------------------------------------*/ | |
| 3321 | + | |
| 3322 | +floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM ) | |
| 3323 | +{ | |
| 3324 | + flag aSign; | |
| 3325 | + int32 aExp; | |
| 3326 | + bits64 lastBitMask, roundBitsMask; | |
| 3327 | + int8 roundingMode; | |
| 3328 | + floatx80 z; | |
| 3329 | + | |
| 3330 | + aExp = extractFloatx80Exp( a ); | |
| 3331 | + if ( 0x403E <= aExp ) { | |
| 3332 | + if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) { | |
| 3333 | + return propagateFloatx80NaN( a, a STATUS_VAR ); | |
| 3334 | + } | |
| 3335 | + return a; | |
| 3336 | + } | |
| 3337 | + if ( aExp < 0x3FFF ) { | |
| 3338 | + if ( ( aExp == 0 ) | |
| 3339 | + && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) { | |
| 3340 | + return a; | |
| 3341 | + } | |
| 3342 | + STATUS(float_exception_flags) |= float_flag_inexact; | |
| 3343 | + aSign = extractFloatx80Sign( a ); | |
| 3344 | + switch ( STATUS(float_rounding_mode) ) { | |
| 3345 | + case float_round_nearest_even: | |
| 3346 | + if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 ) | |
| 3347 | + ) { | |
| 3348 | + return | |
| 3349 | + packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) ); | |
| 3350 | + } | |
| 3351 | + break; | |
| 3352 | + case float_round_down: | |
| 3353 | + return | |
| 3354 | + aSign ? | |
| 3355 | + packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) ) | |
| 3356 | + : packFloatx80( 0, 0, 0 ); | |
| 3357 | + case float_round_up: | |
| 3358 | + return | |
| 3359 | + aSign ? packFloatx80( 1, 0, 0 ) | |
| 3360 | + : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) ); | |
| 3361 | + } | |
| 3362 | + return packFloatx80( aSign, 0, 0 ); | |
| 3363 | + } | |
| 3364 | + lastBitMask = 1; | |
| 3365 | + lastBitMask <<= 0x403E - aExp; | |
| 3366 | + roundBitsMask = lastBitMask - 1; | |
| 3367 | + z = a; | |
| 3368 | + roundingMode = STATUS(float_rounding_mode); | |
| 3369 | + if ( roundingMode == float_round_nearest_even ) { | |
| 3370 | + z.low += lastBitMask>>1; | |
| 3371 | + if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; | |
| 3372 | + } | |
| 3373 | + else if ( roundingMode != float_round_to_zero ) { | |
| 3374 | + if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) { | |
| 3375 | + z.low += roundBitsMask; | |
| 3376 | + } | |
| 3377 | + } | |
| 3378 | + z.low &= ~ roundBitsMask; | |
| 3379 | + if ( z.low == 0 ) { | |
| 3380 | + ++z.high; | |
| 3381 | + z.low = LIT64( 0x8000000000000000 ); | |
| 3382 | + } | |
| 3383 | + if ( z.low != a.low ) STATUS(float_exception_flags) |= float_flag_inexact; | |
| 3384 | + return z; | |
| 3385 | + | |
| 3386 | +} | |
| 3387 | + | |
| 3388 | +/*---------------------------------------------------------------------------- | |
| 3389 | +| Returns the result of adding the absolute values of the extended double- | |
| 3390 | +| precision floating-point values `a' and `b'. If `zSign' is 1, the sum is | |
| 3391 | +| negated before being returned. `zSign' is ignored if the result is a NaN. | |
| 3392 | +| The addition is performed according to the IEC/IEEE Standard for Binary | |
| 3393 | +| Floating-Point Arithmetic. | |
| 3394 | +*----------------------------------------------------------------------------*/ | |
| 3395 | + | |
| 3396 | +static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM) | |
| 3397 | +{ | |
| 3398 | + int32 aExp, bExp, zExp; | |
| 3399 | + bits64 aSig, bSig, zSig0, zSig1; | |
| 3400 | + int32 expDiff; | |
| 3401 | + | |
| 3402 | + aSig = extractFloatx80Frac( a ); | |
| 3403 | + aExp = extractFloatx80Exp( a ); | |
| 3404 | + bSig = extractFloatx80Frac( b ); | |
| 3405 | + bExp = extractFloatx80Exp( b ); | |
| 3406 | + expDiff = aExp - bExp; | |
| 3407 | + if ( 0 < expDiff ) { | |
| 3408 | + if ( aExp == 0x7FFF ) { | |
| 3409 | + if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | |
| 3410 | + return a; | |
| 3411 | + } | |
| 3412 | + if ( bExp == 0 ) --expDiff; | |
| 3413 | + shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | |
| 3414 | + zExp = aExp; | |
| 3415 | + } | |
| 3416 | + else if ( expDiff < 0 ) { | |
| 3417 | + if ( bExp == 0x7FFF ) { | |
| 3418 | + if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | |
| 3419 | + return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
| 3420 | + } | |
| 3421 | + if ( aExp == 0 ) ++expDiff; | |
| 3422 | + shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | |
| 3423 | + zExp = bExp; | |
| 3424 | + } | |
| 3425 | + else { | |
| 3426 | + if ( aExp == 0x7FFF ) { | |
| 3427 | + if ( (bits64) ( ( aSig | bSig )<<1 ) ) { | |
| 3428 | + return propagateFloatx80NaN( a, b STATUS_VAR ); | |
| 3429 | + } | |
| 3430 | + return a; | |
| 3431 | + } | |
| 3432 | + zSig1 = 0; | |
| 3433 | + zSig0 = aSig + bSig; | |
| 3434 | + if ( aExp == 0 ) { | |
| 3435 | + normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); | |
| 3436 | + goto roundAndPack; | |
| 3437 | + } | |
| 3438 | + zExp = aExp; | |
| 3439 | + goto shiftRight1; | |
| 3440 | + } | |
| 3441 | + zSig0 = aSig + bSig; | |
| 3442 | + if ( (sbits64) zSig0 < 0 ) goto roundAndPack; | |
| 3443 | + shiftRight1: | |
| 3444 | + shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); | |
| 3445 | + zSig0 |= LIT64( 0x8000000000000000 ); | |
| 3446 | + ++zExp; | |
| 3447 | + roundAndPack: | |
| 3448 | + return | |
| 3449 | + roundAndPackFloatx80( | |
| 3450 | + STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); | |
| 3451 | + | |
| 3452 | +} | |
| 3453 | + | |
| 3454 | +/*---------------------------------------------------------------------------- | |
| 3455 | +| Returns the result of subtracting the absolute values of the extended | |
| 3456 | +| double-precision floating-point values `a' and `b'. If `zSign' is 1, the | |
| 3457 | +| difference is negated before being returned. `zSign' is ignored if the | |
| 3458 | +| result is a NaN. The subtraction is performed according to the IEC/IEEE | |
| 3459 | +| Standard for Binary Floating-Point Arithmetic. | |
| 3460 | +*----------------------------------------------------------------------------*/ | |
| 3461 | + | |
| 3462 | +static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM ) | |
| 3463 | +{ | |
| 3464 | + int32 aExp, bExp, zExp; | |
| 3465 | + bits64 aSig, bSig, zSig0, zSig1; | |
| 3466 | + int32 expDiff; | |
| 3467 | + floatx80 z; | |
| 3468 | + | |
| 3469 | + aSig = extractFloatx80Frac( a ); | |
| 3470 | + aExp = extractFloatx80Exp( a ); | |
| 3471 | + bSig = extractFloatx80Frac( b ); | |
| 3472 | + bExp = extractFloatx80Exp( b ); | |
| 3473 | + expDiff = aExp - bExp; | |
| 3474 | + if ( 0 < expDiff ) goto aExpBigger; | |
| 3475 | + if ( expDiff < 0 ) goto bExpBigger; | |
| 3476 | + if ( aExp == 0x7FFF ) { | |
| 3477 | + if ( (bits64) ( ( aSig | bSig )<<1 ) ) { | |
| 3478 | + return propagateFloatx80NaN( a, b STATUS_VAR ); | |
| 3479 | + } | |
| 3480 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 3481 | + z.low = floatx80_default_nan_low; | |
| 3482 | + z.high = floatx80_default_nan_high; | |
| 3483 | + return z; | |
| 3484 | + } | |
| 3485 | + if ( aExp == 0 ) { | |
| 3486 | + aExp = 1; | |
| 3487 | + bExp = 1; | |
| 3488 | + } | |
| 3489 | + zSig1 = 0; | |
| 3490 | + if ( bSig < aSig ) goto aBigger; | |
| 3491 | + if ( aSig < bSig ) goto bBigger; | |
| 3492 | + return packFloatx80( STATUS(float_rounding_mode) == float_round_down, 0, 0 ); | |
| 3493 | + bExpBigger: | |
| 3494 | + if ( bExp == 0x7FFF ) { | |
| 3495 | + if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | |
| 3496 | + return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
| 3497 | + } | |
| 3498 | + if ( aExp == 0 ) ++expDiff; | |
| 3499 | + shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | |
| 3500 | + bBigger: | |
| 3501 | + sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); | |
| 3502 | + zExp = bExp; | |
| 3503 | + zSign ^= 1; | |
| 3504 | + goto normalizeRoundAndPack; | |
| 3505 | + aExpBigger: | |
| 3506 | + if ( aExp == 0x7FFF ) { | |
| 3507 | + if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | |
| 3508 | + return a; | |
| 3509 | + } | |
| 3510 | + if ( bExp == 0 ) --expDiff; | |
| 3511 | + shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | |
| 3512 | + aBigger: | |
| 3513 | + sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); | |
| 3514 | + zExp = aExp; | |
| 3515 | + normalizeRoundAndPack: | |
| 3516 | + return | |
| 3517 | + normalizeRoundAndPackFloatx80( | |
| 3518 | + STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); | |
| 3519 | + | |
| 3520 | +} | |
| 3521 | + | |
| 3522 | +/*---------------------------------------------------------------------------- | |
| 3523 | +| Returns the result of adding the extended double-precision floating-point | |
| 3524 | +| values `a' and `b'. The operation is performed according to the IEC/IEEE | |
| 3525 | +| Standard for Binary Floating-Point Arithmetic. | |
| 3526 | +*----------------------------------------------------------------------------*/ | |
| 3527 | + | |
| 3528 | +floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM ) | |
| 3529 | +{ | |
| 3530 | + flag aSign, bSign; | |
| 3531 | + | |
| 3532 | + aSign = extractFloatx80Sign( a ); | |
| 3533 | + bSign = extractFloatx80Sign( b ); | |
| 3534 | + if ( aSign == bSign ) { | |
| 3535 | + return addFloatx80Sigs( a, b, aSign STATUS_VAR ); | |
| 3536 | + } | |
| 3537 | + else { | |
| 3538 | + return subFloatx80Sigs( a, b, aSign STATUS_VAR ); | |
| 3539 | + } | |
| 3540 | + | |
| 3541 | +} | |
| 3542 | + | |
| 3543 | +/*---------------------------------------------------------------------------- | |
| 3544 | +| Returns the result of subtracting the extended double-precision floating- | |
| 3545 | +| point values `a' and `b'. The operation is performed according to the | |
| 3546 | +| IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 3547 | +*----------------------------------------------------------------------------*/ | |
| 3548 | + | |
| 3549 | +floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM ) | |
| 3550 | +{ | |
| 3551 | + flag aSign, bSign; | |
| 3552 | + | |
| 3553 | + aSign = extractFloatx80Sign( a ); | |
| 3554 | + bSign = extractFloatx80Sign( b ); | |
| 3555 | + if ( aSign == bSign ) { | |
| 3556 | + return subFloatx80Sigs( a, b, aSign STATUS_VAR ); | |
| 3557 | + } | |
| 3558 | + else { | |
| 3559 | + return addFloatx80Sigs( a, b, aSign STATUS_VAR ); | |
| 3560 | + } | |
| 3561 | + | |
| 3562 | +} | |
| 3563 | + | |
| 3564 | +/*---------------------------------------------------------------------------- | |
| 3565 | +| Returns the result of multiplying the extended double-precision floating- | |
| 3566 | +| point values `a' and `b'. The operation is performed according to the | |
| 3567 | +| IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 3568 | +*----------------------------------------------------------------------------*/ | |
| 3569 | + | |
| 3570 | +floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM ) | |
| 3571 | +{ | |
| 3572 | + flag aSign, bSign, zSign; | |
| 3573 | + int32 aExp, bExp, zExp; | |
| 3574 | + bits64 aSig, bSig, zSig0, zSig1; | |
| 3575 | + floatx80 z; | |
| 3576 | + | |
| 3577 | + aSig = extractFloatx80Frac( a ); | |
| 3578 | + aExp = extractFloatx80Exp( a ); | |
| 3579 | + aSign = extractFloatx80Sign( a ); | |
| 3580 | + bSig = extractFloatx80Frac( b ); | |
| 3581 | + bExp = extractFloatx80Exp( b ); | |
| 3582 | + bSign = extractFloatx80Sign( b ); | |
| 3583 | + zSign = aSign ^ bSign; | |
| 3584 | + if ( aExp == 0x7FFF ) { | |
| 3585 | + if ( (bits64) ( aSig<<1 ) | |
| 3586 | + || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { | |
| 3587 | + return propagateFloatx80NaN( a, b STATUS_VAR ); | |
| 3588 | + } | |
| 3589 | + if ( ( bExp | bSig ) == 0 ) goto invalid; | |
| 3590 | + return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
| 3591 | + } | |
| 3592 | + if ( bExp == 0x7FFF ) { | |
| 3593 | + if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | |
| 3594 | + if ( ( aExp | aSig ) == 0 ) { | |
| 3595 | + invalid: | |
| 3596 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 3597 | + z.low = floatx80_default_nan_low; | |
| 3598 | + z.high = floatx80_default_nan_high; | |
| 3599 | + return z; | |
| 3600 | + } | |
| 3601 | + return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
| 3602 | + } | |
| 3603 | + if ( aExp == 0 ) { | |
| 3604 | + if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
| 3605 | + normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | |
| 3606 | + } | |
| 3607 | + if ( bExp == 0 ) { | |
| 3608 | + if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
| 3609 | + normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
| 3610 | + } | |
| 3611 | + zExp = aExp + bExp - 0x3FFE; | |
