|
1
2
3
4
|
/*
* QEMU KVM support
*
* Copyright IBM, Corp. 2008
|
|
5
|
* Red Hat, Inc. 2008
|
|
6
7
8
|
*
* Authors:
* Anthony Liguori <aliguori@us.ibm.com>
|
|
9
|
* Glauber Costa <gcosta@redhat.com>
|
|
10
11
12
13
14
15
16
17
18
|
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
|
|
19
|
#include <stdarg.h>
|
|
20
21
22
23
24
|
#include <linux/kvm.h>
#include "qemu-common.h"
#include "sysemu.h"
|
|
25
|
#include "hw/hw.h"
|
|
26
|
#include "gdbstub.h"
|
|
27
28
|
#include "kvm.h"
|
|
29
30
31
|
/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
#define PAGE_SIZE TARGET_PAGE_SIZE
|
|
32
33
34
35
36
37
38
39
40
41
|
//#define DEBUG_KVM
#ifdef DEBUG_KVM
#define dprintf(fmt, ...) \
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
#define dprintf(fmt, ...) \
do { } while (0)
#endif
|
|
42
43
44
45
46
47
48
49
|
typedef struct KVMSlot
{
target_phys_addr_t start_addr;
ram_addr_t memory_size;
ram_addr_t phys_offset;
int slot;
int flags;
} KVMSlot;
|
|
50
|
|
|
51
52
|
typedef struct kvm_dirty_log KVMDirtyLog;
|
|
53
54
55
56
57
58
59
|
int kvm_allowed = 0;
struct KVMState
{
KVMSlot slots[32];
int fd;
int vmfd;
|
|
60
|
int coalesced_mmio;
|
|
61
|
int broken_set_mem_region;
|
|
62
|
int migration_log;
|
|
63
64
65
|
#ifdef KVM_CAP_SET_GUEST_DEBUG
struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
#endif
|
|
66
67
68
69
70
71
72
73
74
|
};
static KVMState *kvm_state;
static KVMSlot *kvm_alloc_slot(KVMState *s)
{
int i;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
|
|
75
76
77
|
/* KVM private memory slots */
if (i >= 8 && i < 12)
continue;
|
|
78
79
80
81
|
if (s->slots[i].memory_size == 0)
return &s->slots[i];
}
|
|
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
|
fprintf(stderr, "%s: no free slot available\n", __func__);
abort();
}
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
target_phys_addr_t start_addr,
target_phys_addr_t end_addr)
{
int i;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
KVMSlot *mem = &s->slots[i];
if (start_addr == mem->start_addr &&
end_addr == mem->start_addr + mem->memory_size) {
return mem;
}
}
|
|
101
102
103
|
return NULL;
}
|
|
104
105
106
107
108
109
|
/*
* Find overlapping slot with lowest start address
*/
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
target_phys_addr_t start_addr,
target_phys_addr_t end_addr)
|
|
110
|
{
|
|
111
|
KVMSlot *found = NULL;
|
|
112
113
114
115
116
|
int i;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
KVMSlot *mem = &s->slots[i];
|
|
117
118
119
120
121
122
123
124
125
|
if (mem->memory_size == 0 ||
(found && found->start_addr < mem->start_addr)) {
continue;
}
if (end_addr > mem->start_addr &&
start_addr < mem->start_addr + mem->memory_size) {
found = mem;
}
|
|
126
127
|
}
|
|
128
|
return found;
|
|
129
130
|
}
|
|
131
132
133
134
135
136
137
|
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
{
struct kvm_userspace_memory_region mem;
mem.slot = slot->slot;
mem.guest_phys_addr = slot->start_addr;
mem.memory_size = slot->memory_size;
|
|
138
|
mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
|
|
139
|
mem.flags = slot->flags;
|
|
140
141
142
|
if (s->migration_log) {
mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
}
|
|
143
144
145
146
|
return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
}
|
|
147
148
149
150
151
152
153
154
|
int kvm_init_vcpu(CPUState *env)
{
KVMState *s = kvm_state;
long mmap_size;
int ret;
dprintf("kvm_init_vcpu\n");
|
|
155
|
ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
|
|
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
|
if (ret < 0) {
dprintf("kvm_create_vcpu failed\n");
goto err;
}
env->kvm_fd = ret;
env->kvm_state = s;
mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
if (mmap_size < 0) {
dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
goto err;
}
env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
env->kvm_fd, 0);
if (env->kvm_run == MAP_FAILED) {
ret = -errno;
dprintf("mmap'ing vcpu state failed\n");
goto err;
}
ret = kvm_arch_init_vcpu(env);
err:
return ret;
}
|
|
