Blame view

kqemu.c 25.2 KB
bellard authored
1
2
/*
 *  KQEMU support
3
 *
bellard authored
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 *  Copyright (c) 2005 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include "config.h"
#ifdef _WIN32
22
#define WIN32_LEAN_AND_MEAN
bellard authored
23
#include <windows.h>
24
#include <winioctl.h>
bellard authored
25
26
27
#else
#include <sys/types.h>
#include <sys/mman.h>
28
#include <sys/ioctl.h>
bellard authored
29
#endif
30
#ifdef HOST_SOLARIS
31
#include <sys/ioccom.h>
32
#endif
bellard authored
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <inttypes.h>

#include "cpu.h"
#include "exec-all.h"

#ifdef USE_KQEMU

#define DEBUG
47
//#define PROFILE
bellard authored
48
49
50

#include <unistd.h>
#include <fcntl.h>
bellard authored
51
#include "kqemu.h"
bellard authored
52
bellard authored
53
54
55
56
/* compatibility stuff */
#ifndef KQEMU_RET_SYSCALL
#define KQEMU_RET_SYSCALL   0x0300 /* syscall insn */
#endif
57
58
59
60
#ifndef KQEMU_MAX_RAM_PAGES_TO_UPDATE
#define KQEMU_MAX_RAM_PAGES_TO_UPDATE 512
#define KQEMU_RAM_PAGES_UPDATE_ALL (KQEMU_MAX_RAM_PAGES_TO_UPDATE + 1)
#endif
61
62
63
#ifndef KQEMU_MAX_MODIFIED_RAM_PAGES
#define KQEMU_MAX_MODIFIED_RAM_PAGES 512
#endif
bellard authored
64
65
66
67
#ifdef _WIN32
#define KQEMU_DEVICE "\\\\.\\kqemu"
#else
bellard authored
68
#define KQEMU_DEVICE "/dev/kqemu"
69
70
71
72
73
74
75
76
77
78
79
#endif

#ifdef _WIN32
#define KQEMU_INVALID_FD INVALID_HANDLE_VALUE
HANDLE kqemu_fd = KQEMU_INVALID_FD;
#define kqemu_closefd(x) CloseHandle(x)
#else
#define KQEMU_INVALID_FD -1
int kqemu_fd = KQEMU_INVALID_FD;
#define kqemu_closefd(x) close(x)
#endif
bellard authored
80
81
82
83
84
/* 0 = not allowed
   1 = user kqemu
   2 = kernel kqemu
*/
bellard authored
85
86
87
int kqemu_allowed = 1;
unsigned long *pages_to_flush;
unsigned int nb_pages_to_flush;
88
89
unsigned long *ram_pages_to_update;
unsigned int nb_ram_pages_to_update;
90
91
92
unsigned long *modified_ram_pages;
unsigned int nb_modified_ram_pages;
uint8_t *modified_ram_pages_table;
bellard authored
93
94
95
96
97
98
99
extern uint32_t **l1_phys_map;

#define cpuid(index, eax, ebx, ecx, edx) \
  asm volatile ("cpuid" \
                : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) \
                : "0" (index))
bellard authored
100
101
102
103
104
105
#ifdef __x86_64__
static int is_cpuid_supported(void)
{
    return 1;
}
#else
bellard authored
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
static int is_cpuid_supported(void)
{
    int v0, v1;
    asm volatile ("pushf\n"
                  "popl %0\n"
                  "movl %0, %1\n"
                  "xorl $0x00200000, %0\n"
                  "pushl %0\n"
                  "popf\n"
                  "pushf\n"
                  "popl %0\n"
                  : "=a" (v0), "=d" (v1)
                  :
                  : "cc");
    return (v0 != v1);
}
bellard authored
122
#endif
bellard authored
123
124
125

static void kqemu_update_cpuid(CPUState *env)
{
bellard authored
126
    int critical_features_mask, features, ext_features, ext_features_mask;
bellard authored
127
128
129
130
131
132
    uint32_t eax, ebx, ecx, edx;