| 3612 | + mul64To128( aSig, bSig, &zSig0, &zSig1 ); | |
| 3613 | + if ( 0 < (sbits64) zSig0 ) { | |
| 3614 | + shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); | |
| 3615 | + --zExp; | |
| 3616 | + } | |
| 3617 | + return | |
| 3618 | + roundAndPackFloatx80( | |
| 3619 | + STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); | |
| 3620 | + | |
| 3621 | +} | |
| 3622 | + | |
| 3623 | +/*---------------------------------------------------------------------------- | |
| 3624 | +| Returns the result of dividing the extended double-precision floating-point | |
| 3625 | +| value `a' by the corresponding value `b'. The operation is performed | |
| 3626 | +| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 3627 | +*----------------------------------------------------------------------------*/ | |
| 3628 | + | |
| 3629 | +floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM ) | |
| 3630 | +{ | |
| 3631 | + flag aSign, bSign, zSign; | |
| 3632 | + int32 aExp, bExp, zExp; | |
| 3633 | + bits64 aSig, bSig, zSig0, zSig1; | |
| 3634 | + bits64 rem0, rem1, rem2, term0, term1, term2; | |
| 3635 | + floatx80 z; | |
| 3636 | + | |
| 3637 | + aSig = extractFloatx80Frac( a ); | |
| 3638 | + aExp = extractFloatx80Exp( a ); | |
| 3639 | + aSign = extractFloatx80Sign( a ); | |
| 3640 | + bSig = extractFloatx80Frac( b ); | |
| 3641 | + bExp = extractFloatx80Exp( b ); | |
| 3642 | + bSign = extractFloatx80Sign( b ); | |
| 3643 | + zSign = aSign ^ bSign; | |
| 3644 | + if ( aExp == 0x7FFF ) { | |
| 3645 | + if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | |
| 3646 | + if ( bExp == 0x7FFF ) { | |
| 3647 | + if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | |
| 3648 | + goto invalid; | |
| 3649 | + } | |
| 3650 | + return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
| 3651 | + } | |
| 3652 | + if ( bExp == 0x7FFF ) { | |
| 3653 | + if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | |
| 3654 | + return packFloatx80( zSign, 0, 0 ); | |
| 3655 | + } | |
| 3656 | + if ( bExp == 0 ) { | |
| 3657 | + if ( bSig == 0 ) { | |
| 3658 | + if ( ( aExp | aSig ) == 0 ) { | |
| 3659 | + invalid: | |
| 3660 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 3661 | + z.low = floatx80_default_nan_low; | |
| 3662 | + z.high = floatx80_default_nan_high; | |
| 3663 | + return z; | |
| 3664 | + } | |
| 3665 | + float_raise( float_flag_divbyzero STATUS_VAR); | |
| 3666 | + return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
| 3667 | + } | |
| 3668 | + normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
| 3669 | + } | |
| 3670 | + if ( aExp == 0 ) { | |
| 3671 | + if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
| 3672 | + normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | |
| 3673 | + } | |
| 3674 | + zExp = aExp - bExp + 0x3FFE; | |
| 3675 | + rem1 = 0; | |
| 3676 | + if ( bSig <= aSig ) { | |
| 3677 | + shift128Right( aSig, 0, 1, &aSig, &rem1 ); | |
| 3678 | + ++zExp; | |
| 3679 | + } | |
| 3680 | + zSig0 = estimateDiv128To64( aSig, rem1, bSig ); | |
| 3681 | + mul64To128( bSig, zSig0, &term0, &term1 ); | |
| 3682 | + sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); | |
| 3683 | + while ( (sbits64) rem0 < 0 ) { | |
| 3684 | + --zSig0; | |
| 3685 | + add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); | |
| 3686 | + } | |
| 3687 | + zSig1 = estimateDiv128To64( rem1, 0, bSig ); | |
| 3688 | + if ( (bits64) ( zSig1<<1 ) <= 8 ) { | |
| 3689 | + mul64To128( bSig, zSig1, &term1, &term2 ); | |
| 3690 | + sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
| 3691 | + while ( (sbits64) rem1 < 0 ) { | |
| 3692 | + --zSig1; | |
| 3693 | + add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); | |
| 3694 | + } | |
| 3695 | + zSig1 |= ( ( rem1 | rem2 ) != 0 ); | |
| 3696 | + } | |
| 3697 | + return | |
| 3698 | + roundAndPackFloatx80( | |
| 3699 | + STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); | |
| 3700 | + | |
| 3701 | +} | |
| 3702 | + | |
| 3703 | +/*---------------------------------------------------------------------------- | |
| 3704 | +| Returns the remainder of the extended double-precision floating-point value | |
| 3705 | +| `a' with respect to the corresponding value `b'. The operation is performed | |
| 3706 | +| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 3707 | +*----------------------------------------------------------------------------*/ | |
| 3708 | + | |
| 3709 | +floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM ) | |
| 3710 | +{ | |
| 3711 | + flag aSign, bSign, zSign; | |
| 3712 | + int32 aExp, bExp, expDiff; | |
| 3713 | + bits64 aSig0, aSig1, bSig; | |
| 3714 | + bits64 q, term0, term1, alternateASig0, alternateASig1; | |
| 3715 | + floatx80 z; | |
| 3716 | + | |
| 3717 | + aSig0 = extractFloatx80Frac( a ); | |
| 3718 | + aExp = extractFloatx80Exp( a ); | |
| 3719 | + aSign = extractFloatx80Sign( a ); | |
| 3720 | + bSig = extractFloatx80Frac( b ); | |
| 3721 | + bExp = extractFloatx80Exp( b ); | |
| 3722 | + bSign = extractFloatx80Sign( b ); | |
| 3723 | + if ( aExp == 0x7FFF ) { | |
| 3724 | + if ( (bits64) ( aSig0<<1 ) | |
| 3725 | + || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { | |
| 3726 | + return propagateFloatx80NaN( a, b STATUS_VAR ); | |
| 3727 | + } | |
| 3728 | + goto invalid; | |
| 3729 | + } | |
| 3730 | + if ( bExp == 0x7FFF ) { | |
| 3731 | + if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | |
| 3732 | + return a; | |
| 3733 | + } | |
| 3734 | + if ( bExp == 0 ) { | |
| 3735 | + if ( bSig == 0 ) { | |
| 3736 | + invalid: | |
| 3737 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 3738 | + z.low = floatx80_default_nan_low; | |
| 3739 | + z.high = floatx80_default_nan_high; | |
| 3740 | + return z; | |
| 3741 | + } | |
| 3742 | + normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
| 3743 | + } | |
| 3744 | + if ( aExp == 0 ) { | |
| 3745 | + if ( (bits64) ( aSig0<<1 ) == 0 ) return a; | |
| 3746 | + normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); | |
| 3747 | + } | |
| 3748 | + bSig |= LIT64( 0x8000000000000000 ); | |
| 3749 | + zSign = aSign; | |
| 3750 | + expDiff = aExp - bExp; | |
| 3751 | + aSig1 = 0; | |
| 3752 | + if ( expDiff < 0 ) { | |
| 3753 | + if ( expDiff < -1 ) return a; | |
| 3754 | + shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); | |
| 3755 | + expDiff = 0; | |
| 3756 | + } | |
| 3757 | + q = ( bSig <= aSig0 ); | |
| 3758 | + if ( q ) aSig0 -= bSig; | |
| 3759 | + expDiff -= 64; | |
| 3760 | + while ( 0 < expDiff ) { | |
| 3761 | + q = estimateDiv128To64( aSig0, aSig1, bSig ); | |
| 3762 | + q = ( 2 < q ) ? q - 2 : 0; | |
| 3763 | + mul64To128( bSig, q, &term0, &term1 ); | |
| 3764 | + sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
| 3765 | + shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); | |
| 3766 | + expDiff -= 62; | |
| 3767 | + } | |
| 3768 | + expDiff += 64; | |
| 3769 | + if ( 0 < expDiff ) { | |
| 3770 | + q = estimateDiv128To64( aSig0, aSig1, bSig ); | |
| 3771 | + q = ( 2 < q ) ? q - 2 : 0; | |
| 3772 | + q >>= 64 - expDiff; | |
| 3773 | + mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); | |
| 3774 | + sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
| 3775 | + shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); | |
| 3776 | + while ( le128( term0, term1, aSig0, aSig1 ) ) { | |
| 3777 | + ++q; | |
| 3778 | + sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
| 3779 | + } | |
| 3780 | + } | |
| 3781 | + else { | |
| 3782 | + term1 = 0; | |
| 3783 | + term0 = bSig; | |
| 3784 | + } | |
| 3785 | + sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); | |
| 3786 | + if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) | |
| 3787 | + || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) | |
| 3788 | + && ( q & 1 ) ) | |
| 3789 | + ) { | |
| 3790 | + aSig0 = alternateASig0; | |
| 3791 | + aSig1 = alternateASig1; | |
| 3792 | + zSign = ! zSign; | |
| 3793 | + } | |
| 3794 | + return | |
| 3795 | + normalizeRoundAndPackFloatx80( | |
| 3796 | + 80, zSign, bExp + expDiff, aSig0, aSig1 STATUS_VAR ); | |
| 3797 | + | |
| 3798 | +} | |
| 3799 | + | |
| 3800 | +/*---------------------------------------------------------------------------- | |
| 3801 | +| Returns the square root of the extended double-precision floating-point | |
| 3802 | +| value `a'. The operation is performed according to the IEC/IEEE Standard | |
| 3803 | +| for Binary Floating-Point Arithmetic. | |
| 3804 | +*----------------------------------------------------------------------------*/ | |
| 3805 | + | |
| 3806 | +floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM ) | |
| 3807 | +{ | |
| 3808 | + flag aSign; | |
| 3809 | + int32 aExp, zExp; | |
| 3810 | + bits64 aSig0, aSig1, zSig0, zSig1, doubleZSig0; | |
| 3811 | + bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
| 3812 | + floatx80 z; | |
| 3813 | + | |
| 3814 | + aSig0 = extractFloatx80Frac( a ); | |
| 3815 | + aExp = extractFloatx80Exp( a ); | |
| 3816 | + aSign = extractFloatx80Sign( a ); | |
| 3817 | + if ( aExp == 0x7FFF ) { | |
| 3818 | + if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a STATUS_VAR ); | |
| 3819 | + if ( ! aSign ) return a; | |
| 3820 | + goto invalid; | |
| 3821 | + } | |
| 3822 | + if ( aSign ) { | |
| 3823 | + if ( ( aExp | aSig0 ) == 0 ) return a; | |
| 3824 | + invalid: | |
| 3825 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 3826 | + z.low = floatx80_default_nan_low; | |
| 3827 | + z.high = floatx80_default_nan_high; | |
| 3828 | + return z; | |
| 3829 | + } | |
| 3830 | + if ( aExp == 0 ) { | |
| 3831 | + if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); | |
| 3832 | + normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); | |
| 3833 | + } | |
| 3834 | + zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; | |
| 3835 | + zSig0 = estimateSqrt32( aExp, aSig0>>32 ); | |
| 3836 | + shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 ); | |
| 3837 | + zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); | |
| 3838 | + doubleZSig0 = zSig0<<1; | |
| 3839 | + mul64To128( zSig0, zSig0, &term0, &term1 ); | |
| 3840 | + sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); | |
| 3841 | + while ( (sbits64) rem0 < 0 ) { | |
| 3842 | + --zSig0; | |
| 3843 | + doubleZSig0 -= 2; | |
| 3844 | + add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); | |
| 3845 | + } | |
| 3846 | + zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); | |
| 3847 | + if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) { | |
| 3848 | + if ( zSig1 == 0 ) zSig1 = 1; | |
| 3849 | + mul64To128( doubleZSig0, zSig1, &term1, &term2 ); | |
| 3850 | + sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
| 3851 | + mul64To128( zSig1, zSig1, &term2, &term3 ); | |
| 3852 | + sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
| 3853 | + while ( (sbits64) rem1 < 0 ) { | |
| 3854 | + --zSig1; | |
| 3855 | + shortShift128Left( 0, zSig1, 1, &term2, &term3 ); | |
| 3856 | + term3 |= 1; | |
| 3857 | + term2 |= doubleZSig0; | |
| 3858 | + add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
| 3859 | + } | |
| 3860 | + zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
| 3861 | + } | |
| 3862 | + shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 ); | |
| 3863 | + zSig0 |= doubleZSig0; | |
| 3864 | + return | |
| 3865 | + roundAndPackFloatx80( | |
| 3866 | + STATUS(floatx80_rounding_precision), 0, zExp, zSig0, zSig1 STATUS_VAR ); | |
| 3867 | + | |
| 3868 | +} | |
| 3869 | + | |
| 3870 | +/*---------------------------------------------------------------------------- | |
| 3871 | +| Returns 1 if the extended double-precision floating-point value `a' is | |
| 3872 | +| equal to the corresponding value `b', and 0 otherwise. The comparison is | |
| 3873 | +| performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 3874 | +| Arithmetic. | |
| 3875 | +*----------------------------------------------------------------------------*/ | |
| 3876 | + | |
| 3877 | +flag floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM ) | |
| 3878 | +{ | |
| 3879 | + | |
| 3880 | + if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
| 3881 | + && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | |
| 3882 | + || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
| 3883 | + && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | |
| 3884 | + ) { | |
| 3885 | + if ( floatx80_is_signaling_nan( a ) | |
| 3886 | + || floatx80_is_signaling_nan( b ) ) { | |
| 3887 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 3888 | + } | |
| 3889 | + return 0; | |
| 3890 | + } | |
| 3891 | + return | |
| 3892 | + ( a.low == b.low ) | |
| 3893 | + && ( ( a.high == b.high ) | |
| 3894 | + || ( ( a.low == 0 ) | |