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
int kvm_sync_vcpus(void)
{
CPUState *env;
for (env = first_cpu; env != NULL; env = env->next_cpu) {
int ret;
ret = kvm_arch_put_registers(env);
if (ret)
return ret;
}
return 0;
}
|
|
199
200
201
|
/*
* dirty pages logging control
*/
|
|
202
|
static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
|
|
203
|
ram_addr_t size, int flags, int mask)
|
|
204
205
|
{
KVMState *s = kvm_state;
|
|
206
|
KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
|
|
207
208
|
int old_flags;
|
|
209
|
if (mem == NULL) {
|
|
210
211
212
|
fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
TARGET_FMT_plx "\n", __func__, phys_addr,
phys_addr + size - 1);
|
|
213
214
215
|
return -EINVAL;
}
|
|
216
|
old_flags = mem->flags;
|
|
217
|
|
|
218
|
flags = (mem->flags & ~mask) | flags;
|
|
219
220
|
mem->flags = flags;
|
|
221
222
223
224
225
226
227
228
|
/* If nothing changed effectively, no need to issue ioctl */
if (s->migration_log) {
flags |= KVM_MEM_LOG_DIRTY_PAGES;
}
if (flags == old_flags) {
return 0;
}
|
|
229
230
231
|
return kvm_set_user_memory_region(s, mem);
}
|
|
232
|
int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
|
|
233
|
{
|
|
234
|
return kvm_dirty_pages_log_change(phys_addr, size,
|
|
235
236
237
238
|
KVM_MEM_LOG_DIRTY_PAGES,
KVM_MEM_LOG_DIRTY_PAGES);
}
|
|
239
|
int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
|
|
240
|
{
|
|
241
|
return kvm_dirty_pages_log_change(phys_addr, size,
|
|
242
243
244
245
|
0,
KVM_MEM_LOG_DIRTY_PAGES);
}
|
|
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
|
int kvm_set_migration_log(int enable)
{
KVMState *s = kvm_state;
KVMSlot *mem;
int i, err;
s->migration_log = enable;
for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
mem = &s->slots[i];
if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
continue;
}
err = kvm_set_user_memory_region(s, mem);
if (err) {
return err;
}
}
return 0;
}
|
|
268
269
270
271
272
|
/**
* kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
* This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
* This means all bits are set to dirty.
*
|
|
273
|
* @start_add: start of logged region.
|
|
274
275
|
* @end_addr: end of logged region.
*/
|
|
276
277
|
int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
target_phys_addr_t end_addr)
|
|
278
279
|
{
KVMState *s = kvm_state;
|
|
280
281
|
unsigned long size, allocated_size = 0;
target_phys_addr_t phys_addr;
|
|
282
|
ram_addr_t addr;
|
|
283
284
285
|
KVMDirtyLog d;
KVMSlot *mem;
int ret = 0;
|
|
286
|
|
|
287
288
289
290
291
292
|
d.dirty_bitmap = NULL;
while (start_addr < end_addr) {
mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
if (mem == NULL) {
break;
}
|
|
293
|
|
|
294
295
296
297
298
299
300
301
|
size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
if (!d.dirty_bitmap) {
d.dirty_bitmap = qemu_malloc(size);
} else if (size > allocated_size) {
d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
}
allocated_size = size;
memset(d.dirty_bitmap, 0, allocated_size);
|
|
302
|
|
|
303
|
d.slot = mem->slot;
|
|
304
|
|
|
305
306
307
308
309
|
if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
dprintf("ioctl failed %d\n", errno);
ret = -1;
break;
}
|
|
310
|
|
|
311
312
313
314
315
316
317
318
319
320
321
322
323
|
for (phys_addr = mem->start_addr, addr = mem->phys_offset;
phys_addr < mem->start_addr + mem->memory_size;
phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
unsigned long *bitmap = (unsigned long *)d.dirty_bitmap;
unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
unsigned word = nr / (sizeof(*bitmap) * 8);
unsigned bit = nr % (sizeof(*bitmap) * 8);
if ((bitmap[word] >> bit) & 1) {
cpu_physical_memory_set_dirty(addr);
}
}
start_addr = phys_addr;
|
|
324
325
|
}
qemu_free(d.dirty_bitmap);
|
|
326
327
|
return ret;
|
|
328
329
|
}
|
|
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
|
int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
{
int ret = -ENOSYS;
#ifdef KVM_CAP_COALESCED_MMIO
KVMState *s = kvm_state;
if (s->coalesced_mmio) {
struct kvm_coalesced_mmio_zone zone;
