Blame view

hw/cuda.c 17.8 KB
bellard authored
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/*
 * QEMU CUDA support
 * 
 * Copyright (c) 2004 Fabrice Bellard
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include "vl.h"
bellard authored
26
27
/* XXX: implement all timer modes */
bellard authored
28
29
30
//#define DEBUG_CUDA
//#define DEBUG_CUDA_PACKET
bellard authored
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
/* Bits in B data register: all active low */
#define TREQ		0x08		/* Transfer request (input) */
#define TACK		0x10		/* Transfer acknowledge (output) */
#define TIP		0x20		/* Transfer in progress (output) */

/* Bits in ACR */
#define SR_CTRL		0x1c		/* Shift register control bits */
#define SR_EXT		0x0c		/* Shift on external clock */
#define SR_OUT		0x10		/* Shift out if 1 */

/* Bits in IFR and IER */
#define IER_SET		0x80		/* set bits in IER */
#define IER_CLR		0		/* clear bits in IER */
#define SR_INT		0x04		/* Shift register full/empty */
#define T1_INT          0x40            /* Timer 1 interrupt */
bellard authored
46
#define T2_INT          0x20            /* Timer 2 interrupt */
bellard authored
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

/* Bits in ACR */
#define T1MODE          0xc0            /* Timer 1 mode */
#define T1MODE_CONT     0x40            /*  continuous interrupts */

/* commands (1st byte) */
#define ADB_PACKET	0
#define CUDA_PACKET	1
#define ERROR_PACKET	2
#define TIMER_PACKET	3
#define POWER_PACKET	4
#define MACIIC_PACKET	5
#define PMU_PACKET	6


/* CUDA commands (2nd byte) */
#define CUDA_WARM_START			0x0
#define CUDA_AUTOPOLL			0x1
#define CUDA_GET_6805_ADDR		0x2
#define CUDA_GET_TIME			0x3
#define CUDA_GET_PRAM			0x7
#define CUDA_SET_6805_ADDR		0x8
#define CUDA_SET_TIME			0x9
#define CUDA_POWERDOWN			0xa
#define CUDA_POWERUP_TIME		0xb
#define CUDA_SET_PRAM			0xc
#define CUDA_MS_RESET			0xd
#define CUDA_SEND_DFAC			0xe
#define CUDA_BATTERY_SWAP_SENSE		0x10
#define CUDA_RESET_SYSTEM		0x11
#define CUDA_SET_IPL			0x12
#define CUDA_FILE_SERVER_FLAG		0x13
#define CUDA_SET_AUTO_RATE		0x14
#define CUDA_GET_AUTO_RATE		0x16
#define CUDA_SET_DEVICE_LIST		0x19
#define CUDA_GET_DEVICE_LIST		0x1a
#define CUDA_SET_ONE_SECOND_MODE	0x1b
#define CUDA_SET_POWER_MESSAGES		0x21
#define CUDA_GET_SET_IIC		0x22
#define CUDA_WAKEUP			0x23
#define CUDA_TIMER_TICKLE		0x24
#define CUDA_COMBINED_FORMAT_IIC	0x25

#define CUDA_TIMER_FREQ (4700000 / 6)
bellard authored
91
#define CUDA_ADB_POLL_FREQ 50
bellard authored
92
93
94
95
/* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
#define RTC_OFFSET                      2082844800
bellard authored
96
typedef struct CUDATimer {
bellard authored
97
98
    int index; 
    uint16_t latch;
bellard authored
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    uint16_t counter_value; /* counter value at load time */
    int64_t load_time;
    int64_t next_irq_time;
    QEMUTimer *timer;
} CUDATimer;

typedef struct CUDAState {
    /* cuda registers */
    uint8_t b;      /* B-side data */
    uint8_t a;      /* A-side data */
    uint8_t dirb;   /* B-side direction (1=output) */
    uint8_t dira;   /* A-side direction (1=output) */
    uint8_t sr;     /* Shift register */
    uint8_t acr;    /* Auxiliary control register */
    uint8_t pcr;    /* Peripheral control register */
    uint8_t ifr;    /* Interrupt flag register */
    uint8_t ier;    /* Interrupt enable register */
    uint8_t anh;    /* A-side data, no handshake */

