1
2
/*
* KQEMU support
ths
authored
18 years ago
3
*
4
* Copyright ( c ) 2005 - 2008 Fabrice Bellard
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
*
* This library is free software ; you can redistribute it and / or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation ; either
* version 2 of the License , or ( at your option ) any later version .
*
* This library is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU
* Lesser General Public License for more details .
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library ; if not , write to the Free Software
* Foundation , Inc ., 59 Temple Place , Suite 330 , Boston , MA 02111 - 1307 USA
*/
# include "config.h"
# ifdef _WIN32
ths
authored
17 years ago
22
# define WIN32_LEAN_AND_MEAN
23
# include < windows . h >
24
# include < winioctl . h >
25
26
27
# else
# include < sys / types . h >
# include < sys / mman . h >
28
# include < sys / ioctl . h >
29
# endif
ths
authored
18 years ago
30
# ifdef HOST_SOLARIS
ths
authored
18 years ago
31
# include < sys / ioccom . h >
ths
authored
18 years ago
32
# endif
33
34
35
36
37
38
39
40
41
42
# include < stdlib . h >
# include < stdio . h >
# include < stdarg . h >
# include < string . h >
# include < errno . h >
# include < unistd . h >
# include < inttypes . h >
# include "cpu.h"
# include "exec-all.h"
43
# include "qemu-common.h"
44
45
46
47
# ifdef USE_KQEMU
# define DEBUG
48
// # define PROFILE
49
50
51
# include < unistd . h >
# include < fcntl . h >
52
# include "kqemu.h"
53
54
55
56
# ifdef _WIN32
# define KQEMU_DEVICE " \\\\ . \\ kqemu"
# else
57
# define KQEMU_DEVICE "/dev/kqemu"
58
59
# endif
60
61
static void qpi_init ( void );
62
63
64
65
66
67
68
69
70
# ifdef _WIN32
# define KQEMU_INVALID_FD INVALID_HANDLE_VALUE
HANDLE kqemu_fd = KQEMU_INVALID_FD ;
# define kqemu_closefd ( x ) CloseHandle ( x )
# else
# define KQEMU_INVALID_FD - 1
int kqemu_fd = KQEMU_INVALID_FD ;
# define kqemu_closefd ( x ) close ( x )
# endif
71
72
73
74
75
/* 0 = not allowed
1 = user kqemu
2 = kernel kqemu
*/
76
int kqemu_allowed = 1 ;
77
uint64_t * pages_to_flush ;
78
unsigned int nb_pages_to_flush ;
79
uint64_t * ram_pages_to_update ;
80
unsigned int nb_ram_pages_to_update ;
81
uint64_t * modified_ram_pages ;
82
83
unsigned int nb_modified_ram_pages ;
uint8_t * modified_ram_pages_table ;
84
85
int qpi_io_memory ;
uint32_t kqemu_comm_base ; /* physical address of the QPI communication page */
86
87
88
89
90
91
# define cpuid ( index , eax , ebx , ecx , edx ) \
asm volatile ( "cpuid" \
: "=a" ( eax ), "=b" ( ebx ), "=c" ( ecx ), "=d" ( edx ) \
: "0" ( index ))
92
93
94
95
96
97
# ifdef __x86_64__
static int is_cpuid_supported ( void )
{
return 1 ;
}
# else
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
static int is_cpuid_supported ( void )
{
int v0 , v1 ;
asm volatile ( "pushf \n "
"popl %0 \n "
"movl %0, %1 \n "
"xorl $0x00200000, %0 \n "
"pushl %0 \n "
"popf \n "
"pushf \n "
"popl %0 \n "
: "=a" ( v0 ), "=d" ( v1 )
:
: "cc" );
return ( v0 != v1 );
}
114
# endif
115
116
117
static void kqemu_update_cpuid ( CPUState * env )
{
118
int critical_features_mask , features , ext_features , ext_features_mask ;
119
120
121
122
123
124
uint32_t eax , ebx , ecx , edx ;
/* the following features are kept identical on the host and
target cpus because they are important for user code . Strictly
speaking , only SSE really matters because the OS must support
it if the user code uses it . */
ths
authored
18 years ago
125
126
127
critical_features_mask =
CPUID_CMOV | CPUID_CX8 |
CPUID_FXSR | CPUID_MMX | CPUID_SSE |
128
CPUID_SSE2 | CPUID_SEP ;
129
ext_features_mask = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR ;
130
131
if ( ! is_cpuid_supported ()) {
features = 0 ;
132
ext_features = 0 ;