zone.addr = start;
zone.size = size;
ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
}
#endif
return ret;
}
int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
{
int ret = -ENOSYS;
#ifdef KVM_CAP_COALESCED_MMIO
KVMState *s = kvm_state;
if (s->coalesced_mmio) {
struct kvm_coalesced_mmio_zone zone;
zone.addr = start;
zone.size = size;
ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
}
#endif
return ret;
}
|
|
368
369
370
371
372
373
374
375
376
377
378
379
|
int kvm_check_extension(KVMState *s, unsigned int extension)
{
int ret;
ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
if (ret < 0) {
ret = 0;
}
return ret;
}
|
|
380
381
382
383
384
|
static void kvm_reset_vcpus(void *opaque)
{
kvm_sync_vcpus();
}
|
|
385
386
387
388
389
390
|
int kvm_init(int smp_cpus)
{
KVMState *s;
int ret;
int i;
|
|
391
392
|
if (smp_cpus > 1) {
fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
|
|
393
|
return -EINVAL;
|
|
394
|
}
|
|
395
396
397
|
s = qemu_mallocz(sizeof(KVMState));
|
|
398
399
400
|
#ifdef KVM_CAP_SET_GUEST_DEBUG
TAILQ_INIT(&s->kvm_sw_breakpoints);
#endif
|
|
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
|
for (i = 0; i < ARRAY_SIZE(s->slots); i++)
s->slots[i].slot = i;
s->vmfd = -1;
s->fd = open("/dev/kvm", O_RDWR);
if (s->fd == -1) {
fprintf(stderr, "Could not access KVM kernel module: %m\n");
ret = -errno;
goto err;
}
ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
if (ret < KVM_API_VERSION) {
if (ret > 0)
ret = -EINVAL;
fprintf(stderr, "kvm version too old\n");
goto err;
}
if (ret > KVM_API_VERSION) {
ret = -EINVAL;
fprintf(stderr, "kvm version not supported\n");
goto err;
}
s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
if (s->vmfd < 0)
goto err;
/* initially, KVM allocated its own memory and we had to jump through
* hooks to make phys_ram_base point to this. Modern versions of KVM
|
|
432
|
* just use a user allocated buffer so we can use regular pages
|
|
433
434
|
* unmodified. Make sure we have a sufficiently modern version of KVM.
*/
|
|
435
436
|
if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
ret = -EINVAL;
|
|
437
438
439
440
|
fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n");
goto err;
}
|
|
441
442
443
|
/* There was a nasty bug in < kvm-80 that prevents memory slots from being
* destroyed properly. Since we rely on this capability, refuse to work
* with any kernel without this capability. */
|
|
444
445
|
if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
ret = -EINVAL;
|
|
446
447
448
449
450
451
452
|
fprintf(stderr,
"KVM kernel module broken (DESTROY_MEMORY_REGION)\n"
"Please upgrade to at least kvm-81.\n");
goto err;
}
|
|
453
|
#ifdef KVM_CAP_COALESCED_MMIO
|
|
454
455
456
|
s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
#else
s->coalesced_mmio = 0;
|
|
457
458
|
#endif
|
|
459
460
461
462
463
464
465
466
|
s->broken_set_mem_region = 1;
#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
if (ret > 0) {
s->broken_set_mem_region = 0;
}
#endif
|
|
467
468
469
470
|
ret = kvm_arch_init(s, smp_cpus);
if (ret < 0)
goto err;
|
|
471
472
|
qemu_register_reset(kvm_reset_vcpus, INT_MAX, NULL);
|
|
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
|
kvm_state = s;
return 0;
err:
if (s) {
if (s->vmfd != -1)
close(s->vmfd);
if (s->fd != -1)
close(s->fd);
}
qemu_free(s);
return ret;
}
static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
int direction, int size, uint32_t count)
{
int i;
uint8_t *ptr = data;
for (i = 0; i < count; i++) {
if (direction == KVM_EXIT_IO_IN) {
switch (size) {
case 1:
stb_p(ptr, cpu_inb(env, port));
break;
case 2:
stw_p(ptr, cpu_inw(env, port));
break;
case 4:
stl_p(ptr, cpu_inl(env, port));
break;
}
} else {
switch (size) {
case 1:
cpu_outb(env, port, ldub_p(ptr));
break;
case 2:
cpu_outw(env, port, lduw_p(ptr));
break;
case 4:
cpu_outl(env, port, ldl_p(ptr));
break;
}
}
ptr += size;
}
return 1;
}
|
|
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
|
static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
{
#ifdef KVM_CAP_COALESCED_MMIO
KVMState *s = kvm_state;