| 3895 | + && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) | |
| 3896 | + ); | |
| 3897 | + | |
| 3898 | +} | |
| 3899 | + | |
| 3900 | +/*---------------------------------------------------------------------------- | |
| 3901 | +| Returns 1 if the extended double-precision floating-point value `a' is | |
| 3902 | +| less than or equal to the corresponding value `b', and 0 otherwise. The | |
| 3903 | +| comparison is performed according to the IEC/IEEE Standard for Binary | |
| 3904 | +| Floating-Point Arithmetic. | |
| 3905 | +*----------------------------------------------------------------------------*/ | |
| 3906 | + | |
| 3907 | +flag floatx80_le( floatx80 a, floatx80 b STATUS_PARAM ) | |
| 3908 | +{ | |
| 3909 | + flag aSign, bSign; | |
| 3910 | + | |
| 3911 | + if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
| 3912 | + && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | |
| 3913 | + || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
| 3914 | + && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | |
| 3915 | + ) { | |
| 3916 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 3917 | + return 0; | |
| 3918 | + } | |
| 3919 | + aSign = extractFloatx80Sign( a ); | |
| 3920 | + bSign = extractFloatx80Sign( b ); | |
| 3921 | + if ( aSign != bSign ) { | |
| 3922 | + return | |
| 3923 | + aSign | |
| 3924 | + || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | |
| 3925 | + == 0 ); | |
| 3926 | + } | |
| 3927 | + return | |
| 3928 | + aSign ? le128( b.high, b.low, a.high, a.low ) | |
| 3929 | + : le128( a.high, a.low, b.high, b.low ); | |
| 3930 | + | |
| 3931 | +} | |
| 3932 | + | |
| 3933 | +/*---------------------------------------------------------------------------- | |
| 3934 | +| Returns 1 if the extended double-precision floating-point value `a' is | |
| 3935 | +| less than the corresponding value `b', and 0 otherwise. The comparison | |
| 3936 | +| is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 3937 | +| Arithmetic. | |
| 3938 | +*----------------------------------------------------------------------------*/ | |
| 3939 | + | |
| 3940 | +flag floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM ) | |
| 3941 | +{ | |
| 3942 | + flag aSign, bSign; | |
| 3943 | + | |
| 3944 | + if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
| 3945 | + && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | |
| 3946 | + || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
| 3947 | + && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | |
| 3948 | + ) { | |
| 3949 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 3950 | + return 0; | |
| 3951 | + } | |
| 3952 | + aSign = extractFloatx80Sign( a ); | |
| 3953 | + bSign = extractFloatx80Sign( b ); | |
| 3954 | + if ( aSign != bSign ) { | |
| 3955 | + return | |
| 3956 | + aSign | |
| 3957 | + && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | |
| 3958 | + != 0 ); | |
| 3959 | + } | |
| 3960 | + return | |
| 3961 | + aSign ? lt128( b.high, b.low, a.high, a.low ) | |
| 3962 | + : lt128( a.high, a.low, b.high, b.low ); | |
| 3963 | + | |
| 3964 | +} | |
| 3965 | + | |
| 3966 | +/*---------------------------------------------------------------------------- | |
| 3967 | +| Returns 1 if the extended double-precision floating-point value `a' is equal | |
| 3968 | +| to the corresponding value `b', and 0 otherwise. The invalid exception is | |
| 3969 | +| raised if either operand is a NaN. Otherwise, the comparison is performed | |
| 3970 | +| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 3971 | +*----------------------------------------------------------------------------*/ | |
| 3972 | + | |
| 3973 | +flag floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM ) | |
| 3974 | +{ | |
| 3975 | + | |
| 3976 | + if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
| 3977 | + && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | |
| 3978 | + || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
| 3979 | + && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | |
| 3980 | + ) { | |
| 3981 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 3982 | + return 0; | |
| 3983 | + } | |
| 3984 | + return | |
| 3985 | + ( a.low == b.low ) | |
| 3986 | + && ( ( a.high == b.high ) | |
| 3987 | + || ( ( a.low == 0 ) | |
| 3988 | + && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) | |
| 3989 | + ); | |
| 3990 | + | |
| 3991 | +} | |
| 3992 | + | |
| 3993 | +/*---------------------------------------------------------------------------- | |
| 3994 | +| Returns 1 if the extended double-precision floating-point value `a' is less | |
| 3995 | +| than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs | |
| 3996 | +| do not cause an exception. Otherwise, the comparison is performed according | |
| 3997 | +| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 3998 | +*----------------------------------------------------------------------------*/ | |
| 3999 | + | |
| 4000 | +flag floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM ) | |
| 4001 | +{ | |
| 4002 | + flag aSign, bSign; | |
| 4003 | + | |
| 4004 | + if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
| 4005 | + && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | |
| 4006 | + || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
| 4007 | + && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | |
| 4008 | + ) { | |
| 4009 | + if ( floatx80_is_signaling_nan( a ) | |
| 4010 | + || floatx80_is_signaling_nan( b ) ) { | |
| 4011 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 4012 | + } | |
| 4013 | + return 0; | |
| 4014 | + } | |
| 4015 | + aSign = extractFloatx80Sign( a ); | |
| 4016 | + bSign = extractFloatx80Sign( b ); | |
| 4017 | + if ( aSign != bSign ) { | |
| 4018 | + return | |
| 4019 | + aSign | |
| 4020 | + || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | |
| 4021 | + == 0 ); | |
| 4022 | + } | |
| 4023 | + return | |
| 4024 | + aSign ? le128( b.high, b.low, a.high, a.low ) | |
| 4025 | + : le128( a.high, a.low, b.high, b.low ); | |
| 4026 | + | |
| 4027 | +} | |
| 4028 | + | |
| 4029 | +/*---------------------------------------------------------------------------- | |
| 4030 | +| Returns 1 if the extended double-precision floating-point value `a' is less | |
| 4031 | +| than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause | |
| 4032 | +| an exception. Otherwise, the comparison is performed according to the | |
| 4033 | +| IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 4034 | +*----------------------------------------------------------------------------*/ | |
| 4035 | + | |
| 4036 | +flag floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM ) | |
| 4037 | +{ | |
| 4038 | + flag aSign, bSign; | |
| 4039 | + | |
| 4040 | + if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
| 4041 | + && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | |
| 4042 | + || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
| 4043 | + && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | |
| 4044 | + ) { | |
| 4045 | + if ( floatx80_is_signaling_nan( a ) | |
| 4046 | + || floatx80_is_signaling_nan( b ) ) { | |
| 4047 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 4048 | + } | |
| 4049 | + return 0; | |
| 4050 | + } | |
| 4051 | + aSign = extractFloatx80Sign( a ); | |
| 4052 | + bSign = extractFloatx80Sign( b ); | |
| 4053 | + if ( aSign != bSign ) { | |
| 4054 | + return | |
| 4055 | + aSign | |
| 4056 | + && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | |
| 4057 | + != 0 ); | |
| 4058 | + } | |
| 4059 | + return | |
| 4060 | + aSign ? lt128( b.high, b.low, a.high, a.low ) | |
| 4061 | + : lt128( a.high, a.low, b.high, b.low ); | |
| 4062 | + | |
| 4063 | +} | |
| 4064 | + | |
| 4065 | +#endif | |
| 4066 | + | |
| 4067 | +#ifdef FLOAT128 | |
| 4068 | + | |
| 4069 | +/*---------------------------------------------------------------------------- | |
| 4070 | +| Returns the result of converting the quadruple-precision floating-point | |
| 4071 | +| value `a' to the 32-bit two's complement integer format. The conversion | |
| 4072 | +| is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 4073 | +| Arithmetic---which means in particular that the conversion is rounded | |
| 4074 | +| according to the current rounding mode. If `a' is a NaN, the largest | |
| 4075 | +| positive integer is returned. Otherwise, if the conversion overflows, the | |
| 4076 | +| largest integer with the same sign as `a' is returned. | |
| 4077 | +*----------------------------------------------------------------------------*/ | |
| 4078 | + | |
| 4079 | +int32 float128_to_int32( float128 a STATUS_PARAM ) | |
| 4080 | +{ | |
| 4081 | + flag aSign; | |
| 4082 | + int32 aExp, shiftCount; | |
| 4083 | + bits64 aSig0, aSig1; | |
| 4084 | + | |
| 4085 | + aSig1 = extractFloat128Frac1( a ); | |
| 4086 | + aSig0 = extractFloat128Frac0( a ); | |
| 4087 | + aExp = extractFloat128Exp( a ); | |
| 4088 | + aSign = extractFloat128Sign( a ); | |
| 4089 | + if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0; | |
| 4090 | + if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
| 4091 | + aSig0 |= ( aSig1 != 0 ); | |
| 4092 | + shiftCount = 0x4028 - aExp; | |
| 4093 | + if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 ); | |
| 4094 | + return roundAndPackInt32( aSign, aSig0 STATUS_VAR ); | |
| 4095 | + | |
| 4096 | +} | |
| 4097 | + | |
| 4098 | +/*---------------------------------------------------------------------------- | |
| 4099 | +| Returns the result of converting the quadruple-precision floating-point | |
| 4100 | +| value `a' to the 32-bit two's complement integer format. The conversion | |
| 4101 | +| is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 4102 | +| Arithmetic, except that the conversion is always rounded toward zero. If | |
| 4103 | +| `a' is a NaN, the largest positive integer is returned. Otherwise, if the | |
| 4104 | +| conversion overflows, the largest integer with the same sign as `a' is | |
| 4105 | +| returned. | |
| 4106 | +*----------------------------------------------------------------------------*/ | |
| 4107 | + | |
| 4108 | +int32 float128_to_int32_round_to_zero( float128 a STATUS_PARAM ) | |
| 4109 | +{ | |
| 4110 | + flag aSign; | |
| 4111 | + int32 aExp, shiftCount; | |
| 4112 | + bits64 aSig0, aSig1, savedASig; | |
| 4113 | + int32 z; | |
| 4114 | + | |
| 4115 | + aSig1 = extractFloat128Frac1( a ); | |
| 4116 | + aSig0 = extractFloat128Frac0( a ); | |
| 4117 | + aExp = extractFloat128Exp( a ); | |
| 4118 | + aSign = extractFloat128Sign( a ); | |
| 4119 | + aSig0 |= ( aSig1 != 0 ); | |
| 4120 | + if ( 0x401E < aExp ) { | |
| 4121 | + if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0; | |
| 4122 | + goto invalid; | |
| 4123 | + } | |
| 4124 | + else if ( aExp < 0x3FFF ) { | |
| 4125 | + if ( aExp || aSig0 ) STATUS(float_exception_flags) |= float_flag_inexact; | |
| 4126 | + return 0; | |
| 4127 | + } | |
| 4128 | + aSig0 |= LIT64( 0x0001000000000000 ); | |
| 4129 | + shiftCount = 0x402F - aExp; | |
| 4130 | + savedASig = aSig0; | |
| 4131 | + aSig0 >>= shiftCount; | |
| 4132 | + z = aSig0; | |
| 4133 | + if ( aSign ) z = - z; | |
| 4134 | + if ( ( z < 0 ) ^ aSign ) { | |
| 4135 | + invalid: | |
| 4136 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 4137 | + return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; | |
| 4138 | + } | |
| 4139 | + if ( ( aSig0<<shiftCount ) != savedASig ) { | |
| 4140 | + STATUS(float_exception_flags) |= float_flag_inexact; | |
| 4141 | + } | |
| 4142 | + return z; | |
| 4143 | + | |
| 4144 | +} | |
| 4145 | + | |
| 4146 | +/*---------------------------------------------------------------------------- | |
| 4147 | +| Returns the result of converting the quadruple-precision floating-point | |
| 4148 | +| value `a' to the 64-bit two's complement integer format. The conversion | |
| 4149 | +| is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 4150 | +| Arithmetic---which means in particular that the conversion is rounded | |
| 4151 | +| according to the current rounding mode. If `a' is a NaN, the largest | |
| 4152 | +| positive integer is returned. Otherwise, if the conversion overflows, the | |
| 4153 | +| largest integer with the same sign as `a' is returned. | |
| 4154 | +*----------------------------------------------------------------------------*/ | |
| 4155 | + | |
| 4156 | +int64 float128_to_int64( float128 a STATUS_PARAM ) | |
| 4157 | +{ | |
| 4158 | + flag aSign; | |
| 4159 | + int32 aExp, shiftCount; | |
| 4160 | + bits64 aSig0, aSig1; | |
| 4161 | + | |
| 4162 | + aSig1 = extractFloat128Frac1( a ); | |
| 4163 | + aSig0 = extractFloat128Frac0( a ); | |
| 4164 | + aExp = extractFloat128Exp( a ); | |