133
134
135
} else {
cpuid ( 1 , eax , ebx , ecx , edx );
features = edx ;
136
ext_features = ecx ;
137
}
138
139
140
141
142
143
# ifdef __x86_64__
/* NOTE : on x86_64 CPUs , SYSENTER is not supported in
compatibility mode , so in order to have the best performances
it is better not to use it */
features &= ~ CPUID_SEP ;
# endif
144
145
env -> cpuid_features = ( env -> cpuid_features & ~ critical_features_mask ) |
( features & critical_features_mask );
146
147
env -> cpuid_ext_features = ( env -> cpuid_ext_features & ~ ext_features_mask ) |
( ext_features & ext_features_mask );
148
149
150
151
152
153
154
/* XXX : we could update more of the target CPUID state so that the
non accelerated code sees exactly the same CPU features as the
accelerated code */
}
int kqemu_init ( CPUState * env )
{
155
struct kqemu_init kinit ;
156
int ret , version ;
157
158
159
# ifdef _WIN32
DWORD temp ;
# endif
160
161
162
163
if ( ! kqemu_allowed )
return - 1 ;
164
165
166
167
168
# ifdef _WIN32
kqemu_fd = CreateFile ( KQEMU_DEVICE , GENERIC_WRITE | GENERIC_READ ,
FILE_SHARE_READ | FILE_SHARE_WRITE ,
NULL , OPEN_EXISTING , FILE_ATTRIBUTE_NORMAL ,
NULL );
malc
authored
17 years ago
169
170
171
172
173
if ( kqemu_fd == KQEMU_INVALID_FD ) {
fprintf ( stderr , "Could not open '%s' - QEMU acceleration layer not activated: %lu \n " ,
KQEMU_DEVICE , GetLastError ());
return - 1 ;
}
174
# else
175
kqemu_fd = open ( KQEMU_DEVICE , O_RDWR );
176
if ( kqemu_fd == KQEMU_INVALID_FD ) {
ths
authored
18 years ago
177
178
fprintf ( stderr , "Could not open '%s' - QEMU acceleration layer not activated: %s \n " ,
KQEMU_DEVICE , strerror ( errno ));
179
180
return - 1 ;
}
malc
authored
17 years ago
181
# endif
182
version = 0 ;
183
184
185
186
# ifdef _WIN32
DeviceIoControl ( kqemu_fd , KQEMU_GET_VERSION , NULL , 0 ,
& version , sizeof ( version ), & temp , NULL );
# else
187
ioctl ( kqemu_fd , KQEMU_GET_VERSION , & version );
188
# endif
189
190
191
192
193
194
if ( version != KQEMU_VERSION ) {
fprintf ( stderr , "Version mismatch between kqemu module and qemu (%08x %08x) - disabling kqemu use \n " ,
version , KQEMU_VERSION );
goto fail ;
}
ths
authored
18 years ago
195
pages_to_flush = qemu_vmalloc ( KQEMU_MAX_PAGES_TO_FLUSH *
196
sizeof ( uint64_t ));
197
198
199
if ( ! pages_to_flush )
goto fail ;
ths
authored
18 years ago
200
ram_pages_to_update = qemu_vmalloc ( KQEMU_MAX_RAM_PAGES_TO_UPDATE *
201
sizeof ( uint64_t ));
202
203
204
if ( ! ram_pages_to_update )
goto fail ;
ths
authored
18 years ago
205
modified_ram_pages = qemu_vmalloc ( KQEMU_MAX_MODIFIED_RAM_PAGES *
206
sizeof ( uint64_t ));
207
208
209
210
211
212
if ( ! modified_ram_pages )
goto fail ;
modified_ram_pages_table = qemu_mallocz ( phys_ram_size >> TARGET_PAGE_BITS );
if ( ! modified_ram_pages_table )
goto fail ;
213
214
215
216
217
218
219
memset ( & kinit , 0 , sizeof ( kinit )); /* set the paddings to zero */
kinit . ram_base = phys_ram_base ;
kinit . ram_size = phys_ram_size ;
kinit . ram_dirty = phys_ram_dirty ;
kinit . pages_to_flush = pages_to_flush ;
kinit . ram_pages_to_update = ram_pages_to_update ;
kinit . modified_ram_pages = modified_ram_pages ;
220
# ifdef _WIN32
221
ret = DeviceIoControl ( kqemu_fd , KQEMU_INIT , & kinit , sizeof ( kinit ),
222
223
NULL , 0 , & temp , NULL ) == TRUE ? 0 : - 1 ;
# else
224
ret = ioctl ( kqemu_fd , KQEMU_INIT , & kinit );
225
# endif
226
227
228
if ( ret < 0 ) {
fprintf ( stderr , "Error %d while initializing QEMU acceleration layer - disabling it for now \n " , ret );
fail :
229
230
kqemu_closefd ( kqemu_fd );
kqemu_fd = KQEMU_INVALID_FD ;
231
232
233
return - 1 ;
}
kqemu_update_cpuid ( env );
234
env -> kqemu_enabled = kqemu_allowed ;
235
nb_pages_to_flush = 0 ;
236
nb_ram_pages_to_update = 0 ;