    /* the following features are kept identical on the host and
       target cpus because they are important for user code. Strictly
       speaking, only SSE really matters because the OS must support
       it if the user code uses it. */
133
134
135
    critical_features_mask =
        CPUID_CMOV | CPUID_CX8 |
        CPUID_FXSR | CPUID_MMX | CPUID_SSE |
bellard authored
136
        CPUID_SSE2 | CPUID_SEP;
bellard authored
137
    ext_features_mask = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR;
bellard authored
138
139
    if (!is_cpuid_supported()) {
        features = 0;
bellard authored
140
        ext_features = 0;
bellard authored
141
142
143
    } else {
        cpuid(1, eax, ebx, ecx, edx);
        features = edx;
bellard authored
144
        ext_features = ecx;
bellard authored
145
    }
bellard authored
146
147
148
149
150
151
#ifdef __x86_64__
    /* NOTE: on x86_64 CPUs, SYSENTER is not supported in
       compatibility mode, so in order to have the best performances
       it is better not to use it */
    features &= ~CPUID_SEP;
#endif
bellard authored
152
153
    env->cpuid_features = (env->cpuid_features & ~critical_features_mask) |
        (features & critical_features_mask);
bellard authored
154
155
    env->cpuid_ext_features = (env->cpuid_ext_features & ~ext_features_mask) |
        (ext_features & ext_features_mask);
bellard authored
156
157
158
159
160
161
162
163
164
    /* XXX: we could update more of the target CPUID state so that the
       non accelerated code sees exactly the same CPU features as the
       accelerated code */
}

int kqemu_init(CPUState *env)
{
    struct kqemu_init init;
    int ret, version;
165
166
167
#ifdef _WIN32
    DWORD temp;
#endif
bellard authored
168
169
170
171

    if (!kqemu_allowed)
        return -1;
172
173
174
175
176
177
#ifdef _WIN32
    kqemu_fd = CreateFile(KQEMU_DEVICE, GENERIC_WRITE | GENERIC_READ,
                          FILE_SHARE_READ | FILE_SHARE_WRITE,
                          NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,
                          NULL);
#else
bellard authored
178
    kqemu_fd = open(KQEMU_DEVICE, O_RDWR);
179
180
#endif
    if (kqemu_fd == KQEMU_INVALID_FD) {
181
182
        fprintf(stderr, "Could not open '%s' - QEMU acceleration layer not activated: %s\n",
                KQEMU_DEVICE, strerror(errno));
bellard authored
183
184
185
        return -1;
    }
    version = 0;
186
187
188
189
#ifdef _WIN32
    DeviceIoControl(kqemu_fd, KQEMU_GET_VERSION, NULL, 0,
                    &version, sizeof(version), &temp, NULL);
#else
bellard authored
190
    ioctl(kqemu_fd, KQEMU_GET_VERSION, &version);
191
#endif
bellard authored
192
193
194
195
196
197
    if (version != KQEMU_VERSION) {
        fprintf(stderr, "Version mismatch between kqemu module and qemu (%08x %08x) - disabling kqemu use\n",
                version, KQEMU_VERSION);
        goto fail;
    }
198
    pages_to_flush = qemu_vmalloc(KQEMU_MAX_PAGES_TO_FLUSH *
bellard authored
199
200
201
202
                                  sizeof(unsigned long));
    if (!pages_to_flush)
        goto fail;
203
    ram_pages_to_update = qemu_vmalloc(KQEMU_MAX_RAM_PAGES_TO_UPDATE *
204
205
206
207
                                       sizeof(unsigned long));
    if (!ram_pages_to_update)
        goto fail;
208
    modified_ram_pages = qemu_vmalloc(KQEMU_MAX_MODIFIED_RAM_PAGES *
209
210
211
212
213
214
215
                                      sizeof(unsigned long));
    if (!modified_ram_pages)
        goto fail;
    modified_ram_pages_table = qemu_mallocz(phys_ram_size >> TARGET_PAGE_BITS);
    if (!modified_ram_pages_table)
        goto fail;
bellard authored
216
217
218
219
220
    init.ram_base = phys_ram_base;
    init.ram_size = phys_ram_size;
    init.ram_dirty = phys_ram_dirty;
    init.phys_to_ram_map = l1_phys_map;
    init.pages_to_flush = pages_to_flush;
221
222
223
#if KQEMU_VERSION >= 0x010200
    init.ram_pages_to_update = ram_pages_to_update;
#endif
224
225
226
#if KQEMU_VERSION >= 0x010300
    init.modified_ram_pages = modified_ram_pages;
#endif
227
228
229
230
#ifdef _WIN32
    ret = DeviceIoControl(kqemu_fd, KQEMU_INIT, &init, sizeof(init),
                          NULL, 0, &temp, NULL) == TRUE ? 0 : -1;
#else
bellard authored
231
    ret = ioctl(kqemu_fd, KQEMU_INIT, &init);
232
#endif
bellard authored
233
234
235
    if (ret < 0) {
        fprintf(stderr, "Error %d while initializing QEMU acceleration layer - disabling it for now\n", ret);
    fail:
236
237
        kqemu_closefd(kqemu_fd);
        kqemu_fd = KQEMU_INVALID_FD;
bellard authored
238
239
240
        return -1;
    }
    kqemu_update_cpuid(env);
241
    env->kqemu_enabled = kqemu_allowed;
bellard authored
242
    nb_pages_to_flush = 0;
243
    nb_ram_pages_to_update = 0;
bellard authored
244
245
246
247
248
    return 0;
}