| 4165 | + aSign = extractFloat128Sign( a ); | |
| 4166 | + if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
| 4167 | + shiftCount = 0x402F - aExp; | |
| 4168 | + if ( shiftCount <= 0 ) { | |
| 4169 | + if ( 0x403E < aExp ) { | |
| 4170 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 4171 | + if ( ! aSign | |
| 4172 | + || ( ( aExp == 0x7FFF ) | |
| 4173 | + && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) ) | |
| 4174 | + ) | |
| 4175 | + ) { | |
| 4176 | + return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
| 4177 | + } | |
| 4178 | + return (sbits64) LIT64( 0x8000000000000000 ); | |
| 4179 | + } | |
| 4180 | + shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 ); | |
| 4181 | + } | |
| 4182 | + else { | |
| 4183 | + shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 ); | |
| 4184 | + } | |
| 4185 | + return roundAndPackInt64( aSign, aSig0, aSig1 STATUS_VAR ); | |
| 4186 | + | |
| 4187 | +} | |
| 4188 | + | |
| 4189 | +/*---------------------------------------------------------------------------- | |
| 4190 | +| Returns the result of converting the quadruple-precision floating-point | |
| 4191 | +| value `a' to the 64-bit two's complement integer format. The conversion | |
| 4192 | +| is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 4193 | +| Arithmetic, except that the conversion is always rounded toward zero. | |
| 4194 | +| If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
| 4195 | +| the conversion overflows, the largest integer with the same sign as `a' is | |
| 4196 | +| returned. | |
| 4197 | +*----------------------------------------------------------------------------*/ | |
| 4198 | + | |
| 4199 | +int64 float128_to_int64_round_to_zero( float128 a STATUS_PARAM ) | |
| 4200 | +{ | |
| 4201 | + flag aSign; | |
| 4202 | + int32 aExp, shiftCount; | |
| 4203 | + bits64 aSig0, aSig1; | |
| 4204 | + int64 z; | |
| 4205 | + | |
| 4206 | + aSig1 = extractFloat128Frac1( a ); | |
| 4207 | + aSig0 = extractFloat128Frac0( a ); | |
| 4208 | + aExp = extractFloat128Exp( a ); | |
| 4209 | + aSign = extractFloat128Sign( a ); | |
| 4210 | + if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
| 4211 | + shiftCount = aExp - 0x402F; | |
| 4212 | + if ( 0 < shiftCount ) { | |
| 4213 | + if ( 0x403E <= aExp ) { | |
| 4214 | + aSig0 &= LIT64( 0x0000FFFFFFFFFFFF ); | |
| 4215 | + if ( ( a.high == LIT64( 0xC03E000000000000 ) ) | |
| 4216 | + && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) { | |
| 4217 | + if ( aSig1 ) STATUS(float_exception_flags) |= float_flag_inexact; | |
| 4218 | + } | |
| 4219 | + else { | |
| 4220 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 4221 | + if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) { | |
| 4222 | + return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
| 4223 | + } | |
| 4224 | + } | |
| 4225 | + return (sbits64) LIT64( 0x8000000000000000 ); | |
| 4226 | + } | |
| 4227 | + z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) ); | |
| 4228 | + if ( (bits64) ( aSig1<<shiftCount ) ) { | |
| 4229 | + STATUS(float_exception_flags) |= float_flag_inexact; | |
| 4230 | + } | |
| 4231 | + } | |
| 4232 | + else { | |
| 4233 | + if ( aExp < 0x3FFF ) { | |
| 4234 | + if ( aExp | aSig0 | aSig1 ) { | |
| 4235 | + STATUS(float_exception_flags) |= float_flag_inexact; | |
| 4236 | + } | |
| 4237 | + return 0; | |
| 4238 | + } | |
| 4239 | + z = aSig0>>( - shiftCount ); | |
| 4240 | + if ( aSig1 | |
| 4241 | + || ( shiftCount && (bits64) ( aSig0<<( shiftCount & 63 ) ) ) ) { | |
| 4242 | + STATUS(float_exception_flags) |= float_flag_inexact; | |
| 4243 | + } | |
| 4244 | + } | |
| 4245 | + if ( aSign ) z = - z; | |
| 4246 | + return z; | |
| 4247 | + | |
| 4248 | +} | |
| 4249 | + | |
| 4250 | +/*---------------------------------------------------------------------------- | |
| 4251 | +| Returns the result of converting the quadruple-precision floating-point | |
| 4252 | +| value `a' to the single-precision floating-point format. The conversion | |
| 4253 | +| is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 4254 | +| Arithmetic. | |
| 4255 | +*----------------------------------------------------------------------------*/ | |
| 4256 | + | |
| 4257 | +float32 float128_to_float32( float128 a STATUS_PARAM ) | |
| 4258 | +{ | |
| 4259 | + flag aSign; | |
| 4260 | + int32 aExp; | |
| 4261 | + bits64 aSig0, aSig1; | |
| 4262 | + bits32 zSig; | |
| 4263 | + | |
| 4264 | + aSig1 = extractFloat128Frac1( a ); | |
| 4265 | + aSig0 = extractFloat128Frac0( a ); | |
| 4266 | + aExp = extractFloat128Exp( a ); | |
| 4267 | + aSign = extractFloat128Sign( a ); | |
| 4268 | + if ( aExp == 0x7FFF ) { | |
| 4269 | + if ( aSig0 | aSig1 ) { | |
| 4270 | + return commonNaNToFloat32( float128ToCommonNaN( a STATUS_VAR ) ); | |
| 4271 | + } | |
| 4272 | + return packFloat32( aSign, 0xFF, 0 ); | |
| 4273 | + } | |
| 4274 | + aSig0 |= ( aSig1 != 0 ); | |
| 4275 | + shift64RightJamming( aSig0, 18, &aSig0 ); | |
| 4276 | + zSig = aSig0; | |
| 4277 | + if ( aExp || zSig ) { | |
| 4278 | + zSig |= 0x40000000; | |
| 4279 | + aExp -= 0x3F81; | |
| 4280 | + } | |
| 4281 | + return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR ); | |
| 4282 | + | |
| 4283 | +} | |
| 4284 | + | |
| 4285 | +/*---------------------------------------------------------------------------- | |
| 4286 | +| Returns the result of converting the quadruple-precision floating-point | |
| 4287 | +| value `a' to the double-precision floating-point format. The conversion | |
| 4288 | +| is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 4289 | +| Arithmetic. | |
| 4290 | +*----------------------------------------------------------------------------*/ | |
| 4291 | + | |
| 4292 | +float64 float128_to_float64( float128 a STATUS_PARAM ) | |
| 4293 | +{ | |
| 4294 | + flag aSign; | |
| 4295 | + int32 aExp; | |
| 4296 | + bits64 aSig0, aSig1; | |
| 4297 | + | |
| 4298 | + aSig1 = extractFloat128Frac1( a ); | |
| 4299 | + aSig0 = extractFloat128Frac0( a ); | |
| 4300 | + aExp = extractFloat128Exp( a ); | |
| 4301 | + aSign = extractFloat128Sign( a ); | |
| 4302 | + if ( aExp == 0x7FFF ) { | |
| 4303 | + if ( aSig0 | aSig1 ) { | |
| 4304 | + return commonNaNToFloat64( float128ToCommonNaN( a STATUS_VAR ) ); | |
| 4305 | + } | |
| 4306 | + return packFloat64( aSign, 0x7FF, 0 ); | |
| 4307 | + } | |
| 4308 | + shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); | |
| 4309 | + aSig0 |= ( aSig1 != 0 ); | |
| 4310 | + if ( aExp || aSig0 ) { | |
| 4311 | + aSig0 |= LIT64( 0x4000000000000000 ); | |
| 4312 | + aExp -= 0x3C01; | |
| 4313 | + } | |
| 4314 | + return roundAndPackFloat64( aSign, aExp, aSig0 STATUS_VAR ); | |
| 4315 | + | |
| 4316 | +} | |
| 4317 | + | |
| 4318 | +#ifdef FLOATX80 | |
| 4319 | + | |
| 4320 | +/*---------------------------------------------------------------------------- | |
| 4321 | +| Returns the result of converting the quadruple-precision floating-point | |
| 4322 | +| value `a' to the extended double-precision floating-point format. The | |
| 4323 | +| conversion is performed according to the IEC/IEEE Standard for Binary | |
| 4324 | +| Floating-Point Arithmetic. | |
| 4325 | +*----------------------------------------------------------------------------*/ | |
| 4326 | + | |
| 4327 | +floatx80 float128_to_floatx80( float128 a STATUS_PARAM ) | |
| 4328 | +{ | |
| 4329 | + flag aSign; | |
| 4330 | + int32 aExp; | |
| 4331 | + bits64 aSig0, aSig1; | |
| 4332 | + | |
| 4333 | + aSig1 = extractFloat128Frac1( a ); | |
| 4334 | + aSig0 = extractFloat128Frac0( a ); | |
| 4335 | + aExp = extractFloat128Exp( a ); | |
| 4336 | + aSign = extractFloat128Sign( a ); | |
| 4337 | + if ( aExp == 0x7FFF ) { | |
| 4338 | + if ( aSig0 | aSig1 ) { | |
| 4339 | + return commonNaNToFloatx80( float128ToCommonNaN( a STATUS_VAR ) ); | |
| 4340 | + } | |
| 4341 | + return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
| 4342 | + } | |
| 4343 | + if ( aExp == 0 ) { | |
| 4344 | + if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 ); | |
| 4345 | + normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
| 4346 | + } | |
| 4347 | + else { | |
| 4348 | + aSig0 |= LIT64( 0x0001000000000000 ); | |
| 4349 | + } | |
| 4350 | + shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 ); | |
| 4351 | + return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 STATUS_VAR ); | |
| 4352 | + | |
| 4353 | +} | |
| 4354 | + | |
| 4355 | +#endif | |
| 4356 | + | |
| 4357 | +/*---------------------------------------------------------------------------- | |
| 4358 | +| Rounds the quadruple-precision floating-point value `a' to an integer, and | |
| 4359 | +| returns the result as a quadruple-precision floating-point value. The | |
| 4360 | +| operation is performed according to the IEC/IEEE Standard for Binary | |
| 4361 | +| Floating-Point Arithmetic. | |
| 4362 | +*----------------------------------------------------------------------------*/ | |
| 4363 | + | |
| 4364 | +float128 float128_round_to_int( float128 a STATUS_PARAM ) | |
| 4365 | +{ | |
| 4366 | + flag aSign; | |
| 4367 | + int32 aExp; | |
| 4368 | + bits64 lastBitMask, roundBitsMask; | |
| 4369 | + int8 roundingMode; | |
| 4370 | + float128 z; | |
| 4371 | + | |
| 4372 | + aExp = extractFloat128Exp( a ); | |
| 4373 | + if ( 0x402F <= aExp ) { | |
| 4374 | + if ( 0x406F <= aExp ) { | |
| 4375 | + if ( ( aExp == 0x7FFF ) | |
| 4376 | + && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) | |
| 4377 | + ) { | |
| 4378 | + return propagateFloat128NaN( a, a STATUS_VAR ); | |
| 4379 | + } | |
| 4380 | + return a; | |
| 4381 | + } | |
| 4382 | + lastBitMask = 1; | |
| 4383 | + lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1; | |
| 4384 | + roundBitsMask = lastBitMask - 1; | |
| 4385 | + z = a; | |
| 4386 | + roundingMode = STATUS(float_rounding_mode); | |
| 4387 | + if ( roundingMode == float_round_nearest_even ) { | |
| 4388 | + if ( lastBitMask ) { | |
| 4389 | + add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low ); | |
| 4390 | + if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; | |
| 4391 | + } | |
| 4392 | + else { | |
| 4393 | + if ( (sbits64) z.low < 0 ) { | |
| 4394 | + ++z.high; | |
| 4395 | + if ( (bits64) ( z.low<<1 ) == 0 ) z.high &= ~1; | |
| 4396 | + } | |
| 4397 | + } | |
| 4398 | + } | |
| 4399 | + else if ( roundingMode != float_round_to_zero ) { | |
| 4400 | + if ( extractFloat128Sign( z ) | |
| 4401 | + ^ ( roundingMode == float_round_up ) ) { | |
| 4402 | + add128( z.high, z.low, 0, roundBitsMask, &z.high, &z.low ); | |
| 4403 | + } | |
| 4404 | + } | |
| 4405 | + z.low &= ~ roundBitsMask; | |
| 4406 | + } | |
| 4407 | + else { | |
| 4408 | + if ( aExp < 0x3FFF ) { | |
| 4409 | + if ( ( ( (bits64) ( a.high<<1 ) ) | a.low ) == 0 ) return a; | |
| 4410 | + STATUS(float_exception_flags) |= float_flag_inexact; | |
| 4411 | + aSign = extractFloat128Sign( a ); | |
| 4412 | + switch ( STATUS(float_rounding_mode) ) { | |
| 4413 | + case float_round_nearest_even: | |
| 4414 | + if ( ( aExp == 0x3FFE ) | |
| 4415 | + && ( extractFloat128Frac0( a ) | |
| 4416 | + | extractFloat128Frac1( a ) ) | |
| 4417 | + ) { | |
| 4418 | + return packFloat128( aSign, 0x3FFF, 0, 0 ); | |
| 4419 | + } | |
| 4420 | + break; | |
| 4421 | + case float_round_down: | |
| 4422 | + return | |
| 4423 | + aSign ? packFloat128( 1, 0x3FFF, 0, 0 ) | |
| 4424 | + : packFloat128( 0, 0, 0, 0 ); | |
| 4425 | + case float_round_up: | |
| 4426 | + return | |
| 4427 | + aSign ? packFloat128( 1, 0, 0, 0 ) | |
| 4428 | + : packFloat128( 0, 0x3FFF, 0, 0 ); | |
| 4429 | + } | |
| 4430 | + return packFloat128( aSign, 0, 0, 0 ); | |
| 4431 | + } | |
| 4432 | + lastBitMask = 1; | |
| 4433 | + lastBitMask <<= 0x402F - aExp; | |
| 4434 | + roundBitsMask = lastBitMask - 1; | |
| 4435 | + z.low = 0; | |
| 4436 | + z.high = a.high; | |
| 4437 | + roundingMode = STATUS(float_rounding_mode); | |
| 4438 | + if ( roundingMode == float_round_nearest_even ) { | |
| 4439 | + z.high += lastBitMask>>1; | |
| 4440 | + if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) { | |
| 4441 | + z.high &= ~ lastBitMask; | |
| 4442 | + } | |
| 4443 | + } | |
| 4444 | + else if ( roundingMode != float_round_to_zero ) { | |
| 4445 | + if ( extractFloat128Sign( z ) | |
| 4446 | + ^ ( roundingMode == float_round_up ) ) { | |
| 4447 | + z.high |= ( a.low != 0 ); | |
| 4448 | + z.high += roundBitsMask; | |
| 4449 | + } | |
| 4450 | + } | |
| 4451 | + z.high &= ~ roundBitsMask; | |
| 4452 | + } | |
| 4453 | + if ( ( z.low != a.low ) || ( z.high != a.high ) ) { | |
| 4454 | + STATUS(float_exception_flags) |= float_flag_inexact; | |
| 4455 | + } | |
| 4456 | + return z; | |
| 4457 | + | |
| 4458 | +} | |
| 4459 | + | |