237
238
qpi_init ();
239
240
241
242
243
return 0 ;
}
void kqemu_flush_page ( CPUState * env , target_ulong addr )
{
244
# if defined ( DEBUG )
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
if ( loglevel & CPU_LOG_INT ) {
fprintf ( logfile , "kqemu_flush_page: addr=" TARGET_FMT_lx " \n " , addr );
}
# endif
if ( nb_pages_to_flush >= KQEMU_MAX_PAGES_TO_FLUSH )
nb_pages_to_flush = KQEMU_FLUSH_ALL ;
else
pages_to_flush [ nb_pages_to_flush ++ ] = addr ;
}
void kqemu_flush ( CPUState * env , int global )
{
# ifdef DEBUG
if ( loglevel & CPU_LOG_INT ) {
fprintf ( logfile , "kqemu_flush: \n " );
}
# endif
nb_pages_to_flush = KQEMU_FLUSH_ALL ;
}
265
266
267
268
void kqemu_set_notdirty ( CPUState * env , ram_addr_t ram_addr )
{
# ifdef DEBUG
if ( loglevel & CPU_LOG_INT ) {
269
270
fprintf ( logfile , "kqemu_set_notdirty: addr=%08lx \n " ,
( unsigned long ) ram_addr );
271
272
}
# endif
273
274
275
/* we only track transitions to dirty state */
if ( phys_ram_dirty [ ram_addr >> TARGET_PAGE_BITS ] != 0xff )
return ;
276
277
278
279
280
281
if ( nb_ram_pages_to_update >= KQEMU_MAX_RAM_PAGES_TO_UPDATE )
nb_ram_pages_to_update = KQEMU_RAM_PAGES_UPDATE_ALL ;
else
ram_pages_to_update [ nb_ram_pages_to_update ++ ] = ram_addr ;
}
282
283
284
285
static void kqemu_reset_modified_ram_pages ( void )
{
int i ;
unsigned long page_index ;
ths
authored
18 years ago
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
for ( i = 0 ; i < nb_modified_ram_pages ; i ++ ) {
page_index = modified_ram_pages [ i ] >> TARGET_PAGE_BITS ;
modified_ram_pages_table [ page_index ] = 0 ;
}
nb_modified_ram_pages = 0 ;
}
void kqemu_modify_page ( CPUState * env , ram_addr_t ram_addr )
{
unsigned long page_index ;
int ret ;
# ifdef _WIN32
DWORD temp ;
# endif
page_index = ram_addr >> TARGET_PAGE_BITS ;
if ( ! modified_ram_pages_table [ page_index ]) {
# if 0
printf ( "%d: modify_page=%08lx \n " , nb_modified_ram_pages , ram_addr );
# endif
modified_ram_pages_table [ page_index ] = 1 ;
modified_ram_pages [ nb_modified_ram_pages ++ ] = ram_addr ;
if ( nb_modified_ram_pages >= KQEMU_MAX_MODIFIED_RAM_PAGES ) {
/* flush */
# ifdef _WIN32
ths
authored
18 years ago
312
313
ret = DeviceIoControl ( kqemu_fd , KQEMU_MODIFY_RAM_PAGES ,
& nb_modified_ram_pages ,
314
315
316
sizeof ( nb_modified_ram_pages ),
NULL , 0 , & temp , NULL );
# else
ths
authored
18 years ago
317
ret = ioctl ( kqemu_fd , KQEMU_MODIFY_RAM_PAGES ,
318
319
320
321
322
323
324
& nb_modified_ram_pages );
# endif
kqemu_reset_modified_ram_pages ();
}
}
}
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
void kqemu_set_phys_mem ( uint64_t start_addr , ram_addr_t size ,
ram_addr_t phys_offset )
{
struct kqemu_phys_mem kphys_mem1 , * kphys_mem = & kphys_mem1 ;
uint64_t end ;
int ret , io_index ;
end = ( start_addr + size + TARGET_PAGE_SIZE - 1 ) & TARGET_PAGE_MASK ;
start_addr &= TARGET_PAGE_MASK ;
kphys_mem -> phys_addr = start_addr ;
kphys_mem -> size = end - start_addr ;
kphys_mem -> ram_addr = phys_offset & TARGET_PAGE_MASK ;
io_index = phys_offset & ~ TARGET_PAGE_MASK ;
switch ( io_index ) {
case IO_MEM_RAM :
kphys_mem -> io_index = KQEMU_IO_MEM_RAM ;
break ;
case IO_MEM_ROM :
kphys_mem -> io_index = KQEMU_IO_MEM_ROM ;
break ;
default :
if ( qpi_io_memory == io_index ) {
kphys_mem -> io_index = KQEMU_IO_MEM_COMM ;
} else {
kphys_mem -> io_index = KQEMU_IO_MEM_UNASSIGNED ;
}
break ;
}
# ifdef _WIN32
{
DWORD temp ;
ret = DeviceIoControl ( kqemu_fd , KQEMU_SET_PHYS_MEM ,
kphys_mem , sizeof ( * kphys_mem ),
NULL , 0 , & temp , NULL ) == TRUE ? 0 : - 1 ;
}
# else
ret = ioctl ( kqemu_fd , KQEMU_SET_PHYS_MEM , kphys_mem );
# endif
if ( ret < 0 ) {
fprintf ( stderr , "kqemu: KQEMU_SET_PHYS_PAGE error=%d: start_addr=0x%016" PRIx64 " size=0x%08lx phys_offset=0x%08lx \n " ,