void kqemu_flush_page(CPUState *env, target_ulong addr)
{
249
#if defined(DEBUG)
bellard authored
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
    if (loglevel & CPU_LOG_INT) {
        fprintf(logfile, "kqemu_flush_page: addr=" TARGET_FMT_lx "\n", addr);
    }
#endif
    if (nb_pages_to_flush >= KQEMU_MAX_PAGES_TO_FLUSH)
        nb_pages_to_flush = KQEMU_FLUSH_ALL;
    else
        pages_to_flush[nb_pages_to_flush++] = addr;
}

void kqemu_flush(CPUState *env, int global)
{
#ifdef DEBUG
    if (loglevel & CPU_LOG_INT) {
        fprintf(logfile, "kqemu_flush:\n");
    }
#endif
    nb_pages_to_flush = KQEMU_FLUSH_ALL;
}
270
271
272
273
274
275
276
void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr)
{
#ifdef DEBUG
    if (loglevel & CPU_LOG_INT) {
        fprintf(logfile, "kqemu_set_notdirty: addr=%08lx\n", ram_addr);
    }
#endif
bellard authored
277
278
279
    /* we only track transitions to dirty state */
    if (phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] != 0xff)
        return;
280
281
282
283
284
285
    if (nb_ram_pages_to_update >= KQEMU_MAX_RAM_PAGES_TO_UPDATE)
        nb_ram_pages_to_update = KQEMU_RAM_PAGES_UPDATE_ALL;
    else
        ram_pages_to_update[nb_ram_pages_to_update++] = ram_addr;
}
286
287
288
289
static void kqemu_reset_modified_ram_pages(void)
{
    int i;
    unsigned long page_index;
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
    for(i = 0; i < nb_modified_ram_pages; i++) {
        page_index = modified_ram_pages[i] >> TARGET_PAGE_BITS;
        modified_ram_pages_table[page_index] = 0;
    }
    nb_modified_ram_pages = 0;
}

void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr)
{
    unsigned long page_index;
    int ret;
#ifdef _WIN32
    DWORD temp;
#endif