    CUDATimer timers[2];

    uint8_t last_b; /* last value of B register */
    uint8_t last_acr; /* last value of B register */

    int data_in_size;
    int data_in_index;
    int data_out_index;
127
    SetIRQFunc *set_irq;
bellard authored
128
    int irq;
129
    void *irq_opaque;
bellard authored
130
131
132
    uint8_t autopoll;
    uint8_t data_in[128];
    uint8_t data_out[16];
bellard authored
133
    QEMUTimer *adb_poll_timer;
bellard authored
134
135
136
137
138
139
140
141
} CUDAState;

static CUDAState cuda_state;
ADBBusState adb_bus;

static void cuda_update(CUDAState *s);
static void cuda_receive_packet_from_host(CUDAState *s, 
                                          const uint8_t *data, int len);
bellard authored
142
143
static void cuda_timer_update(CUDAState *s, CUDATimer *ti, 
                              int64_t current_time);
bellard authored
144
145
146

static void cuda_update_irq(CUDAState *s)
{
bellard authored
147
    if (s->ifr & s->ier & (SR_INT | T1_INT)) {
148
        s->set_irq(s->irq_opaque, s->irq, 1);
bellard authored
149
    } else {
150
        s->set_irq(s->irq_opaque, s->irq, 0);
bellard authored
151
152
153
154
155
156
157
158
159
160
    }
}

static unsigned int get_counter(CUDATimer *s)
{
    int64_t d;
    unsigned int counter;

    d = muldiv64(qemu_get_clock(vm_clock) - s->load_time, 
                 CUDA_TIMER_FREQ, ticks_per_sec);
bellard authored
161
162
163
164
165
166
167
168
    if (s->index == 0) {
        /* the timer goes down from latch to -1 (period of latch + 2) */
        if (d <= (s->counter_value + 1)) {
            counter = (s->counter_value - d) & 0xffff;
        } else {
            counter = (d - (s->counter_value + 1)) % (s->latch + 2);
            counter = (s->latch - counter) & 0xffff; 
        }
bellard authored
169
    } else {
bellard authored
170
        counter = (s->counter_value - d) & 0xffff;
bellard authored
171
172
173
174
    }
    return counter;
}
bellard authored
175
static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val)
bellard authored
176
{
bellard authored
177
178
179
180
181
182
183
#ifdef DEBUG_CUDA
    printf("cuda: T%d.counter=%d\n",
           1 + (ti->timer == NULL), val);
#endif
    ti->load_time = qemu_get_clock(vm_clock);
    ti->counter_value = val;
    cuda_timer_update(s, ti, ti->load_time);
bellard authored
184
185
186
187
}

static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time)
{
bellard authored
188
189
190
    int64_t d, next_time;
    unsigned int counter;
bellard authored
191
192
193
    /* current counter value */
    d = muldiv64(current_time - s->load_time, 
                 CUDA_TIMER_FREQ, ticks_per_sec);
bellard authored
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    /* the timer goes down from latch to -1 (period of latch + 2) */
    if (d <= (s->counter_value + 1)) {
        counter = (s->counter_value - d) & 0xffff;
    } else {
        counter = (d - (s->counter_value + 1)) % (s->latch + 2);
        counter = (s->latch - counter) & 0xffff; 
    }

    /* Note: we consider the irq is raised on 0 */
    if (counter == 0xffff) {
        next_time = d + s->latch + 1;
    } else if (counter == 0) {
        next_time = d + s->latch + 2;
    } else {
        next_time = d + counter;
bellard authored
209
    }
210
#if 0
bellard authored
211
212
213
214
#ifdef DEBUG_CUDA
    printf("latch=%d counter=%lld delta_next=%lld\n", 
           s->latch, d, next_time - d);
#endif
215
#endif
bellard authored
216
217
218
219
220
221
222
    next_time = muldiv64(next_time, ticks_per_sec, CUDA_TIMER_FREQ) + 
        s->load_time;
    if (next_time <= current_time)
        next_time = current_time + 1;
    return next_time;
}
bellard authored
223
224
225
226
227
228
229
230
231
232
233
234
235
static void cuda_timer_update(CUDAState *s, CUDATimer *ti, 
                              int64_t current_time)
{
    if (!ti->timer)
        return;
    if ((s->acr & T1MODE) != T1MODE_CONT) {
        qemu_del_timer(ti->timer);
    } else {
        ti->next_irq_time = get_next_irq_time(ti, current_time);
        qemu_mod_timer(ti->timer, ti->next_irq_time);
    }
}
bellard authored
236
237
238
239
240
static void cuda_timer1(void *opaque)
{
    CUDAState *s = opaque;
    CUDATimer *ti = &s->timers[0];
bellard authored
241
    cuda_timer_update(s, ti, ti->next_irq_time);
bellard authored
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    s->ifr |= T1_INT;
    cuda_update_irq(s);
}