ret , start_addr ,
( unsigned long ) size , ( unsigned long ) phys_offset );
}
}
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
struct fpstate {
uint16_t fpuc ;
uint16_t dummy1 ;
uint16_t fpus ;
uint16_t dummy2 ;
uint16_t fptag ;
uint16_t dummy3 ;
uint32_t fpip ;
uint32_t fpcs ;
uint32_t fpoo ;
uint32_t fpos ;
uint8_t fpregs1 [ 8 * 10 ];
};
struct fpxstate {
uint16_t fpuc ;
uint16_t fpus ;
uint16_t fptag ;
uint16_t fop ;
uint32_t fpuip ;
uint16_t cs_sel ;
uint16_t dummy0 ;
uint32_t fpudp ;
uint16_t ds_sel ;
uint16_t dummy1 ;
uint32_t mxcsr ;
uint32_t mxcsr_mask ;
uint8_t fpregs1 [ 8 * 16 ];
399
400
uint8_t xmm_regs [ 16 * 16 ];
uint8_t dummy2 [ 96 ];
401
402
403
404
405
406
407
408
};
static struct fpxstate fpx1 __attribute__ (( aligned ( 16 )));
static void restore_native_fp_frstor ( CPUState * env )
{
int fptag , i , j ;
struct fpstate fp1 , * fp = & fp1 ;
ths
authored
18 years ago
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
fp -> fpuc = env -> fpuc ;
fp -> fpus = ( env -> fpus & ~ 0x3800 ) | ( env -> fpstt & 0x7 ) << 11 ;
fptag = 0 ;
for ( i = 7 ; i >= 0 ; i -- ) {
fptag <<= 2 ;
if ( env -> fptags [ i ]) {
fptag |= 3 ;
} else {
/* the FPU automatically computes it */
}
}
fp -> fptag = fptag ;
j = env -> fpstt ;
for ( i = 0 ; i < 8 ; i ++ ) {
memcpy ( & fp -> fpregs1 [ i * 10 ], & env -> fpregs [ j ]. d , 10 );
j = ( j + 1 ) & 7 ;
}
asm volatile ( "frstor %0" : "=m" ( * fp ));
}
ths
authored
18 years ago
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
static void save_native_fp_fsave ( CPUState * env )
{
int fptag , i , j ;
uint16_t fpuc ;
struct fpstate fp1 , * fp = & fp1 ;
asm volatile ( "fsave %0" : : "m" ( * fp ));
env -> fpuc = fp -> fpuc ;
env -> fpstt = ( fp -> fpus >> 11 ) & 7 ;
env -> fpus = fp -> fpus & ~ 0x3800 ;
fptag = fp -> fptag ;
for ( i = 0 ; i < 8 ; i ++ ) {
env -> fptags [ i ] = (( fptag & 3 ) == 3 );
fptag >>= 2 ;
}
j = env -> fpstt ;
for ( i = 0 ; i < 8 ; i ++ ) {
memcpy ( & env -> fpregs [ j ]. d , & fp -> fpregs1 [ i * 10 ], 10 );
j = ( j + 1 ) & 7 ;
}
/* we must restore the default rounding state */
fpuc = 0x037f | ( env -> fpuc & ( 3 << 10 ));
asm volatile ( "fldcw %0" : : "m" ( fpuc ));
}
static void restore_native_fp_fxrstor ( CPUState * env )
{
struct fpxstate * fp = & fpx1 ;
int i , j , fptag ;
fp -> fpuc = env -> fpuc ;
fp -> fpus = ( env -> fpus & ~ 0x3800 ) | ( env -> fpstt & 0x7 ) << 11 ;
fptag = 0 ;
for ( i = 0 ; i < 8 ; i ++ )
fptag |= ( env -> fptags [ i ] << i );
fp -> fptag = fptag ^ 0xff ;
j = env -> fpstt ;
for ( i = 0 ; i < 8 ; i ++ ) {
memcpy ( & fp -> fpregs1 [ i * 16 ], & env -> fpregs [ j ]. d , 10 );
j = ( j + 1 ) & 7 ;
}
if ( env -> cpuid_features & CPUID_SSE ) {
fp -> mxcsr = env -> mxcsr ;
/* XXX: check if DAZ is not available */
fp -> mxcsr_mask = 0xffff ;
476
memcpy ( fp -> xmm_regs , env -> xmm_regs , CPU_NB_REGS * 16 );
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
}
asm volatile ( "fxrstor %0" : "=m" ( * fp ));
}
static void save_native_fp_fxsave ( CPUState * env )
{
struct fpxstate * fp = & fpx1 ;
int fptag , i , j ;
uint16_t fpuc ;
asm volatile ( "fxsave %0" : : "m" ( * fp ));
env -> fpuc = fp -> fpuc ;
env -> fpstt = ( fp -> fpus >> 11 ) & 7 ;
env -> fpus = fp -> fpus & ~ 0x3800 ;
fptag = fp -> fptag ^ 0xff ;
for ( i = 0 ; i < 8 ; i ++ ) {
env -> fptags [ i ] = ( fptag >> i ) & 1 ;
}
j = env -> fpstt ;
for ( i = 0 ; i < 8 ; i ++ ) {
memcpy ( & env -> fpregs [ j ]. d , & fp -> fpregs1 [ i * 16 ], 10 );
j = ( j + 1 ) & 7 ;
}
if ( env -> cpuid_features & CPUID_SSE ) {
env -> mxcsr = fp -> mxcsr ;
502
memcpy ( env -> xmm_regs , fp -> xmm_regs , CPU_NB_REGS * 16 );
503
504
505
506
507
508
509
510
}
/* we must restore the default rounding state */
asm volatile ( "fninit" );