    page_index = ram_addr >> TARGET_PAGE_BITS;
    if (!modified_ram_pages_table[page_index]) {
#if 0
        printf("%d: modify_page=%08lx\n", nb_modified_ram_pages, ram_addr);
#endif
        modified_ram_pages_table[page_index] = 1;
        modified_ram_pages[nb_modified_ram_pages++] = ram_addr;
        if (nb_modified_ram_pages >= KQEMU_MAX_MODIFIED_RAM_PAGES) {
            /* flush */
#ifdef _WIN32
316
317
            ret = DeviceIoControl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES,
                                  &nb_modified_ram_pages,
318
319
320
                                  sizeof(nb_modified_ram_pages),
                                  NULL, 0, &temp, NULL);
#else
321
            ret = ioctl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES,
322
323
324
325
326
327
328
                        &nb_modified_ram_pages);
#endif
            kqemu_reset_modified_ram_pages();
        }
    }
}
bellard authored
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
struct fpstate {
    uint16_t fpuc;
    uint16_t dummy1;
    uint16_t fpus;
    uint16_t dummy2;
    uint16_t fptag;
    uint16_t dummy3;

    uint32_t fpip;
    uint32_t fpcs;
    uint32_t fpoo;
    uint32_t fpos;
    uint8_t fpregs1[8 * 10];
};

struct fpxstate {
    uint16_t fpuc;
    uint16_t fpus;
    uint16_t fptag;
    uint16_t fop;
    uint32_t fpuip;
    uint16_t cs_sel;
    uint16_t dummy0;
    uint32_t fpudp;
    uint16_t ds_sel;
    uint16_t dummy1;
    uint32_t mxcsr;
    uint32_t mxcsr_mask;
    uint8_t fpregs1[8 * 16];
bellard authored
358
359
    uint8_t xmm_regs[16 * 16];
    uint8_t dummy2[96];
bellard authored
360
361
362
363
364
365
366
367
};

static struct fpxstate fpx1 __attribute__((aligned(16)));

static void restore_native_fp_frstor(CPUState *env)
{
    int fptag, i, j;
    struct fpstate fp1, *fp = &fp1;
368
bellard authored
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
    fp->fpuc = env->fpuc;
    fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
    fptag = 0;
    for (i=7; i>=0; i--) {
	fptag <<= 2;
	if (env->fptags[i]) {
            fptag |= 3;
        } else {
            /* the FPU automatically computes it */
        }
    }
    fp->fptag = fptag;
    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&fp->fpregs1[i * 10], &env->fpregs[j].d, 10);
        j = (j + 1) & 7;
    }
    asm volatile ("frstor %0" : "=m" (*fp));
}
388
bellard authored
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
static void save_native_fp_fsave(CPUState *env)
{
    int fptag, i, j;
    uint16_t fpuc;
    struct fpstate fp1, *fp = &fp1;

    asm volatile ("fsave %0" : : "m" (*fp));
    env->fpuc = fp->fpuc;
    env->fpstt = (fp->fpus >> 11) & 7;
    env->fpus = fp->fpus & ~0x3800;
    fptag = fp->fptag;
    for(i = 0;i < 8; i++) {
        env->fptags[i] = ((fptag & 3) == 3);
        fptag >>= 2;
    }
    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 10], 10);
        j = (j + 1) & 7;
    }
    /* we must restore the default rounding state */
    fpuc = 0x037f | (env->fpuc & (3 << 10));
    asm volatile("fldcw %0" : : "m" (fpuc));
}

static void restore_native_fp_fxrstor(CPUState *env)
{
    struct fpxstate *fp = &fpx1;
    int i, j, fptag;

    fp->fpuc = env->fpuc;
    fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
    fptag = 0;
    for(i = 0; i < 8; i++)
        fptag |= (env->fptags[i] << i);
    fp->fptag = fptag ^ 0xff;

    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&fp->fpregs1[i * 16], &env->fpregs[j].d, 10);
        j = (j + 1) & 7;
    }
    if (env->cpuid_features & CPUID_SSE) {
        fp->mxcsr = env->mxcsr;
        /* XXX: check if DAZ is not available */
        fp->mxcsr_mask = 0xffff;
bellard authored
435
        memcpy(fp->xmm_regs, env->xmm_regs, CPU_NB_REGS * 16);
bellard authored
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
    }
    asm volatile ("fxrstor %0" : "=m" (*fp));
}

static void save_native_fp_fxsave(CPUState *env)
{
    struct fpxstate *fp = &fpx1;
    int fptag, i, j;
    uint16_t fpuc;