| 4460 | +/*---------------------------------------------------------------------------- | |
| 4461 | +| Returns the result of adding the absolute values of the quadruple-precision | |
| 4462 | +| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated | |
| 4463 | +| before being returned. `zSign' is ignored if the result is a NaN. | |
| 4464 | +| The addition is performed according to the IEC/IEEE Standard for Binary | |
| 4465 | +| Floating-Point Arithmetic. | |
| 4466 | +*----------------------------------------------------------------------------*/ | |
| 4467 | + | |
| 4468 | +static float128 addFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM) | |
| 4469 | +{ | |
| 4470 | + int32 aExp, bExp, zExp; | |
| 4471 | + bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; | |
| 4472 | + int32 expDiff; | |
| 4473 | + | |
| 4474 | + aSig1 = extractFloat128Frac1( a ); | |
| 4475 | + aSig0 = extractFloat128Frac0( a ); | |
| 4476 | + aExp = extractFloat128Exp( a ); | |
| 4477 | + bSig1 = extractFloat128Frac1( b ); | |
| 4478 | + bSig0 = extractFloat128Frac0( b ); | |
| 4479 | + bExp = extractFloat128Exp( b ); | |
| 4480 | + expDiff = aExp - bExp; | |
| 4481 | + if ( 0 < expDiff ) { | |
| 4482 | + if ( aExp == 0x7FFF ) { | |
| 4483 | + if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
| 4484 | + return a; | |
| 4485 | + } | |
| 4486 | + if ( bExp == 0 ) { | |
| 4487 | + --expDiff; | |
| 4488 | + } | |
| 4489 | + else { | |
| 4490 | + bSig0 |= LIT64( 0x0001000000000000 ); | |
| 4491 | + } | |
| 4492 | + shift128ExtraRightJamming( | |
| 4493 | + bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 ); | |
| 4494 | + zExp = aExp; | |
| 4495 | + } | |
| 4496 | + else if ( expDiff < 0 ) { | |
| 4497 | + if ( bExp == 0x7FFF ) { | |
| 4498 | + if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
| 4499 | + return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
| 4500 | + } | |
| 4501 | + if ( aExp == 0 ) { | |
| 4502 | + ++expDiff; | |
| 4503 | + } | |
| 4504 | + else { | |
| 4505 | + aSig0 |= LIT64( 0x0001000000000000 ); | |
| 4506 | + } | |
| 4507 | + shift128ExtraRightJamming( | |
| 4508 | + aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 ); | |
| 4509 | + zExp = bExp; | |
| 4510 | + } | |
| 4511 | + else { | |
| 4512 | + if ( aExp == 0x7FFF ) { | |
| 4513 | + if ( aSig0 | aSig1 | bSig0 | bSig1 ) { | |
| 4514 | + return propagateFloat128NaN( a, b STATUS_VAR ); | |
| 4515 | + } | |
| 4516 | + return a; | |
| 4517 | + } | |
| 4518 | + add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
| 4519 | + if ( aExp == 0 ) return packFloat128( zSign, 0, zSig0, zSig1 ); | |
| 4520 | + zSig2 = 0; | |
| 4521 | + zSig0 |= LIT64( 0x0002000000000000 ); | |
| 4522 | + zExp = aExp; | |
| 4523 | + goto shiftRight1; | |
| 4524 | + } | |
| 4525 | + aSig0 |= LIT64( 0x0001000000000000 ); | |
| 4526 | + add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
| 4527 | + --zExp; | |
| 4528 | + if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack; | |
| 4529 | + ++zExp; | |
| 4530 | + shiftRight1: | |
| 4531 | + shift128ExtraRightJamming( | |
| 4532 | + zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); | |
| 4533 | + roundAndPack: | |
| 4534 | + return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); | |
| 4535 | + | |
| 4536 | +} | |
| 4537 | + | |
| 4538 | +/*---------------------------------------------------------------------------- | |
| 4539 | +| Returns the result of subtracting the absolute values of the quadruple- | |
| 4540 | +| precision floating-point values `a' and `b'. If `zSign' is 1, the | |
| 4541 | +| difference is negated before being returned. `zSign' is ignored if the | |
| 4542 | +| result is a NaN. The subtraction is performed according to the IEC/IEEE | |
| 4543 | +| Standard for Binary Floating-Point Arithmetic. | |
| 4544 | +*----------------------------------------------------------------------------*/ | |
| 4545 | + | |
| 4546 | +static float128 subFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM) | |
| 4547 | +{ | |
| 4548 | + int32 aExp, bExp, zExp; | |
| 4549 | + bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1; | |
| 4550 | + int32 expDiff; | |
| 4551 | + float128 z; | |
| 4552 | + | |
| 4553 | + aSig1 = extractFloat128Frac1( a ); | |
| 4554 | + aSig0 = extractFloat128Frac0( a ); | |
| 4555 | + aExp = extractFloat128Exp( a ); | |
| 4556 | + bSig1 = extractFloat128Frac1( b ); | |
| 4557 | + bSig0 = extractFloat128Frac0( b ); | |
| 4558 | + bExp = extractFloat128Exp( b ); | |
| 4559 | + expDiff = aExp - bExp; | |
| 4560 | + shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); | |
| 4561 | + shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 ); | |
| 4562 | + if ( 0 < expDiff ) goto aExpBigger; | |
| 4563 | + if ( expDiff < 0 ) goto bExpBigger; | |
| 4564 | + if ( aExp == 0x7FFF ) { | |
| 4565 | + if ( aSig0 | aSig1 | bSig0 | bSig1 ) { | |
| 4566 | + return propagateFloat128NaN( a, b STATUS_VAR ); | |
| 4567 | + } | |
| 4568 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 4569 | + z.low = float128_default_nan_low; | |
| 4570 | + z.high = float128_default_nan_high; | |
| 4571 | + return z; | |
| 4572 | + } | |
| 4573 | + if ( aExp == 0 ) { | |
| 4574 | + aExp = 1; | |
| 4575 | + bExp = 1; | |
| 4576 | + } | |
| 4577 | + if ( bSig0 < aSig0 ) goto aBigger; | |
| 4578 | + if ( aSig0 < bSig0 ) goto bBigger; | |
| 4579 | + if ( bSig1 < aSig1 ) goto aBigger; | |
| 4580 | + if ( aSig1 < bSig1 ) goto bBigger; | |
| 4581 | + return packFloat128( STATUS(float_rounding_mode) == float_round_down, 0, 0, 0 ); | |
| 4582 | + bExpBigger: | |
| 4583 | + if ( bExp == 0x7FFF ) { | |
| 4584 | + if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
| 4585 | + return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 ); | |
| 4586 | + } | |
| 4587 | + if ( aExp == 0 ) { | |
| 4588 | + ++expDiff; | |
| 4589 | + } | |
| 4590 | + else { | |
| 4591 | + aSig0 |= LIT64( 0x4000000000000000 ); | |
| 4592 | + } | |
| 4593 | + shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); | |
| 4594 | + bSig0 |= LIT64( 0x4000000000000000 ); | |
| 4595 | + bBigger: | |
| 4596 | + sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 ); | |
| 4597 | + zExp = bExp; | |
| 4598 | + zSign ^= 1; | |
| 4599 | + goto normalizeRoundAndPack; | |
| 4600 | + aExpBigger: | |
| 4601 | + if ( aExp == 0x7FFF ) { | |
| 4602 | + if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
| 4603 | + return a; | |
| 4604 | + } | |
| 4605 | + if ( bExp == 0 ) { | |
| 4606 | + --expDiff; | |
| 4607 | + } | |
| 4608 | + else { | |
| 4609 | + bSig0 |= LIT64( 0x4000000000000000 ); | |
| 4610 | + } | |
| 4611 | + shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 ); | |
| 4612 | + aSig0 |= LIT64( 0x4000000000000000 ); | |
| 4613 | + aBigger: | |
| 4614 | + sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
| 4615 | + zExp = aExp; | |
| 4616 | + normalizeRoundAndPack: | |
| 4617 | + --zExp; | |
| 4618 | + return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 STATUS_VAR ); | |
| 4619 | + | |
| 4620 | +} | |
| 4621 | + | |
| 4622 | +/*---------------------------------------------------------------------------- | |
| 4623 | +| Returns the result of adding the quadruple-precision floating-point values | |
| 4624 | +| `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
| 4625 | +| for Binary Floating-Point Arithmetic. | |
| 4626 | +*----------------------------------------------------------------------------*/ | |
| 4627 | + | |
| 4628 | +float128 float128_add( float128 a, float128 b STATUS_PARAM ) | |
| 4629 | +{ | |
| 4630 | + flag aSign, bSign; | |
| 4631 | + | |
| 4632 | + aSign = extractFloat128Sign( a ); | |
| 4633 | + bSign = extractFloat128Sign( b ); | |
| 4634 | + if ( aSign == bSign ) { | |
| 4635 | + return addFloat128Sigs( a, b, aSign STATUS_VAR ); | |
| 4636 | + } | |
| 4637 | + else { | |
| 4638 | + return subFloat128Sigs( a, b, aSign STATUS_VAR ); | |
| 4639 | + } | |
| 4640 | + | |
| 4641 | +} | |
| 4642 | + | |
| 4643 | +/*---------------------------------------------------------------------------- | |
| 4644 | +| Returns the result of subtracting the quadruple-precision floating-point | |
| 4645 | +| values `a' and `b'. The operation is performed according to the IEC/IEEE | |
| 4646 | +| Standard for Binary Floating-Point Arithmetic. | |
| 4647 | +*----------------------------------------------------------------------------*/ | |
| 4648 | + | |
| 4649 | +float128 float128_sub( float128 a, float128 b STATUS_PARAM ) | |
| 4650 | +{ | |
| 4651 | + flag aSign, bSign; | |
| 4652 | + | |
| 4653 | + aSign = extractFloat128Sign( a ); | |
| 4654 | + bSign = extractFloat128Sign( b ); | |
| 4655 | + if ( aSign == bSign ) { | |
| 4656 | + return subFloat128Sigs( a, b, aSign STATUS_VAR ); | |
| 4657 | + } | |
| 4658 | + else { | |
| 4659 | + return addFloat128Sigs( a, b, aSign STATUS_VAR ); | |
| 4660 | + } | |
| 4661 | + | |
| 4662 | +} | |
| 4663 | + | |
| 4664 | +/*---------------------------------------------------------------------------- | |
| 4665 | +| Returns the result of multiplying the quadruple-precision floating-point | |
| 4666 | +| values `a' and `b'. The operation is performed according to the IEC/IEEE | |
| 4667 | +| Standard for Binary Floating-Point Arithmetic. | |
| 4668 | +*----------------------------------------------------------------------------*/ | |
| 4669 | + | |
| 4670 | +float128 float128_mul( float128 a, float128 b STATUS_PARAM ) | |
| 4671 | +{ | |
| 4672 | + flag aSign, bSign, zSign; | |
| 4673 | + int32 aExp, bExp, zExp; | |
| 4674 | + bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3; | |
| 4675 | + float128 z; | |
| 4676 | + | |
| 4677 | + aSig1 = extractFloat128Frac1( a ); | |
| 4678 | + aSig0 = extractFloat128Frac0( a ); | |
| 4679 | + aExp = extractFloat128Exp( a ); | |
| 4680 | + aSign = extractFloat128Sign( a ); | |
| 4681 | + bSig1 = extractFloat128Frac1( b ); | |
| 4682 | + bSig0 = extractFloat128Frac0( b ); | |
| 4683 | + bExp = extractFloat128Exp( b ); | |
| 4684 | + bSign = extractFloat128Sign( b ); | |
| 4685 | + zSign = aSign ^ bSign; | |
| 4686 | + if ( aExp == 0x7FFF ) { | |
| 4687 | + if ( ( aSig0 | aSig1 ) | |
| 4688 | + || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { | |
| 4689 | + return propagateFloat128NaN( a, b STATUS_VAR ); | |
| 4690 | + } | |
| 4691 | + if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid; | |
| 4692 | + return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
| 4693 | + } | |
| 4694 | + if ( bExp == 0x7FFF ) { | |
| 4695 | + if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
| 4696 | + if ( ( aExp | aSig0 | aSig1 ) == 0 ) { | |
| 4697 | + invalid: | |
| 4698 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 4699 | + z.low = float128_default_nan_low; | |
| 4700 | + z.high = float128_default_nan_high; | |
| 4701 | + return z; | |
| 4702 | + } | |
| 4703 | + return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
| 4704 | + } | |
| 4705 | + if ( aExp == 0 ) { | |
| 4706 | + if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
| 4707 | + normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
| 4708 | + } | |
| 4709 | + if ( bExp == 0 ) { | |
| 4710 | + if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
| 4711 | + normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
| 4712 | + } | |
| 4713 | + zExp = aExp + bExp - 0x4000; | |
| 4714 | + aSig0 |= LIT64( 0x0001000000000000 ); | |
| 4715 | + shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 ); | |
| 4716 | + mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 ); | |
| 4717 | + add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 ); | |
| 4718 | + zSig2 |= ( zSig3 != 0 ); | |
| 4719 | + if ( LIT64( 0x0002000000000000 ) <= zSig0 ) { | |
| 4720 | + shift128ExtraRightJamming( | |
| 4721 | + zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); | |
| 4722 | + ++zExp; | |
| 4723 | + } | |
| 4724 | + return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); | |
| 4725 | + | |
| 4726 | +} | |
| 4727 | + | |
| 4728 | +/*---------------------------------------------------------------------------- | |
| 4729 | +| Returns the result of dividing the quadruple-precision floating-point value | |
| 4730 | +| `a' by the corresponding value `b'. The operation is performed according to | |
| 4731 | +| the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 4732 | +*----------------------------------------------------------------------------*/ | |
| 4733 | + | |
| 4734 | +float128 float128_div( float128 a, float128 b STATUS_PARAM ) | |
| 4735 | +{ | |
| 4736 | + flag aSign, bSign, zSign; | |
| 4737 | + int32 aExp, bExp, zExp; | |
| 4738 | + bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; | |