fpuc = 0x037f | ( env -> fpuc & ( 3 << 10 ));
asm volatile ( "fldcw %0" : : "m" ( fpuc ));
}
511
512
513
514
static int do_syscall ( CPUState * env ,
struct kqemu_cpu_state * kenv )
{
int selector ;
ths
authored
18 years ago
515
516
selector = ( env -> star >> 32 ) & 0xffff ;
517
# ifdef TARGET_X86_64
518
if ( env -> hflags & HF_LMA_MASK ) {
519
520
int code64 ;
521
522
523
env -> regs [ R_ECX ] = kenv -> next_eip ;
env -> regs [ 11 ] = env -> eflags ;
524
525
code64 = env -> hflags & HF_CS64_MASK ;
526
cpu_x86_set_cpl ( env , 0 );
ths
authored
18 years ago
527
528
cpu_x86_load_seg_cache ( env , R_CS , selector & 0xfffc ,
0 , 0xffffffff ,
529
DESC_G_MASK | DESC_P_MASK |
530
531
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK );
ths
authored
18 years ago
532
cpu_x86_load_seg_cache ( env , R_SS , ( selector + 8 ) & 0xfffc ,
533
534
535
536
537
0 , 0xffffffff ,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_W_MASK | DESC_A_MASK );
env -> eflags &= ~ env -> fmask ;
538
if ( code64 )
539
540
541
env -> eip = env -> lstar ;
else
env -> eip = env -> cstar ;
ths
authored
18 years ago
542
} else
543
544
545
# endif
{
env -> regs [ R_ECX ] = ( uint32_t ) kenv -> next_eip ;
ths
authored
18 years ago
546
547
cpu_x86_set_cpl ( env , 0 );
ths
authored
18 years ago
548
549
cpu_x86_load_seg_cache ( env , R_CS , selector & 0xfffc ,
0 , 0xffffffff ,
550
551
552
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK );
ths
authored
18 years ago
553
cpu_x86_load_seg_cache ( env , R_SS , ( selector + 8 ) & 0xfffc ,
554
555
556
557
558
559
560
561
562
563
0 , 0xffffffff ,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_W_MASK | DESC_A_MASK );
env -> eflags &= ~ ( IF_MASK | RF_MASK | VM_MASK );
env -> eip = ( uint32_t ) env -> star ;
}
return 2 ;
}
564
# ifdef CONFIG_PROFILER
565
566
567
568
569
570
571
572
573
574
575
# define PC_REC_SIZE 1
# define PC_REC_HASH_BITS 16
# define PC_REC_HASH_SIZE ( 1 << PC_REC_HASH_BITS )
typedef struct PCRecord {
unsigned long pc ;
int64_t count ;
struct PCRecord * next ;
} PCRecord ;
576
577
static PCRecord * pc_rec_hash [ PC_REC_HASH_SIZE ];
static int nb_pc_records ;
578
579
static void kqemu_record_pc ( unsigned long pc )
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
{
unsigned long h ;
PCRecord ** pr , * r ;
h = pc / PC_REC_SIZE ;
h = h ^ ( h >> PC_REC_HASH_BITS );
h &= ( PC_REC_HASH_SIZE - 1 );
pr = & pc_rec_hash [ h ];
for (;;) {
r = * pr ;
if ( r == NULL )
break ;
if ( r -> pc == pc ) {
r -> count ++ ;
return ;
}
pr = & r -> next ;
}
r = malloc ( sizeof ( PCRecord ));
r -> count = 1 ;
r -> pc = pc ;
r -> next = NULL ;
* pr = r ;
nb_pc_records ++ ;
}
606
static int pc_rec_cmp ( const void * p1 , const void * p2 )
607
608
609
610
611
612
613
614
615
616
617
{
PCRecord * r1 = * ( PCRecord ** ) p1 ;
PCRecord * r2 = * ( PCRecord ** ) p2 ;
if ( r1 -> count < r2 -> count )
return 1 ;
else if ( r1 -> count == r2 -> count )
return 0 ;
else
return - 1 ;
}
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
static void kqemu_record_flush ( void )
{
PCRecord * r , * r_next ;
int h ;
for ( h = 0 ; h < PC_REC_HASH_SIZE ; h ++ ) {
for ( r = pc_rec_hash [ h ]; r != NULL ; r = r_next ) {
r_next = r -> next ;
free ( r );
}
pc_rec_hash [ h ] = NULL ;
}
nb_pc_records = 0 ;
}
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
void kqemu_record_dump ( void )
{
PCRecord ** pr , * r ;
int i , h ;
FILE * f ;
int64_t total , sum ;
pr = malloc ( sizeof ( PCRecord * ) * nb_pc_records );
i = 0 ;
total = 0 ;
for ( h = 0 ; h < PC_REC_HASH_SIZE ; h ++ ) {
for ( r = pc_rec_hash [ h ]; r != NULL ; r = r -> next ) {
pr [ i ++ ] = r ;
total += r -> count ;
}
}
qsort ( pr , nb_pc_records , sizeof ( PCRecord * ), pc_rec_cmp );
ths
authored
18 years ago
650
651
652