static uint32_t cuda_readb(void *opaque, target_phys_addr_t addr)
{
    CUDAState *s = opaque;
    uint32_t val;

    addr = (addr >> 9) & 0xf;
    switch(addr) {
    case 0:
        val = s->b;
        break;
    case 1:
        val = s->a;
        break;
    case 2:
        val = s->dirb;
        break;
    case 3:
        val = s->dira;
        break;
    case 4:
        val = get_counter(&s->timers[0]) & 0xff;
        s->ifr &= ~T1_INT;
        cuda_update_irq(s);
        break;
    case 5:
        val = get_counter(&s->timers[0]) >> 8;
        cuda_update_irq(s);
        break;
    case 6:
        val = s->timers[0].latch & 0xff;
        break;
    case 7:
bellard authored
278
        /* XXX: check this */
bellard authored
279
280
281
282
        val = (s->timers[0].latch >> 8) & 0xff;
        break;
    case 8:
        val = get_counter(&s->timers[1]) & 0xff;
bellard authored
283
        s->ifr &= ~T2_INT;
bellard authored
284
285
286
287
288
        break;
    case 9:
        val = get_counter(&s->timers[1]) >> 8;
        break;
    case 10:
bellard authored
289
290
291
        val = s->sr;
        s->ifr &= ~SR_INT;
        cuda_update_irq(s);
bellard authored
292
293
294
295
296
297
298
299
300
        break;
    case 11:
        val = s->acr;
        break;
    case 12:
        val = s->pcr;
        break;
    case 13:
        val = s->ifr;
301
302
        if (s->ifr & s->ier) 
            val |= 0x80;
bellard authored
303
304
        break;
    case 14:
305
        val = s->ier | 0x80;
bellard authored
306
307
308
309
310
311
312
        break;
    default:
    case 15:
        val = s->anh;
        break;
    }
#ifdef DEBUG_CUDA
bellard authored
313
314
    if (addr != 13 || val != 0)
        printf("cuda: read: reg=0x%x val=%02x\n", addr, val);
bellard authored
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
#endif
    return val;
}

static void cuda_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
    CUDAState *s = opaque;

    addr = (addr >> 9) & 0xf;
#ifdef DEBUG_CUDA
    printf("cuda: write: reg=0x%x val=%02x\n", addr, val);
#endif

    switch(addr) {
    case 0:
        s->b = val;
        cuda_update(s);
        break;
    case 1:
        s->a = val;
        break;
    case 2:
        s->dirb = val;
        break;
    case 3:
        s->dira = val;
        break;
    case 4:
bellard authored
343
344
        s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
        cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
bellard authored
345
346
        break;
    case 5:
bellard authored
347
348
349
        s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
        s->ifr &= ~T1_INT;
        set_counter(s, &s->timers[0], s->timers[0].latch);
bellard authored
350
351
352
        break;
    case 6:
        s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
bellard authored
353
        cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
bellard authored
354
355
356
        break;
    case 7:
        s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
bellard authored
357
        s->ifr &= ~T1_INT;
bellard authored
358
        cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
bellard authored
359
360
        break;
    case 8:
bellard authored
361
        s->timers[1].latch = val;
bellard authored
362
        set_counter(s, &s->timers[1], val);
bellard authored
363
364
        break;
    case 9:
bellard authored
365
        set_counter(s, &s->timers[1], (val << 8) | s->timers[1].latch);
bellard authored
366
367
368
369
370
371
        break;
    case 10:
        s->sr = val;
        break;
    case 11:
        s->acr = val;
bellard authored
372
        cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
bellard authored
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
        cuda_update(s);
        break;
    case 12:
        s->pcr = val;
        break;
    case 13:
        /* reset bits */
        s->ifr &= ~val;
        cuda_update_irq(s);
        break;
    case 14:
        if (val & IER_SET) {
            /* set bits */
            s->ier |= val & 0x7f;
        } else {
            /* reset bits */
            s->ier &= ~val;
        }
        cuda_update_irq(s);
        break;
    default:
    case 15:
        s->anh = val;
        break;
    }
}