if (s->coalesced_mmio) {
struct kvm_coalesced_mmio_ring *ring;
ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
while (ring->first != ring->last) {
struct kvm_coalesced_mmio *ent;
ent = &ring->coalesced_mmio[ring->first];
cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
/* FIXME smp_wmb() */
ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
}
}
#endif
}
|
|
549
550
551
552
553
554
555
556
557
558
|
int kvm_cpu_exec(CPUState *env)
{
struct kvm_run *run = env->kvm_run;
int ret;
dprintf("kvm_cpu_exec()\n");
do {
kvm_arch_pre_run(env, run);
|
|
559
|
if (env->exit_request) {
|
|
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
|
dprintf("interrupt exit requested\n");
ret = 0;
break;
}
ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
kvm_arch_post_run(env, run);
if (ret == -EINTR || ret == -EAGAIN) {
dprintf("io window exit\n");
ret = 0;
break;
}
if (ret < 0) {
dprintf("kvm run failed %s\n", strerror(-ret));
abort();
}
|
|
579
580
|
kvm_run_coalesced_mmio(env, run);
|
|
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
|
ret = 0; /* exit loop */
switch (run->exit_reason) {
case KVM_EXIT_IO:
dprintf("handle_io\n");
ret = kvm_handle_io(env, run->io.port,
(uint8_t *)run + run->io.data_offset,
run->io.direction,
run->io.size,
run->io.count);
break;
case KVM_EXIT_MMIO:
dprintf("handle_mmio\n");
cpu_physical_memory_rw(run->mmio.phys_addr,
run->mmio.data,
run->mmio.len,
run->mmio.is_write);
ret = 1;
break;
case KVM_EXIT_IRQ_WINDOW_OPEN:
dprintf("irq_window_open\n");
break;
case KVM_EXIT_SHUTDOWN:
dprintf("shutdown\n");
qemu_system_reset_request();
ret = 1;
break;
case KVM_EXIT_UNKNOWN:
dprintf("kvm_exit_unknown\n");
break;
case KVM_EXIT_FAIL_ENTRY:
dprintf("kvm_exit_fail_entry\n");
break;
case KVM_EXIT_EXCEPTION:
dprintf("kvm_exit_exception\n");
break;
case KVM_EXIT_DEBUG:
dprintf("kvm_exit_debug\n");
|
|
618
619
620
621
622
623
624
625
626
627
|
#ifdef KVM_CAP_SET_GUEST_DEBUG
if (kvm_arch_debug(&run->debug.arch)) {
gdb_set_stop_cpu(env);
vm_stop(EXCP_DEBUG);
env->exception_index = EXCP_DEBUG;
return 0;
}
/* re-enter, this exception was guest-internal */
ret = 1;
#endif /* KVM_CAP_SET_GUEST_DEBUG */
|
|
628
629
630
631
632
633
634
635
|
break;
default:
dprintf("kvm_arch_handle_exit\n");
ret = kvm_arch_handle_exit(env, run);
break;
}
} while (ret > 0);
|
|
636
637
|
if (env->exit_request) {
env->exit_request = 0;
|
|
638
639
640
|
env->exception_index = EXCP_INTERRUPT;
}
|
|
641
642
643
644
645
646
647
648
649
|
return ret;
}
void kvm_set_phys_mem(target_phys_addr_t start_addr,
ram_addr_t size,
ram_addr_t phys_offset)
{
KVMState *s = kvm_state;
ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
|
|
650
651
|
KVMSlot *mem, old;
int err;
|
|
652
|
|
|
653
|
if (start_addr & ~TARGET_PAGE_MASK) {
|
|
654
655
656
657
658
659
660
661
662
|
if (flags >= IO_MEM_UNASSIGNED) {
if (!kvm_lookup_overlapping_slot(s, start_addr,
start_addr + size)) {
return;
}
fprintf(stderr, "Unaligned split of a KVM memory slot\n");
} else {
fprintf(stderr, "Only page-aligned memory slots supported\n");
}
|
|
663
664
665
|
abort();
}
|
|
666
667
668
|
/* KVM does not support read-only slots */
phys_offset &= ~IO_MEM_ROM;
|
|
669
670
671
672
673
|
while (1) {
mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
if (!mem) {
break;
}
|
|
674
|
|
|
675
676
677
678
679
|
if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
(start_addr + size <= mem->start_addr + mem->memory_size) &&
(phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
/* The new slot fits into the existing one and comes with
* identical parameters - nothing to be done. */
|
|
680
|
return;
|
|
681
682
683
684
685
686
687
688
689
690
|
}
old = *mem;
/* unregister the overlapping slot */
mem->memory_size = 0;
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
__func__, strerror(-err));
|
|
691
692
|
abort();
}
|
|
693
694
695
696
697
698
699
700
701
|
/* Workaround for older KVM versions: we can't join slots, even not by
* unregistering the previous ones and then registering the larger
* slot. We have to maintain the existing fragmentation. Sigh.