653
654
655
f = fopen ( "/tmp/kqemu.stats" , "w" );
if ( ! f ) {
perror ( "/tmp/kqemu.stats" );
exit ( 1 );
}
656
fprintf ( f , "total: %" PRId64 " \n " , total );
657
658
659
660
sum = 0 ;
for ( i = 0 ; i < nb_pc_records ; i ++ ) {
r = pr [ i ];
sum += r -> count ;
ths
authored
18 years ago
661
662
663
fprintf ( f , "%08lx: %" PRId64 " %0.2f%% %0.2f%% \n " ,
r -> pc ,
r -> count ,
664
665
666
667
668
( double ) r -> count / ( double ) total * 100 . 0 ,
( double ) sum / ( double ) total * 100 . 0 );
}
fclose ( f );
free ( pr );
669
670
kqemu_record_flush ();
671
672
673
}
# endif
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
static inline void kqemu_load_seg ( struct kqemu_segment_cache * ksc ,
const SegmentCache * sc )
{
ksc -> selector = sc -> selector ;
ksc -> flags = sc -> flags ;
ksc -> limit = sc -> limit ;
ksc -> base = sc -> base ;
}
static inline void kqemu_save_seg ( SegmentCache * sc ,
const struct kqemu_segment_cache * ksc )
{
sc -> selector = ksc -> selector ;
sc -> flags = ksc -> flags ;
sc -> limit = ksc -> limit ;
sc -> base = ksc -> base ;
}
692
693
694
int kqemu_cpu_exec ( CPUState * env )
{
struct kqemu_cpu_state kcpu_state , * kenv = & kcpu_state ;
695
696
697
698
int ret , cpl , i ;
# ifdef CONFIG_PROFILER
int64_t ti ;
# endif
699
700
701
# ifdef _WIN32
DWORD temp ;
# endif
702
703
704
705
# ifdef CONFIG_PROFILER
ti = profile_getclock ();
# endif
706
707
708
709
710
711
# ifdef DEBUG
if ( loglevel & CPU_LOG_INT ) {
fprintf ( logfile , "kqemu: cpu_exec: enter \n " );
cpu_dump_state ( env , logfile , fprintf , 0 );
}
# endif
712
713
for ( i = 0 ; i < CPU_NB_REGS ; i ++ )
kenv -> regs [ i ] = env -> regs [ i ];
714
715
kenv -> eip = env -> eip ;
kenv -> eflags = env -> eflags ;
716
717
718
719
720
721
for ( i = 0 ; i < 6 ; i ++ )
kqemu_load_seg ( & kenv -> segs [ i ], & env -> segs [ i ]);
kqemu_load_seg ( & kenv -> ldt , & env -> ldt );
kqemu_load_seg ( & kenv -> tr , & env -> tr );
kqemu_load_seg ( & kenv -> gdt , & env -> gdt );
kqemu_load_seg ( & kenv -> idt , & env -> idt );
722
723
724
725
726
kenv -> cr0 = env -> cr [ 0 ];
kenv -> cr2 = env -> cr [ 2 ];
kenv -> cr3 = env -> cr [ 3 ];
kenv -> cr4 = env -> cr [ 4 ];
kenv -> a20_mask = env -> a20_mask ;
727
kenv -> efer = env -> efer ;
728
729
730
731
732
kenv -> tsc_offset = 0 ;
kenv -> star = env -> star ;
kenv -> sysenter_cs = env -> sysenter_cs ;
kenv -> sysenter_esp = env -> sysenter_esp ;
kenv -> sysenter_eip = env -> sysenter_eip ;
733
# ifdef TARGET_X86_64
734
735
736
737
738
kenv -> lstar = env -> lstar ;
kenv -> cstar = env -> cstar ;
kenv -> fmask = env -> fmask ;
kenv -> kernelgsbase = env -> kernelgsbase ;
# endif
739
740
741
742
743
744
745
746
747
748
if ( env -> dr [ 7 ] & 0xff ) {
kenv -> dr7 = env -> dr [ 7 ];
kenv -> dr0 = env -> dr [ 0 ];
kenv -> dr1 = env -> dr [ 1 ];
kenv -> dr2 = env -> dr [ 2 ];
kenv -> dr3 = env -> dr [ 3 ];
} else {
kenv -> dr7 = 0 ;
}
kenv -> dr6 = env -> dr [ 6 ];
749
750
cpl = ( env -> hflags & HF_CPL_MASK );
kenv -> cpl = cpl ;
751
kenv -> nb_pages_to_flush = nb_pages_to_flush ;
752
kenv -> user_only = ( env -> kqemu_enabled == 1 );
753
754
kenv -> nb_ram_pages_to_update = nb_ram_pages_to_update ;
nb_ram_pages_to_update = 0 ;
755
kenv -> nb_modified_ram_pages = nb_modified_ram_pages ;
756
757
758
759
760
761
762
kqemu_reset_modified_ram_pages ();
if ( env -> cpuid_features & CPUID_FXSR )
restore_native_fp_fxrstor ( env );
else
restore_native_fp_frstor ( env );
763
764
# ifdef _WIN32
765
766
767
768
769
770
771
772
if ( DeviceIoControl ( kqemu_fd , KQEMU_EXEC ,
kenv , sizeof ( struct kqemu_cpu_state ),
kenv , sizeof ( struct kqemu_cpu_state ),
& temp , NULL )) {
ret = kenv -> retval ;
} else {
ret = - 1 ;
}
773
774
775
776
# else
ioctl ( kqemu_fd , KQEMU_EXEC , kenv );