| 4739 | + bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
| 4740 | + float128 z; | |
| 4741 | + | |
| 4742 | + aSig1 = extractFloat128Frac1( a ); | |
| 4743 | + aSig0 = extractFloat128Frac0( a ); | |
| 4744 | + aExp = extractFloat128Exp( a ); | |
| 4745 | + aSign = extractFloat128Sign( a ); | |
| 4746 | + bSig1 = extractFloat128Frac1( b ); | |
| 4747 | + bSig0 = extractFloat128Frac0( b ); | |
| 4748 | + bExp = extractFloat128Exp( b ); | |
| 4749 | + bSign = extractFloat128Sign( b ); | |
| 4750 | + zSign = aSign ^ bSign; | |
| 4751 | + if ( aExp == 0x7FFF ) { | |
| 4752 | + if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
| 4753 | + if ( bExp == 0x7FFF ) { | |
| 4754 | + if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
| 4755 | + goto invalid; | |
| 4756 | + } | |
| 4757 | + return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
| 4758 | + } | |
| 4759 | + if ( bExp == 0x7FFF ) { | |
| 4760 | + if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
| 4761 | + return packFloat128( zSign, 0, 0, 0 ); | |
| 4762 | + } | |
| 4763 | + if ( bExp == 0 ) { | |
| 4764 | + if ( ( bSig0 | bSig1 ) == 0 ) { | |
| 4765 | + if ( ( aExp | aSig0 | aSig1 ) == 0 ) { | |
| 4766 | + invalid: | |
| 4767 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 4768 | + z.low = float128_default_nan_low; | |
| 4769 | + z.high = float128_default_nan_high; | |
| 4770 | + return z; | |
| 4771 | + } | |
| 4772 | + float_raise( float_flag_divbyzero STATUS_VAR); | |
| 4773 | + return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
| 4774 | + } | |
| 4775 | + normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
| 4776 | + } | |
| 4777 | + if ( aExp == 0 ) { | |
| 4778 | + if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
| 4779 | + normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
| 4780 | + } | |
| 4781 | + zExp = aExp - bExp + 0x3FFD; | |
| 4782 | + shortShift128Left( | |
| 4783 | + aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 ); | |
| 4784 | + shortShift128Left( | |
| 4785 | + bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); | |
| 4786 | + if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) { | |
| 4787 | + shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 ); | |
| 4788 | + ++zExp; | |
| 4789 | + } | |
| 4790 | + zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
| 4791 | + mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 ); | |
| 4792 | + sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 ); | |
| 4793 | + while ( (sbits64) rem0 < 0 ) { | |
| 4794 | + --zSig0; | |
| 4795 | + add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 ); | |
| 4796 | + } | |
| 4797 | + zSig1 = estimateDiv128To64( rem1, rem2, bSig0 ); | |
| 4798 | + if ( ( zSig1 & 0x3FFF ) <= 4 ) { | |
| 4799 | + mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 ); | |
| 4800 | + sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 ); | |
| 4801 | + while ( (sbits64) rem1 < 0 ) { | |
| 4802 | + --zSig1; | |
| 4803 | + add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 ); | |
| 4804 | + } | |
| 4805 | + zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
| 4806 | + } | |
| 4807 | + shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 ); | |
| 4808 | + return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); | |
| 4809 | + | |
| 4810 | +} | |
| 4811 | + | |
| 4812 | +/*---------------------------------------------------------------------------- | |
| 4813 | +| Returns the remainder of the quadruple-precision floating-point value `a' | |
| 4814 | +| with respect to the corresponding value `b'. The operation is performed | |
| 4815 | +| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 4816 | +*----------------------------------------------------------------------------*/ | |
| 4817 | + | |
| 4818 | +float128 float128_rem( float128 a, float128 b STATUS_PARAM ) | |
| 4819 | +{ | |
| 4820 | + flag aSign, bSign, zSign; | |
| 4821 | + int32 aExp, bExp, expDiff; | |
| 4822 | + bits64 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2; | |
| 4823 | + bits64 allZero, alternateASig0, alternateASig1, sigMean1; | |
| 4824 | + sbits64 sigMean0; | |
| 4825 | + float128 z; | |
| 4826 | + | |
| 4827 | + aSig1 = extractFloat128Frac1( a ); | |
| 4828 | + aSig0 = extractFloat128Frac0( a ); | |
| 4829 | + aExp = extractFloat128Exp( a ); | |
| 4830 | + aSign = extractFloat128Sign( a ); | |
| 4831 | + bSig1 = extractFloat128Frac1( b ); | |
| 4832 | + bSig0 = extractFloat128Frac0( b ); | |
| 4833 | + bExp = extractFloat128Exp( b ); | |
| 4834 | + bSign = extractFloat128Sign( b ); | |
| 4835 | + if ( aExp == 0x7FFF ) { | |
| 4836 | + if ( ( aSig0 | aSig1 ) | |
| 4837 | + || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { | |
| 4838 | + return propagateFloat128NaN( a, b STATUS_VAR ); | |
| 4839 | + } | |
| 4840 | + goto invalid; | |
| 4841 | + } | |
| 4842 | + if ( bExp == 0x7FFF ) { | |
| 4843 | + if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
| 4844 | + return a; | |
| 4845 | + } | |
| 4846 | + if ( bExp == 0 ) { | |
| 4847 | + if ( ( bSig0 | bSig1 ) == 0 ) { | |
| 4848 | + invalid: | |
| 4849 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 4850 | + z.low = float128_default_nan_low; | |
| 4851 | + z.high = float128_default_nan_high; | |
| 4852 | + return z; | |
| 4853 | + } | |
| 4854 | + normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
| 4855 | + } | |
| 4856 | + if ( aExp == 0 ) { | |
| 4857 | + if ( ( aSig0 | aSig1 ) == 0 ) return a; | |
| 4858 | + normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
| 4859 | + } | |
| 4860 | + expDiff = aExp - bExp; | |
| 4861 | + if ( expDiff < -1 ) return a; | |
| 4862 | + shortShift128Left( | |
| 4863 | + aSig0 | LIT64( 0x0001000000000000 ), | |
| 4864 | + aSig1, | |
| 4865 | + 15 - ( expDiff < 0 ), | |
| 4866 | + &aSig0, | |
| 4867 | + &aSig1 | |
| 4868 | + ); | |
| 4869 | + shortShift128Left( | |
| 4870 | + bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); | |
| 4871 | + q = le128( bSig0, bSig1, aSig0, aSig1 ); | |
| 4872 | + if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); | |
| 4873 | + expDiff -= 64; | |
| 4874 | + while ( 0 < expDiff ) { | |
| 4875 | + q = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
| 4876 | + q = ( 4 < q ) ? q - 4 : 0; | |
| 4877 | + mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); | |
| 4878 | + shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero ); | |
| 4879 | + shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero ); | |
| 4880 | + sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 ); | |
| 4881 | + expDiff -= 61; | |
| 4882 | + } | |
| 4883 | + if ( -64 < expDiff ) { | |
| 4884 | + q = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
| 4885 | + q = ( 4 < q ) ? q - 4 : 0; | |
| 4886 | + q >>= - expDiff; | |
| 4887 | + shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); | |
| 4888 | + expDiff += 52; | |
| 4889 | + if ( expDiff < 0 ) { | |
| 4890 | + shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); | |
| 4891 | + } | |
| 4892 | + else { | |
| 4893 | + shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 ); | |
| 4894 | + } | |
| 4895 | + mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); | |
| 4896 | + sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 ); | |
| 4897 | + } | |
| 4898 | + else { | |
| 4899 | + shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 ); | |
| 4900 | + shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); | |
| 4901 | + } | |
| 4902 | + do { | |
| 4903 | + alternateASig0 = aSig0; | |
| 4904 | + alternateASig1 = aSig1; | |
| 4905 | + ++q; | |
| 4906 | + sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); | |
| 4907 | + } while ( 0 <= (sbits64) aSig0 ); | |
| 4908 | + add128( | |
| 4909 | + aSig0, aSig1, alternateASig0, alternateASig1, &sigMean0, &sigMean1 ); | |
| 4910 | + if ( ( sigMean0 < 0 ) | |
| 4911 | + || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) { | |
| 4912 | + aSig0 = alternateASig0; | |
| 4913 | + aSig1 = alternateASig1; | |
| 4914 | + } | |
| 4915 | + zSign = ( (sbits64) aSig0 < 0 ); | |
| 4916 | + if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 ); | |
| 4917 | + return | |
| 4918 | + normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 STATUS_VAR ); | |
| 4919 | + | |
| 4920 | +} | |
| 4921 | + | |
| 4922 | +/*---------------------------------------------------------------------------- | |
| 4923 | +| Returns the square root of the quadruple-precision floating-point value `a'. | |
| 4924 | +| The operation is performed according to the IEC/IEEE Standard for Binary | |
| 4925 | +| Floating-Point Arithmetic. | |
| 4926 | +*----------------------------------------------------------------------------*/ | |
| 4927 | + | |
| 4928 | +float128 float128_sqrt( float128 a STATUS_PARAM ) | |
| 4929 | +{ | |
| 4930 | + flag aSign; | |
| 4931 | + int32 aExp, zExp; | |
| 4932 | + bits64 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0; | |
| 4933 | + bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
| 4934 | + float128 z; | |
| 4935 | + | |
| 4936 | + aSig1 = extractFloat128Frac1( a ); | |
| 4937 | + aSig0 = extractFloat128Frac0( a ); | |
| 4938 | + aExp = extractFloat128Exp( a ); | |
| 4939 | + aSign = extractFloat128Sign( a ); | |
| 4940 | + if ( aExp == 0x7FFF ) { | |
| 4941 | + if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a STATUS_VAR ); | |
| 4942 | + if ( ! aSign ) return a; | |
| 4943 | + goto invalid; | |
| 4944 | + } | |
| 4945 | + if ( aSign ) { | |
| 4946 | + if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a; | |
| 4947 | + invalid: | |
| 4948 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 4949 | + z.low = float128_default_nan_low; | |
| 4950 | + z.high = float128_default_nan_high; | |
| 4951 | + return z; | |
| 4952 | + } | |
| 4953 | + if ( aExp == 0 ) { | |
| 4954 | + if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
| 4955 | + normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
| 4956 | + } | |
| 4957 | + zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE; | |
| 4958 | + aSig0 |= LIT64( 0x0001000000000000 ); | |
| 4959 | + zSig0 = estimateSqrt32( aExp, aSig0>>17 ); | |
| 4960 | + shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 ); | |
| 4961 | + zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); | |
| 4962 | + doubleZSig0 = zSig0<<1; | |
| 4963 | + mul64To128( zSig0, zSig0, &term0, &term1 ); | |
| 4964 | + sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); | |
| 4965 | + while ( (sbits64) rem0 < 0 ) { | |
| 4966 | + --zSig0; | |
| 4967 | + doubleZSig0 -= 2; | |
| 4968 | + add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); | |
| 4969 | + } | |
| 4970 | + zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); | |
| 4971 | + if ( ( zSig1 & 0x1FFF ) <= 5 ) { | |
| 4972 | + if ( zSig1 == 0 ) zSig1 = 1; | |
| 4973 | + mul64To128( doubleZSig0, zSig1, &term1, &term2 ); | |
| 4974 | + sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
| 4975 | + mul64To128( zSig1, zSig1, &term2, &term3 ); | |
| 4976 | + sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
| 4977 | + while ( (sbits64) rem1 < 0 ) { | |
| 4978 | + --zSig1; | |
| 4979 | + shortShift128Left( 0, zSig1, 1, &term2, &term3 ); | |
| 4980 | + term3 |= 1; | |
| 4981 | + term2 |= doubleZSig0; | |
| 4982 | + add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
| 4983 | + } | |
| 4984 | + zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
| 4985 | + } | |
| 4986 | + shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 ); | |
| 4987 | + return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); | |
| 4988 | + | |
| 4989 | +} | |
| 4990 | + | |
| 4991 | +/*---------------------------------------------------------------------------- | |
| 4992 | +| Returns 1 if the quadruple-precision floating-point value `a' is equal to | |
| 4993 | +| the corresponding value `b', and 0 otherwise. The comparison is performed | |
| 4994 | +| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 4995 | +*----------------------------------------------------------------------------*/ | |
| 4996 | + | |
| 4997 | +flag float128_eq( float128 a, float128 b STATUS_PARAM ) | |
| 4998 | +{ | |
| 4999 | + | |
| 5000 | + if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
| 5001 | + && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
| 5002 | + || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
| 5003 | + && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
| 5004 | + ) { | |
| 5005 | + if ( float128_is_signaling_nan( a ) | |
| 5006 | + || float128_is_signaling_nan( b ) ) { | |
| 5007 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 5008 | + } | |
| 5009 | + return 0; | |
| 5010 | + } | |
| 5011 | + return | |