*
* This workaround assumes that the new slot starts at the same
* address as the first existing one. If not or if some overlapping
* slot comes around later, we will fail (not seen in practice so far)
* - and actually require a recent KVM version. */
|
|
702
703
|
if (s->broken_set_mem_region &&
old.start_addr == start_addr && old.memory_size < size &&
|
|
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
|
flags < IO_MEM_UNASSIGNED) {
mem = kvm_alloc_slot(s);
mem->memory_size = old.memory_size;
mem->start_addr = old.start_addr;
mem->phys_offset = old.phys_offset;
mem->flags = 0;
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error updating slot: %s\n", __func__,
strerror(-err));
abort();
}
start_addr += old.memory_size;
phys_offset += old.memory_size;
size -= old.memory_size;
continue;
}
/* register prefix slot */
if (old.start_addr < start_addr) {
mem = kvm_alloc_slot(s);
mem->memory_size = start_addr - old.start_addr;
mem->start_addr = old.start_addr;
mem->phys_offset = old.phys_offset;
mem->flags = 0;
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error registering prefix slot: %s\n",
__func__, strerror(-err));
abort();
}
}
/* register suffix slot */
if (old.start_addr + old.memory_size > start_addr + size) {
ram_addr_t size_delta;
mem = kvm_alloc_slot(s);
mem->start_addr = start_addr + size;
size_delta = mem->start_addr - old.start_addr;
mem->memory_size = old.memory_size - size_delta;
mem->phys_offset = old.phys_offset + size_delta;
mem->flags = 0;
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error registering suffix slot: %s\n",
__func__, strerror(-err));
abort();
}
}
|
|
758
|
}
|
|
759
760
761
762
763
|
/* in case the KVM bug workaround already "consumed" the new slot */
if (!size)
return;
|
|
764
765
766
767
768
769
|
/* KVM does not need to know about this memory */
if (flags >= IO_MEM_UNASSIGNED)
return;
mem = kvm_alloc_slot(s);
mem->memory_size = size;
|
|
770
771
|
mem->start_addr = start_addr;
mem->phys_offset = phys_offset;
|
|
772
773
|
mem->flags = 0;
|
|
774
775
776
777
778
779
|
err = kvm_set_user_memory_region(s, mem);
if (err) {
fprintf(stderr, "%s: error registering slot: %s\n", __func__,
strerror(-err));
abort();
}
|
|
780
781
|
}
|
|
782
|
int kvm_ioctl(KVMState *s, int type, ...)
|
|
783
784
|
{
int ret;
|
|
785
786
|
void *arg;
va_list ap;
|
|
787
|
|
|
788
789
790
791
792
|
va_start(ap, type);
arg = va_arg(ap, void *);
va_end(ap);
ret = ioctl(s->fd, type, arg);
|
|
793
794
795
796
797
798
|
if (ret == -1)
ret = -errno;
return ret;
}
|
|
799
|
int kvm_vm_ioctl(KVMState *s, int type, ...)