ret = kenv -> retval ;
# endif
777
778
779
780
if ( env -> cpuid_features & CPUID_FXSR )
save_native_fp_fxsave ( env );
else
save_native_fp_fsave ( env );
781
782
783
for ( i = 0 ; i < CPU_NB_REGS ; i ++ )
env -> regs [ i ] = kenv -> regs [ i ];
784
785
env -> eip = kenv -> eip ;
env -> eflags = kenv -> eflags ;
786
787
for ( i = 0 ; i < 6 ; i ++ )
kqemu_save_seg ( & env -> segs [ i ], & kenv -> segs [ i ]);
788
cpu_x86_set_cpl ( env , kenv -> cpl );
789
kqemu_save_seg ( & env -> ldt , & kenv -> ldt );
790
791
792
env -> cr [ 0 ] = kenv -> cr0 ;
env -> cr [ 4 ] = kenv -> cr4 ;
env -> cr [ 3 ] = kenv -> cr3 ;
793
794
env -> cr [ 2 ] = kenv -> cr2 ;
env -> dr [ 6 ] = kenv -> dr6 ;
795
# ifdef TARGET_X86_64
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
env -> kernelgsbase = kenv -> kernelgsbase ;
# endif
/* flush pages as indicated by kqemu */
if ( kenv -> nb_pages_to_flush >= KQEMU_FLUSH_ALL ) {
tlb_flush ( env , 1 );
} else {
for ( i = 0 ; i < kenv -> nb_pages_to_flush ; i ++ ) {
tlb_flush_page ( env , pages_to_flush [ i ]);
}
}
nb_pages_to_flush = 0 ;
# ifdef CONFIG_PROFILER
kqemu_time += profile_getclock () - ti ;
kqemu_exec_count ++ ;
# endif
813
814
815
816
817
if ( kenv -> nb_ram_pages_to_update > 0 ) {
cpu_tlb_update_dirty ( env );
}
818
819
820
821
822
823
824
825
if ( kenv -> nb_modified_ram_pages > 0 ) {
for ( i = 0 ; i < kenv -> nb_modified_ram_pages ; i ++ ) {
unsigned long addr ;
addr = modified_ram_pages [ i ];
tb_invalidate_phys_page_range ( addr , addr + TARGET_PAGE_SIZE , 0 );
}
}
826
827
828
829
/* restore the hidden flags */
{
unsigned int new_hflags ;
# ifdef TARGET_X86_64
ths
authored
18 years ago
830
if (( env -> hflags & HF_LMA_MASK ) &&
831
832
833
834
835
836
837
838
839
840
841
( env -> segs [ R_CS ]. flags & DESC_L_MASK )) {
/* long mode */
new_hflags = HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK ;
} else
# endif
{
/* legacy / compatibility case */
new_hflags = ( env -> segs [ R_CS ]. flags & DESC_B_MASK )
>> ( DESC_B_SHIFT - HF_CS32_SHIFT );
new_hflags |= ( env -> segs [ R_SS ]. flags & DESC_B_MASK )
>> ( DESC_B_SHIFT - HF_SS32_SHIFT );
ths
authored
18 years ago
842
if ( ! ( env -> cr [ 0 ] & CR0_PE_MASK ) ||
843
844
845
846
847
848
849
850
851
( env -> eflags & VM_MASK ) ||
! ( env -> hflags & HF_CS32_MASK )) {
/* XXX : try to avoid this test . The problem comes from the
fact that is real mode or vm86 mode we only modify the
' base ' and ' selector ' fields of the segment cache to go
faster . A solution may be to force addseg to one in
translate - i386 . c . */
new_hflags |= HF_ADDSEG_MASK ;
} else {
ths
authored
18 years ago
852
new_hflags |= (( env -> segs [ R_DS ]. base |
853
env -> segs [ R_ES ]. base |
ths
authored
18 years ago
854
env -> segs [ R_SS ]. base ) != 0 ) <<
855
856
857
HF_ADDSEG_SHIFT ;
}
}
ths
authored
18 years ago
858
env -> hflags = ( env -> hflags &
859
860
861
~ ( HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK )) |
new_hflags ;
}
862
863
864
865
866
867
868
/* update FPU flags */
env -> hflags = ( env -> hflags & ~ ( HF_MP_MASK | HF_EM_MASK | HF_TS_MASK )) |
(( env -> cr [ 0 ] << ( HF_MP_SHIFT - 1 )) & ( HF_MP_MASK | HF_EM_MASK | HF_TS_MASK ));
if ( env -> cr [ 4 ] & CR4_OSFXSR_MASK )
env -> hflags |= HF_OSFXSR_MASK ;
else
env -> hflags &= ~ HF_OSFXSR_MASK ;
ths
authored
18 years ago
869
870
871
872
873
874
# ifdef DEBUG
if ( loglevel & CPU_LOG_INT ) {
fprintf ( logfile , "kqemu: kqemu_cpu_exec: ret=0x%x \n " , ret );
}
# endif
875
876
877
if ( ret == KQEMU_RET_SYSCALL ) {
/* syscall instruction */
return do_syscall ( env , kenv );
ths
authored
18 years ago
878
} else
879
880
881
882
883
if (( ret & 0xff00 ) == KQEMU_RET_INT ) {
env -> exception_index = ret & 0xff ;
env -> error_code = 0 ;