| 5012 | + ( a.low == b.low ) | |
| 5013 | + && ( ( a.high == b.high ) | |
| 5014 | + || ( ( a.low == 0 ) | |
| 5015 | + && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) ) | |
| 5016 | + ); | |
| 5017 | + | |
| 5018 | +} | |
| 5019 | + | |
| 5020 | +/*---------------------------------------------------------------------------- | |
| 5021 | +| Returns 1 if the quadruple-precision floating-point value `a' is less than | |
| 5022 | +| or equal to the corresponding value `b', and 0 otherwise. The comparison | |
| 5023 | +| is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
| 5024 | +| Arithmetic. | |
| 5025 | +*----------------------------------------------------------------------------*/ | |
| 5026 | + | |
| 5027 | +flag float128_le( float128 a, float128 b STATUS_PARAM ) | |
| 5028 | +{ | |
| 5029 | + flag aSign, bSign; | |
| 5030 | + | |
| 5031 | + if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
| 5032 | + && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
| 5033 | + || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
| 5034 | + && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
| 5035 | + ) { | |
| 5036 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 5037 | + return 0; | |
| 5038 | + } | |
| 5039 | + aSign = extractFloat128Sign( a ); | |
| 5040 | + bSign = extractFloat128Sign( b ); | |
| 5041 | + if ( aSign != bSign ) { | |
| 5042 | + return | |
| 5043 | + aSign | |
| 5044 | + || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | |
| 5045 | + == 0 ); | |
| 5046 | + } | |
| 5047 | + return | |
| 5048 | + aSign ? le128( b.high, b.low, a.high, a.low ) | |
| 5049 | + : le128( a.high, a.low, b.high, b.low ); | |
| 5050 | + | |
| 5051 | +} | |
| 5052 | + | |
| 5053 | +/*---------------------------------------------------------------------------- | |
| 5054 | +| Returns 1 if the quadruple-precision floating-point value `a' is less than | |
| 5055 | +| the corresponding value `b', and 0 otherwise. The comparison is performed | |
| 5056 | +| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 5057 | +*----------------------------------------------------------------------------*/ | |
| 5058 | + | |
| 5059 | +flag float128_lt( float128 a, float128 b STATUS_PARAM ) | |
| 5060 | +{ | |
| 5061 | + flag aSign, bSign; | |
| 5062 | + | |
| 5063 | + if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
| 5064 | + && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
| 5065 | + || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
| 5066 | + && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
| 5067 | + ) { | |
| 5068 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 5069 | + return 0; | |
| 5070 | + } | |
| 5071 | + aSign = extractFloat128Sign( a ); | |
| 5072 | + bSign = extractFloat128Sign( b ); | |
| 5073 | + if ( aSign != bSign ) { | |
| 5074 | + return | |
| 5075 | + aSign | |
| 5076 | + && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | |
| 5077 | + != 0 ); | |
| 5078 | + } | |
| 5079 | + return | |
| 5080 | + aSign ? lt128( b.high, b.low, a.high, a.low ) | |
| 5081 | + : lt128( a.high, a.low, b.high, b.low ); | |
| 5082 | + | |
| 5083 | +} | |
| 5084 | + | |
| 5085 | +/*---------------------------------------------------------------------------- | |
| 5086 | +| Returns 1 if the quadruple-precision floating-point value `a' is equal to | |
| 5087 | +| the corresponding value `b', and 0 otherwise. The invalid exception is | |
| 5088 | +| raised if either operand is a NaN. Otherwise, the comparison is performed | |
| 5089 | +| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 5090 | +*----------------------------------------------------------------------------*/ | |
| 5091 | + | |
| 5092 | +flag float128_eq_signaling( float128 a, float128 b STATUS_PARAM ) | |
| 5093 | +{ | |
| 5094 | + | |
| 5095 | + if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
| 5096 | + && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
| 5097 | + || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
| 5098 | + && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
| 5099 | + ) { | |
| 5100 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 5101 | + return 0; | |
| 5102 | + } | |
| 5103 | + return | |
| 5104 | + ( a.low == b.low ) | |
| 5105 | + && ( ( a.high == b.high ) | |
| 5106 | + || ( ( a.low == 0 ) | |
| 5107 | + && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) ) | |
| 5108 | + ); | |
| 5109 | + | |
| 5110 | +} | |
| 5111 | + | |
| 5112 | +/*---------------------------------------------------------------------------- | |
| 5113 | +| Returns 1 if the quadruple-precision floating-point value `a' is less than | |
| 5114 | +| or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
| 5115 | +| cause an exception. Otherwise, the comparison is performed according to the | |
| 5116 | +| IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
| 5117 | +*----------------------------------------------------------------------------*/ | |
| 5118 | + | |
| 5119 | +flag float128_le_quiet( float128 a, float128 b STATUS_PARAM ) | |
| 5120 | +{ | |
| 5121 | + flag aSign, bSign; | |
| 5122 | + | |
| 5123 | + if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
| 5124 | + && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
| 5125 | + || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
| 5126 | + && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
| 5127 | + ) { | |
| 5128 | + if ( float128_is_signaling_nan( a ) | |
| 5129 | + || float128_is_signaling_nan( b ) ) { | |
| 5130 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 5131 | + } | |
| 5132 | + return 0; | |
| 5133 | + } | |
| 5134 | + aSign = extractFloat128Sign( a ); | |
| 5135 | + bSign = extractFloat128Sign( b ); | |
| 5136 | + if ( aSign != bSign ) { | |
| 5137 | + return | |
| 5138 | + aSign | |
| 5139 | + || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | |
| 5140 | + == 0 ); | |
| 5141 | + } | |
| 5142 | + return | |
| 5143 | + aSign ? le128( b.high, b.low, a.high, a.low ) | |
| 5144 | + : le128( a.high, a.low, b.high, b.low ); | |
| 5145 | + | |
| 5146 | +} | |
| 5147 | + | |
| 5148 | +/*---------------------------------------------------------------------------- | |
| 5149 | +| Returns 1 if the quadruple-precision floating-point value `a' is less than | |
| 5150 | +| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
| 5151 | +| exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
| 5152 | +| Standard for Binary Floating-Point Arithmetic. | |
| 5153 | +*----------------------------------------------------------------------------*/ | |
| 5154 | + | |
| 5155 | +flag float128_lt_quiet( float128 a, float128 b STATUS_PARAM ) | |
| 5156 | +{ | |
| 5157 | + flag aSign, bSign; | |
| 5158 | + | |
| 5159 | + if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
| 5160 | + && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
| 5161 | + || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
| 5162 | + && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
| 5163 | + ) { | |
| 5164 | + if ( float128_is_signaling_nan( a ) | |
| 5165 | + || float128_is_signaling_nan( b ) ) { | |
| 5166 | + float_raise( float_flag_invalid STATUS_VAR); | |
| 5167 | + } | |
| 5168 | + return 0; | |
| 5169 | + } | |
| 5170 | + aSign = extractFloat128Sign( a ); | |
| 5171 | + bSign = extractFloat128Sign( b ); | |
| 5172 | + if ( aSign != bSign ) { | |
| 5173 | + return | |
| 5174 | + aSign | |
| 5175 | + && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | |
| 5176 | + != 0 ); | |
| 5177 | + } | |
| 5178 | + return | |
| 5179 | + aSign ? lt128( b.high, b.low, a.high, a.low ) | |
| 5180 | + : lt128( a.high, a.low, b.high, b.low ); | |
| 5181 | + | |
| 5182 | +} | |
| 5183 | + | |
| 5184 | +#endif | |
| 5185 | + | ... | ... |
fpu/softfloat.h
0 → 100644
| 1 | +/*============================================================================ | |
| 2 | + | |
| 3 | +This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic | |
| 4 | +Package, Release 2b. | |
| 5 | + | |
| 6 | +Written by John R. Hauser. This work was made possible in part by the | |
| 7 | +International Computer Science Institute, located at Suite 600, 1947 Center | |
| 8 | +Street, Berkeley, California 94704. Funding was partially provided by the | |
| 9 | +National Science Foundation under grant MIP-9311980. The original version | |
| 10 | +of this code was written as part of a project to build a fixed-point vector | |
| 11 | +processor in collaboration with the University of California at Berkeley, | |
| 12 | +overseen by Profs. Nelson Morgan and John Wawrzynek. More information | |
| 13 | +is available through the Web page `http://www.cs.berkeley.edu/~jhauser/ | |
| 14 | +arithmetic/SoftFloat.html'. | |
| 15 | + | |
| 16 | +THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has | |
| 17 | +been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES | |
| 18 | +RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS | |
| 19 | +AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES, | |
| 20 | +COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE | |
| 21 | +EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE | |
| 22 | +INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR | |
| 23 | +OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE. | |
| 24 | + | |
| 25 | +Derivative works are acceptable, even for commercial purposes, so long as | |
| 26 | +(1) the source code for the derivative work includes prominent notice that | |
| 27 | +the work is derivative, and (2) the source code includes prominent notice with | |
| 28 | +these four paragraphs for those parts of this code that are retained. | |
| 29 | + | |
| 30 | +=============================================================================*/ | |
| 31 | + | |
| 32 | +#ifndef SOFTFLOAT_H | |
| 33 | +#define SOFTFLOAT_H | |
| 34 | + | |
| 35 | +#include <inttypes.h> | |
| 36 | +#include "config.h" | |
| 37 | + | |
| 38 | +/*---------------------------------------------------------------------------- | |
| 39 | +| Each of the following `typedef's defines the most convenient type that holds | |
| 40 | +| integers of at least as many bits as specified. For example, `uint8' should | |
| 41 | +| be the most convenient type that can hold unsigned integers of as many as | |
| 42 | +| 8 bits. The `flag' type must be able to hold either a 0 or 1. For most | |
| 43 | +| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed | |
| 44 | +| to the same as `int'. | |
| 45 | +*----------------------------------------------------------------------------*/ | |
| 46 | +typedef char flag; | |
| 47 | +typedef uint8_t uint8; | |
| 48 | +typedef int8_t int8; | |
| 49 | +typedef int uint16; | |
| 50 | +typedef int int16; | |
| 51 | +typedef unsigned int uint32; | |
| 52 | +typedef signed int int32; | |
| 53 | +typedef uint64_t uint64; | |
| 54 | +typedef int64_t int64; | |
| 55 | + | |
| 56 | +/*---------------------------------------------------------------------------- | |
| 57 | +| Each of the following `typedef's defines a type that holds integers | |
| 58 | +| of _exactly_ the number of bits specified. For instance, for most | |
| 59 | +| implementation of C, `bits16' and `sbits16' should be `typedef'ed to | |
| 60 | +| `unsigned short int' and `signed short int' (or `short int'), respectively. | |
| 61 | +*----------------------------------------------------------------------------*/ | |
| 62 | +typedef uint8_t bits8; | |
| 63 | +typedef int8_t sbits8; | |
| 64 | +typedef uint16_t bits16; | |
| 65 | +typedef int16_t sbits16; | |
| 66 | +typedef uint32_t bits32; | |
| 67 | +typedef int32_t sbits32; | |
| 68 | +typedef uint64_t bits64; | |
| 69 | +typedef int64_t sbits64; | |
| 70 | + | |
| 71 | +#define LIT64( a ) a##LL | |
| 72 | +#define INLINE static inline | |
| 73 | + | |
| 74 | +/*---------------------------------------------------------------------------- | |
| 75 | +| The macro `FLOATX80' must be defined to enable the extended double-precision | |
| 76 | +| floating-point format `floatx80'. If this macro is not defined, the | |
| 77 | +| `floatx80' type will not be defined, and none of the functions that either | |
| 78 | +| input or output the `floatx80' type will be defined. The same applies to | |
| 79 | +| the `FLOAT128' macro and the quadruple-precision format `float128'. | |
| 80 | +*----------------------------------------------------------------------------*/ | |
| 81 | +#ifdef CONFIG_SOFTFLOAT | |
| 82 | +/* bit exact soft float support */ | |
| 83 | +#define FLOATX80 | |
| 84 | +#define FLOAT128 | |
| 85 | +#else | |
| 86 | +/* native float support */ | |
| 87 | +#if (defined(__i386__) || defined(__x86_64__)) && !defined(_BSD) | |
| 88 | +#define FLOATX80 | |