/* NOTE: TIP and TREQ are negated */
static void cuda_update(CUDAState *s)
{
bellard authored
403
404
405
406
407
    int packet_received, len;

    packet_received = 0;
    if (!(s->b & TIP)) {
        /* transfer requested from host */
bellard authored
408
bellard authored
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
        if (s->acr & SR_OUT) {
            /* data output */
            if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
                if (s->data_out_index < sizeof(s->data_out)) {
#ifdef DEBUG_CUDA
                    printf("cuda: send: %02x\n", s->sr);
#endif
                    s->data_out[s->data_out_index++] = s->sr;
                    s->ifr |= SR_INT;
                    cuda_update_irq(s);
                }
            }
        } else {
            if (s->data_in_index < s->data_in_size) {
                /* data input */
                if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
                    s->sr = s->data_in[s->data_in_index++];
#ifdef DEBUG_CUDA
                    printf("cuda: recv: %02x\n", s->sr);
#endif
                    /* indicate end of transfer */
                    if (s->data_in_index >= s->data_in_size) {
                        s->b = (s->b | TREQ);
                    }
                    s->ifr |= SR_INT;
                    cuda_update_irq(s);
                }
bellard authored
436
            }
bellard authored
437
438
439
440
441
442
443
444
445
        }
    } else {
        /* no transfer requested: handle sync case */
        if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) {
            /* update TREQ state each time TACK change state */
            if (s->b & TACK)
                s->b = (s->b | TREQ);
            else
                s->b = (s->b & ~TREQ);
bellard authored
446
447
            s->ifr |= SR_INT;
            cuda_update_irq(s);
bellard authored
448
449
450
451
452
453
454
455
456
457
458
459
        } else {
            if (!(s->last_b & TIP)) {
                /* handle end of host to cuda transfert */
                packet_received = (s->data_out_index > 0);
                /* always an IRQ at the end of transfert */
                s->ifr |= SR_INT;
                cuda_update_irq(s);
            }
            /* signal if there is data to read */
            if (s->data_in_index < s->data_in_size) {
                s->b = (s->b & ~TREQ);
            }
bellard authored
460
461
462
463
464
        }
    }

    s->last_acr = s->acr;
    s->last_b = s->b;
bellard authored
465
466
467
468
469
470
471
472

    /* NOTE: cuda_receive_packet_from_host() can call cuda_update()
       recursively */
    if (packet_received) {
        len = s->data_out_index;
        s->data_out_index = 0;
        cuda_receive_packet_from_host(s, s->data_out, len);
    }
bellard authored
473
474
475
476
477
}

static void cuda_send_packet_to_host(CUDAState *s, 
                                     const uint8_t *data, int len)
{
bellard authored
478
479
480
481
482
483
484
485
486
#ifdef DEBUG_CUDA_PACKET
    {
        int i;
        printf("cuda_send_packet_to_host:\n");
        for(i = 0; i < len; i++)
            printf(" %02x", data[i]);
        printf("\n");
    }
#endif
bellard authored
487
488
489
490
491
492
493
494
    memcpy(s->data_in, data, len);
    s->data_in_size = len;
    s->data_in_index = 0;
    cuda_update(s);
    s->ifr |= SR_INT;
    cuda_update_irq(s);
}
bellard authored
495
static void cuda_adb_poll(void *opaque)
bellard authored
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
{
    CUDAState *s = opaque;
    uint8_t obuf[ADB_MAX_OUT_LEN + 2];
    int olen;

    olen = adb_poll(&adb_bus, obuf + 2);
    if (olen > 0) {
        obuf[0] = ADB_PACKET;
        obuf[1] = 0x40; /* polled data */
        cuda_send_packet_to_host(s, obuf, olen + 2);
    }
    qemu_mod_timer(s->adb_poll_timer, 
                   qemu_get_clock(vm_clock) + 
                   (ticks_per_sec / CUDA_ADB_POLL_FREQ));
}
bellard authored
512
513
514
515
static void cuda_receive_packet(CUDAState *s, 
                                const uint8_t *data, int len)
{
    uint8_t obuf[16];
bellard authored
516
    int ti, autopoll;
bellard authored
517
518
519