|
|
800
801
|
{
int ret;
|
|
802
803
804
805
806
807
|
void *arg;
va_list ap;
va_start(ap, type);
arg = va_arg(ap, void *);
va_end(ap);
|
|
808
|
|
|
809
|
ret = ioctl(s->vmfd, type, arg);
|
|
810
811
812
813
814
815
|
if (ret == -1)
ret = -errno;
return ret;
}
|
|
816
|
int kvm_vcpu_ioctl(CPUState *env, int type, ...)
|
|
817
818
|
{
int ret;
|
|
819
820
821
822
823
824
|
void *arg;
va_list ap;
va_start(ap, type);
arg = va_arg(ap, void *);
va_end(ap);
|
|
825
|
|
|
826
|
ret = ioctl(env->kvm_fd, type, arg);
|
|
827
828
829
830
831
|
if (ret == -1)
ret = -errno;
return ret;
}
|
|
832
833
834
|
int kvm_has_sync_mmu(void)
{
|
|
835
|
#ifdef KVM_CAP_SYNC_MMU
|
|
836
837
|
KVMState *s = kvm_state;
|
|
838
839
|
return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
#else
|
|
840
|
return 0;
|
|
841
|
#endif
|
|
842
|
}
|
|
843
|
|
|
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
|
void kvm_setup_guest_memory(void *start, size_t size)
{
if (!kvm_has_sync_mmu()) {
#ifdef MADV_DONTFORK
int ret = madvise(start, size, MADV_DONTFORK);
if (ret) {
perror("madvice");
exit(1);
}
#else
fprintf(stderr,
"Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
exit(1);
#endif
}
}
|
|
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
|
#ifdef KVM_CAP_SET_GUEST_DEBUG
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
target_ulong pc)
{
struct kvm_sw_breakpoint *bp;
TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
if (bp->pc == pc)
return bp;
}
return NULL;
}
int kvm_sw_breakpoints_active(CPUState *env)
{
return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
}
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
{
struct kvm_guest_debug dbg;
dbg.control = 0;
if (env->singlestep_enabled)
dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
kvm_arch_update_guest_debug(env, &dbg);
dbg.control |= reinject_trap;
return kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg);
}
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
target_ulong len, int type)
{
struct kvm_sw_breakpoint *bp;
CPUState *env;
int err;
if (type == GDB_BREAKPOINT_SW) {
bp = kvm_find_sw_breakpoint(current_env, addr);
if (bp) {
bp->use_count++;
return 0;
}
bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
if (!bp)
return -ENOMEM;
bp->pc = addr;
bp->use_count = 1;
err = kvm_arch_insert_sw_breakpoint(current_env, bp);
if (err) {
free(bp);
return err;
}
TAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints,
bp, entry);
} else {
err = kvm_arch_insert_hw_breakpoint(addr, len, type);
if (err)
return err;
}
for (env = first_cpu; env != NULL; env = env->next_cpu) {
err = kvm_update_guest_debug(env, 0);
if (err)
return err;
}
return 0;
}
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
target_ulong len, int type)
{
struct kvm_sw_breakpoint *bp;
CPUState *env;
int err;
if (type == GDB_BREAKPOINT_SW) {
bp = kvm_find_sw_breakpoint(current_env, addr);
if (!bp)
return -ENOENT;
if (bp->use_count > 1) {
bp->use_count--;
return 0;
}
err = kvm_arch_remove_sw_breakpoint(current_env, bp);
if (err)
return err;
TAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry);
qemu_free(bp);
} else {
err = kvm_arch_remove_hw_breakpoint(addr, len, type);
if (err)
return err;
}
for (env = first_cpu; env != NULL; env = env->next_cpu) {
err = kvm_update_guest_debug(env, 0);
if (err)
return err;
}
return 0;
}
void kvm_remove_all_breakpoints(CPUState *current_env)
{
struct kvm_sw_breakpoint *bp, *next;
KVMState *s = current_env->kvm_state;
CPUState *env;
TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
/* Try harder to find a CPU that currently sees the breakpoint. */
for (env = first_cpu; env != NULL; env = env->next_cpu) {
if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
break;
}
}
}
kvm_arch_remove_all_hw_breakpoints();
for (env = first_cpu; env != NULL; env = env->next_cpu)
kvm_update_guest_debug(env, 0);
}
#else /* !KVM_CAP_SET_GUEST_DEBUG */
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
{
return -EINVAL;
}
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
target_ulong len, int type)
{
return -EINVAL;
}
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
target_ulong len, int type)
{
return -EINVAL;
}
void kvm_remove_all_breakpoints(CPUState *current_env)
{
}
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
|