| 89 | +#endif | |
| 90 | +#endif /* !CONFIG_SOFTFLOAT */ | |
| 91 | + | |
| 92 | +#define STATUS_PARAM , float_status *status | |
| 93 | +#define STATUS(field) status->field | |
| 94 | +#define STATUS_VAR , status | |
| 95 | + | |
| 96 | +#ifdef CONFIG_SOFTFLOAT | |
| 97 | +/*---------------------------------------------------------------------------- | |
| 98 | +| Software IEC/IEEE floating-point types. | |
| 99 | +*----------------------------------------------------------------------------*/ | |
| 100 | +typedef uint32_t float32; | |
| 101 | +typedef uint64_t float64; | |
| 102 | +#ifdef FLOATX80 | |
| 103 | +typedef struct { | |
| 104 | + uint64_t low; | |
| 105 | + uint16_t high; | |
| 106 | +} floatx80; | |
| 107 | +#endif | |
| 108 | +#ifdef FLOAT128 | |
| 109 | +typedef struct { | |
| 110 | +#ifdef WORDS_BIGENDIAN | |
| 111 | + uint64_t high, low; | |
| 112 | +#else | |
| 113 | + uint64_t low, high; | |
| 114 | +#endif | |
| 115 | +} float128; | |
| 116 | +#endif | |
| 117 | + | |
| 118 | +/*---------------------------------------------------------------------------- | |
| 119 | +| Software IEC/IEEE floating-point underflow tininess-detection mode. | |
| 120 | +*----------------------------------------------------------------------------*/ | |
| 121 | +enum { | |
| 122 | + float_tininess_after_rounding = 0, | |
| 123 | + float_tininess_before_rounding = 1 | |
| 124 | +}; | |
| 125 | + | |
| 126 | +/*---------------------------------------------------------------------------- | |
| 127 | +| Software IEC/IEEE floating-point rounding mode. | |
| 128 | +*----------------------------------------------------------------------------*/ | |
| 129 | +enum { | |
| 130 | + float_round_nearest_even = 0, | |
| 131 | + float_round_down = 1, | |
| 132 | + float_round_up = 2, | |
| 133 | + float_round_to_zero = 3 | |
| 134 | +}; | |
| 135 | + | |
| 136 | +/*---------------------------------------------------------------------------- | |
| 137 | +| Software IEC/IEEE floating-point exception flags. | |
| 138 | +*----------------------------------------------------------------------------*/ | |
| 139 | +enum { | |
| 140 | + float_flag_invalid = 1, | |
| 141 | + float_flag_divbyzero = 4, | |
| 142 | + float_flag_overflow = 8, | |
| 143 | + float_flag_underflow = 16, | |
| 144 | + float_flag_inexact = 32 | |
| 145 | +}; | |
| 146 | + | |
| 147 | +typedef struct float_status { | |
| 148 | + signed char float_detect_tininess; | |
| 149 | + signed char float_rounding_mode; | |
| 150 | + signed char float_exception_flags; | |
| 151 | +#ifdef FLOATX80 | |
| 152 | + signed char floatx80_rounding_precision; | |
| 153 | +#endif | |
| 154 | +} float_status; | |
| 155 | + | |
| 156 | +void set_float_rounding_mode(int val STATUS_PARAM); | |
| 157 | +#ifdef FLOATX80 | |
| 158 | +void set_floatx80_rounding_precision(int val STATUS_PARAM); | |
| 159 | +#endif | |
| 160 | + | |
| 161 | +/*---------------------------------------------------------------------------- | |
| 162 | +| Routine to raise any or all of the software IEC/IEEE floating-point | |
| 163 | +| exception flags. | |
| 164 | +*----------------------------------------------------------------------------*/ | |
| 165 | +void float_raise( signed char STATUS_PARAM); | |
| 166 | + | |
| 167 | +/*---------------------------------------------------------------------------- | |
| 168 | +| Software IEC/IEEE integer-to-floating-point conversion routines. | |
| 169 | +*----------------------------------------------------------------------------*/ | |
| 170 | +float32 int32_to_float32( int STATUS_PARAM ); | |
| 171 | +float64 int32_to_float64( int STATUS_PARAM ); | |
| 172 | +#ifdef FLOATX80 | |
| 173 | +floatx80 int32_to_floatx80( int STATUS_PARAM ); | |
| 174 | +#endif | |
| 175 | +#ifdef FLOAT128 | |
| 176 | +float128 int32_to_float128( int STATUS_PARAM ); | |
| 177 | +#endif | |
| 178 | +float32 int64_to_float32( int64_t STATUS_PARAM ); | |
| 179 | +float64 int64_to_float64( int64_t STATUS_PARAM ); | |
| 180 | +#ifdef FLOATX80 | |
| 181 | +floatx80 int64_to_floatx80( int64_t STATUS_PARAM ); | |
| 182 | +#endif | |
| 183 | +#ifdef FLOAT128 | |
| 184 | +float128 int64_to_float128( int64_t STATUS_PARAM ); | |
| 185 | +#endif | |
| 186 | + | |
| 187 | +/*---------------------------------------------------------------------------- | |
| 188 | +| Software IEC/IEEE single-precision conversion routines. | |
| 189 | +*----------------------------------------------------------------------------*/ | |
| 190 | +int float32_to_int32( float32 STATUS_PARAM ); | |
| 191 | +int float32_to_int32_round_to_zero( float32 STATUS_PARAM ); | |
| 192 | +int64_t float32_to_int64( float32 STATUS_PARAM ); | |
| 193 | +int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM ); | |
| 194 | +float64 float32_to_float64( float32 STATUS_PARAM ); | |
| 195 | +#ifdef FLOATX80 | |
| 196 | +floatx80 float32_to_floatx80( float32 STATUS_PARAM ); | |
| 197 | +#endif | |
| 198 | +#ifdef FLOAT128 | |
| 199 | +float128 float32_to_float128( float32 STATUS_PARAM ); | |
| 200 | +#endif | |
| 201 | + | |
| 202 | +/*---------------------------------------------------------------------------- | |
| 203 | +| Software IEC/IEEE single-precision operations. | |
| 204 | +*----------------------------------------------------------------------------*/ | |
| 205 | +float32 float32_round_to_int( float32 STATUS_PARAM ); | |
| 206 | +float32 float32_add( float32, float32 STATUS_PARAM ); | |
| 207 | +float32 float32_sub( float32, float32 STATUS_PARAM ); | |
| 208 | +float32 float32_mul( float32, float32 STATUS_PARAM ); | |
| 209 | +float32 float32_div( float32, float32 STATUS_PARAM ); | |
| 210 | +float32 float32_rem( float32, float32 STATUS_PARAM ); | |
| 211 | +float32 float32_sqrt( float32 STATUS_PARAM ); | |
| 212 | +char float32_eq( float32, float32 STATUS_PARAM ); | |
| 213 | +char float32_le( float32, float32 STATUS_PARAM ); | |
| 214 | +char float32_lt( float32, float32 STATUS_PARAM ); | |
| 215 | +char float32_eq_signaling( float32, float32 STATUS_PARAM ); | |
| 216 | +char float32_le_quiet( float32, float32 STATUS_PARAM ); | |
| 217 | +char float32_lt_quiet( float32, float32 STATUS_PARAM ); | |
| 218 | +char float32_is_signaling_nan( float32 ); | |
| 219 | + | |
| 220 | +/*---------------------------------------------------------------------------- | |
| 221 | +| Software IEC/IEEE double-precision conversion routines. | |
| 222 | +*----------------------------------------------------------------------------*/ | |
| 223 | +int float64_to_int32( float64 STATUS_PARAM ); | |
| 224 | +int float64_to_int32_round_to_zero( float64 STATUS_PARAM ); | |
| 225 | +int64_t float64_to_int64( float64 STATUS_PARAM ); | |
| 226 | +int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM ); | |
| 227 | +float32 float64_to_float32( float64 STATUS_PARAM ); | |
| 228 | +#ifdef FLOATX80 | |
| 229 | +floatx80 float64_to_floatx80( float64 STATUS_PARAM ); | |
| 230 | +#endif | |
| 231 | +#ifdef FLOAT128 | |
| 232 | +float128 float64_to_float128( float64 STATUS_PARAM ); | |
| 233 | +#endif | |
| 234 | + | |
| 235 | +/*---------------------------------------------------------------------------- | |
| 236 | +| Software IEC/IEEE double-precision operations. | |
| 237 | +*----------------------------------------------------------------------------*/ | |
| 238 | +float64 float64_round_to_int( float64 STATUS_PARAM ); | |
| 239 | +float64 float64_add( float64, float64 STATUS_PARAM ); | |
| 240 | +float64 float64_sub( float64, float64 STATUS_PARAM ); | |
| 241 | +float64 float64_mul( float64, float64 STATUS_PARAM ); | |
| 242 | +float64 float64_div( float64, float64 STATUS_PARAM ); | |
| 243 | +float64 float64_rem( float64, float64 STATUS_PARAM ); | |
| 244 | +float64 float64_sqrt( float64 STATUS_PARAM ); | |
| 245 | +char float64_eq( float64, float64 STATUS_PARAM ); | |
| 246 | +char float64_le( float64, float64 STATUS_PARAM ); | |
| 247 | +char float64_lt( float64, float64 STATUS_PARAM ); | |
| 248 | +char float64_eq_signaling( float64, float64 STATUS_PARAM ); | |
| 249 | +char float64_le_quiet( float64, float64 STATUS_PARAM ); | |
| 250 | +char float64_lt_quiet( float64, float64 STATUS_PARAM ); | |
| 251 | +char float64_is_signaling_nan( float64 ); | |
| 252 | + | |
| 253 | +#ifdef FLOATX80 | |
| 254 | + | |
| 255 | +/*---------------------------------------------------------------------------- | |
| 256 | +| Software IEC/IEEE extended double-precision conversion routines. | |
| 257 | +*----------------------------------------------------------------------------*/ | |
| 258 | +int floatx80_to_int32( floatx80 STATUS_PARAM ); | |
| 259 | +int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM ); | |
| 260 | +int64_t floatx80_to_int64( floatx80 STATUS_PARAM ); | |
| 261 | +int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM ); | |
| 262 | +float32 floatx80_to_float32( floatx80 STATUS_PARAM ); | |
| 263 | +float64 floatx80_to_float64( floatx80 STATUS_PARAM ); | |
| 264 | +#ifdef FLOAT128 | |
| 265 | +float128 floatx80_to_float128( floatx80 STATUS_PARAM ); | |
| 266 | +#endif | |
| 267 | + | |
| 268 | +/*---------------------------------------------------------------------------- | |
| 269 | +| Software IEC/IEEE extended double-precision operations. | |
| 270 | +*----------------------------------------------------------------------------*/ | |
| 271 | +floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM ); | |
| 272 | +floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM ); | |
| 273 | +floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM ); | |
| 274 | +floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM ); | |
| 275 | +floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM ); | |
| 276 | +floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM ); | |
| 277 | +floatx80 floatx80_sqrt( floatx80 STATUS_PARAM ); | |
| 278 | +char floatx80_eq( floatx80, floatx80 STATUS_PARAM ); | |
| 279 | +char floatx80_le( floatx80, floatx80 STATUS_PARAM ); | |
| 280 | +char floatx80_lt( floatx80, floatx80 STATUS_PARAM ); | |
| 281 | +char floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM ); | |
| 282 | +char floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM ); | |
| 283 | +char floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM ); | |
| 284 | +char floatx80_is_signaling_nan( floatx80 ); | |
| 285 | + | |
| 286 | +#endif | |
| 287 | + | |
| 288 | +#ifdef FLOAT128 | |
| 289 | + | |
| 290 | +/*---------------------------------------------------------------------------- | |
| 291 | +| Software IEC/IEEE quadruple-precision conversion routines. | |
| 292 | +*----------------------------------------------------------------------------*/ | |
| 293 | +int float128_to_int32( float128 STATUS_PARAM ); | |
| 294 | +int float128_to_int32_round_to_zero( float128 STATUS_PARAM ); | |
| 295 | +int64_t float128_to_int64( float128 STATUS_PARAM ); | |
| 296 | +int64_t float128_to_int64_round_to_zero( float128 STATUS_PARAM ); | |
| 297 | +float32 float128_to_float32( float128 STATUS_PARAM ); | |
| 298 | +float64 float128_to_float64( float128 STATUS_PARAM ); | |
| 299 | +#ifdef FLOATX80 | |
| 300 | +floatx80 float128_to_floatx80( float128 STATUS_PARAM ); | |
| 301 | +#endif | |
| 302 | + | |
| 303 | +/*---------------------------------------------------------------------------- | |
| 304 | +| Software IEC/IEEE quadruple-precision operations. | |
| 305 | +*----------------------------------------------------------------------------*/ | |
| 306 | +float128 float128_round_to_int( float128 STATUS_PARAM ); | |
| 307 | +float128 float128_add( float128, float128 STATUS_PARAM ); | |
| 308 | +float128 float128_sub( float128, float128 STATUS_PARAM ); | |
| 309 | +float128 float128_mul( float128, float128 STATUS_PARAM ); | |
| 310 | +float128 float128_div( float128, float128 STATUS_PARAM ); | |
| 311 | +float128 float128_rem( float128, float128 STATUS_PARAM ); | |
| 312 | +float128 float128_sqrt( float128 STATUS_PARAM ); | |
| 313 | +char float128_eq( float128, float128 STATUS_PARAM ); | |
| 314 | +char float128_le( float128, float128 STATUS_PARAM ); | |
| 315 | +char float128_lt( float128, float128 STATUS_PARAM ); | |
| 316 | +char float128_eq_signaling( float128, float128 STATUS_PARAM ); | |
| 317 | +char float128_le_quiet( float128, float128 STATUS_PARAM ); | |
| 318 | +char float128_lt_quiet( float128, float128 STATUS_PARAM ); | |
| 319 | +char float128_is_signaling_nan( float128 ); | |
| 320 | + | |
| 321 | +#endif | |
| 322 | + | |
| 323 | +#else /* CONFIG_SOFTFLOAT */ | |
| 324 | + | |
| 325 | +#include "softfloat-native.h" | |
| 326 | + | |
| 327 | +#endif /* !CONFIG_SOFTFLOAT */ | |
| 328 | + | |
| 329 | +#endif /* !SOFTFLOAT_H */ | ... | ... |