    switch(data[0]) {
    case CUDA_AUTOPOLL:
bellard authored
520
521
522
523
524
525
526
527
528
529
530
        autopoll = (data[1] != 0);
        if (autopoll != s->autopoll) {
            s->autopoll = autopoll;
            if (autopoll) {
                qemu_mod_timer(s->adb_poll_timer, 
                               qemu_get_clock(vm_clock) + 
                               (ticks_per_sec / CUDA_ADB_POLL_FREQ));
            } else {
                qemu_del_timer(s->adb_poll_timer);
            }
        }
bellard authored
531
532
533
534
535
        obuf[0] = CUDA_PACKET;
        obuf[1] = data[1];
        cuda_send_packet_to_host(s, obuf, 2);
        break;
    case CUDA_GET_TIME:
536
    case CUDA_SET_TIME:
bellard authored
537
        /* XXX: add time support ? */
538
        ti = time(NULL) + RTC_OFFSET;
bellard authored
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
        obuf[0] = CUDA_PACKET;
        obuf[1] = 0;
        obuf[2] = 0;
        obuf[3] = ti >> 24;
        obuf[4] = ti >> 16;
        obuf[5] = ti >> 8;
        obuf[6] = ti;
        cuda_send_packet_to_host(s, obuf, 7);
        break;
    case CUDA_FILE_SERVER_FLAG:
    case CUDA_SET_DEVICE_LIST:
    case CUDA_SET_AUTO_RATE:
    case CUDA_SET_POWER_MESSAGES:
        obuf[0] = CUDA_PACKET;
        obuf[1] = 0;
        cuda_send_packet_to_host(s, obuf, 2);
        break;
556
557
558
559
560
561
    case CUDA_POWERDOWN:
        obuf[0] = CUDA_PACKET;
        obuf[1] = 0;
        cuda_send_packet_to_host(s, obuf, 2);
	qemu_system_shutdown_request();
	break;
bellard authored
562
563
564
565
566
567
568
569
    default:
        break;
    }
}

static void cuda_receive_packet_from_host(CUDAState *s, 
                                          const uint8_t *data, int len)
{
bellard authored
570
571
572
#ifdef DEBUG_CUDA_PACKET
    {
        int i;
573
        printf("cuda_receive_packet_from_host:\n");
bellard authored
574
575
576
577
578
        for(i = 0; i < len; i++)
            printf(" %02x", data[i]);
        printf("\n");
    }
#endif
bellard authored
579
580
    switch(data[0]) {
    case ADB_PACKET:
bellard authored
581
582
583
584
        {
            uint8_t obuf[ADB_MAX_OUT_LEN + 2];
            int olen;
            olen = adb_request(&adb_bus, obuf + 2, data + 1, len - 1);
bellard authored
585
            if (olen > 0) {
bellard authored
586
587
588
                obuf[0] = ADB_PACKET;
                obuf[1] = 0x00;
            } else {
bellard authored
589
                /* error */
bellard authored
590
                obuf[0] = ADB_PACKET;
bellard authored
591
592
                obuf[1] = -olen;
                olen = 0;
bellard authored
593
594
595
            }
            cuda_send_packet_to_host(s, obuf, olen + 2);
        }
bellard authored
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
        break;
    case CUDA_PACKET:
        cuda_receive_packet(s, data + 1, len - 1);
        break;
    }
}

static void cuda_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
{
}

static void cuda_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
}

static uint32_t cuda_readw (void *opaque, target_phys_addr_t addr)
{
    return 0;
}

static uint32_t cuda_readl (void *opaque, target_phys_addr_t addr)
{
    return 0;
}

static CPUWriteMemoryFunc *cuda_write[] = {
    &cuda_writeb,
    &cuda_writew,
    &cuda_writel,
};

static CPUReadMemoryFunc *cuda_read[] = {
    &cuda_readb,
    &cuda_readw,
    &cuda_readl,
};
633
int cuda_init(SetIRQFunc *set_irq, void *irq_opaque, int irq)
bellard authored
634
635
636
637
{
    CUDAState *s = &cuda_state;
    int cuda_mem_index;
638
639
    s->set_irq = set_irq;
    s->irq_opaque = irq_opaque;
bellard authored
640
641
    s->irq = irq;
bellard authored
642
    s->timers[0].index = 0;
bellard authored
643
    s->timers[0].timer = qemu_new_timer(vm_clock, cuda_timer1, s);
bellard authored
644
    s->timers[0].latch = 0xffff;
bellard authored
645
    set_counter(s, &s->timers[0], 0xffff);
bellard authored
646
647
648

    s->timers[1].index = 1;
    s->timers[1].latch = 0;
649
650
    //    s->ier = T1_INT | SR_INT;
    s->ier = 0;
bellard authored
651
    set_counter(s, &s->timers[1], 0xffff);
bellard authored
652
653

    s->adb_poll_timer = qemu_new_timer(vm_clock, cuda_adb_poll, s);
bellard authored
654
655
656
    cuda_mem_index = cpu_register_io_memory(0, cuda_read, cuda_write, s);
    return cuda_mem_index;
}