env -> exception_is_int = 1 ;
env -> exception_next_eip = kenv -> next_eip ;
884
885
886
# ifdef CONFIG_PROFILER
kqemu_ret_int_count ++ ;
# endif
887
# ifdef DEBUG
888
if ( loglevel & CPU_LOG_INT ) {
ths
authored
18 years ago
889
fprintf ( logfile , "kqemu: interrupt v=%02x: \n " ,
890
891
892
env -> exception_index );
cpu_dump_state ( env , logfile , fprintf , 0 );
}
893
894
895
896
897
898
899
# endif
return 1 ;
} else if (( ret & 0xff00 ) == KQEMU_RET_EXCEPTION ) {
env -> exception_index = ret & 0xff ;
env -> error_code = kenv -> error_code ;
env -> exception_is_int = 0 ;
env -> exception_next_eip = 0 ;
900
901
902
# ifdef CONFIG_PROFILER
kqemu_ret_excp_count ++ ;
# endif
903
904
905
906
907
908
909
910
911
# ifdef DEBUG
if ( loglevel & CPU_LOG_INT ) {
fprintf ( logfile , "kqemu: exception v=%02x e=%04x: \n " ,
env -> exception_index , env -> error_code );
cpu_dump_state ( env , logfile , fprintf , 0 );
}
# endif
return 1 ;
} else if ( ret == KQEMU_RET_INTR ) {
912
913
914
# ifdef CONFIG_PROFILER
kqemu_ret_intr_count ++ ;
# endif
915
916
917
918
919
# ifdef DEBUG
if ( loglevel & CPU_LOG_INT ) {
cpu_dump_state ( env , logfile , fprintf , 0 );
}
# endif
920
return 0 ;
ths
authored
18 years ago
921
} else if ( ret == KQEMU_RET_SOFTMMU ) {
922
923
924
925
926
# ifdef CONFIG_PROFILER
{
unsigned long pc = env -> eip + env -> segs [ R_CS ]. base ;
kqemu_record_pc ( pc );
}
927
928
929
930
931
932
# endif
# ifdef DEBUG
if ( loglevel & CPU_LOG_INT ) {
cpu_dump_state ( env , logfile , fprintf , 0 );
}
# endif
933
934
935
936
937
938
939
940
941
return 2 ;
} else {
cpu_dump_state ( env , stderr , fprintf , 0 );
fprintf ( stderr , "Unsupported return value: 0x%x \n " , ret );
exit ( 1 );
}
return 0 ;
}
942
943
void kqemu_cpu_interrupt ( CPUState * env )
{
944
# if defined ( _WIN32 )
ths
authored
18 years ago
945
/* cancelling the I / O request causes KQEMU to finish executing the
946
947
948
949
950
current block and successfully returning . */
CancelIo ( kqemu_fd );
# endif
}
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
/*
QEMU paravirtualization interface . The current interface only
allows to modify the IF and IOPL flags when running in
kqemu .
At this point it is not very satisfactory . I leave it for reference
as it adds little complexity .
*/
# define QPI_COMM_PAGE_PHYS_ADDR 0xff000000
static uint32_t qpi_mem_readb ( void * opaque , target_phys_addr_t addr )
{
return 0 ;
}
static uint32_t qpi_mem_readw ( void * opaque , target_phys_addr_t addr )
{
return 0 ;
}
static void qpi_mem_writeb ( void * opaque , target_phys_addr_t addr , uint32_t val )
{
}
static void qpi_mem_writew ( void * opaque , target_phys_addr_t addr , uint32_t val )
{
}
static uint32_t qpi_mem_readl ( void * opaque , target_phys_addr_t addr )
{
CPUState * env ;
env = cpu_single_env ;
if ( ! env )
return 0 ;
return env -> eflags & ( IF_MASK | IOPL_MASK );
}
/* Note : after writing to this address , the guest code must make sure
it is exiting the current TB . pushf / popf can be used for that
purpose . */
static void qpi_mem_writel ( void * opaque , target_phys_addr_t addr , uint32_t val )
{
CPUState * env ;
env = cpu_single_env ;
if ( ! env )
return ;
env -> eflags = ( env -> eflags & ~ ( IF_MASK | IOPL_MASK )) |
( val & ( IF_MASK | IOPL_MASK ));
}
static CPUReadMemoryFunc * qpi_mem_read [ 3 ] = {
qpi_mem_readb ,
qpi_mem_readw ,
qpi_mem_readl ,
};
static CPUWriteMemoryFunc * qpi_mem_write [ 3 ] = {
qpi_mem_writeb ,
qpi_mem_writew ,
qpi_mem_writel ,
};
static void qpi_init ( void )
{
kqemu_comm_base = 0xff000000 | 1 ;
qpi_io_memory = cpu_register_io_memory ( 0 ,
qpi_mem_read ,
qpi_mem_write , NULL );
cpu_register_physical_memory ( kqemu_comm_base & ~ 0xfff ,
0x1000 , qpi_io_memory );
}
1025
# endif