    asm volatile ("fxsave %0" : : "m" (*fp));
    env->fpuc = fp->fpuc;
    env->fpstt = (fp->fpus >> 11) & 7;
    env->fpus = fp->fpus & ~0x3800;
    fptag = fp->fptag ^ 0xff;
    for(i = 0;i < 8; i++) {
        env->fptags[i] = (fptag >> i) & 1;
    }
    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 16], 10);
        j = (j + 1) & 7;
    }
    if (env->cpuid_features & CPUID_SSE) {
        env->mxcsr = fp->mxcsr;
bellard authored
461
        memcpy(env->xmm_regs, fp->xmm_regs, CPU_NB_REGS * 16);
bellard authored
462
463
464
465
466
467
468
469
    }

    /* we must restore the default rounding state */
    asm volatile ("fninit");
    fpuc = 0x037f | (env->fpuc & (3 << 10));
    asm volatile("fldcw %0" : : "m" (fpuc));
}
bellard authored
470
471
472
473
static int do_syscall(CPUState *env,
                      struct kqemu_cpu_state *kenv)
{
    int selector;
474
bellard authored
475
476
477
    selector = (env->star >> 32) & 0xffff;
#ifdef __x86_64__
    if (env->hflags & HF_LMA_MASK) {
478
479
        int code64;
bellard authored
480
481
482
        env->regs[R_ECX] = kenv->next_eip;
        env->regs[11] = env->eflags;
483
484
        code64 = env->hflags & HF_CS64_MASK;
bellard authored
485
        cpu_x86_set_cpl(env, 0);
486
487
        cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
                               0, 0xffffffff,
bellard authored
488
                               DESC_G_MASK | DESC_P_MASK |
bellard authored
489
490
                               DESC_S_MASK |
                               DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK);
491
        cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
bellard authored
492
493
494
495
496
                               0, 0xffffffff,
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_W_MASK | DESC_A_MASK);
        env->eflags &= ~env->fmask;
497
        if (code64)
bellard authored
498
499
500
            env->eip = env->lstar;
        else
            env->eip = env->cstar;
501
    } else
bellard authored
502
503
504
#endif
    {
        env->regs[R_ECX] = (uint32_t)kenv->next_eip;
505
bellard authored
506
        cpu_x86_set_cpl(env, 0);
507
508
        cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
                           0, 0xffffffff,
bellard authored
509
510
511
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
512
        cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
bellard authored
513
514
515
516
517
518
519
520
521
522
                               0, 0xffffffff,
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_W_MASK | DESC_A_MASK);
        env->eflags &= ~(IF_MASK | RF_MASK | VM_MASK);
        env->eip = (uint32_t)env->star;
    }
    return 2;
}
523
#ifdef CONFIG_PROFILER
524
525
526
527
528
529
530
531
532
533
534

#define PC_REC_SIZE 1
#define PC_REC_HASH_BITS 16
#define PC_REC_HASH_SIZE (1 << PC_REC_HASH_BITS)

typedef struct PCRecord {
    unsigned long pc;
    int64_t count;
    struct PCRecord *next;
} PCRecord;
535
536
static PCRecord *pc_rec_hash[PC_REC_HASH_SIZE];
static int nb_pc_records;
537
538
static void kqemu_record_pc(unsigned long pc)
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
{
    unsigned long h;
    PCRecord **pr, *r;

    h = pc / PC_REC_SIZE;
    h = h ^ (h >> PC_REC_HASH_BITS);
    h &= (PC_REC_HASH_SIZE - 1);
    pr = &pc_rec_hash[h];
    for(;;) {
        r = *pr;
        if (r == NULL)
            break;
        if (r->pc == pc) {
            r->count++;
            return;
        }
        pr = &r->next;
    }
    r = malloc(sizeof(PCRecord));
    r->count = 1;
    r->pc = pc;
    r->next = NULL;
    *pr = r;
    nb_pc_records++;
}
565
static int pc_rec_cmp(const void *p1, const void *p2)
566
567
568
569
570
571
572
573
574
575
576
{
    PCRecord *r1 = *(PCRecord **)p1;
    PCRecord *r2 = *(PCRecord **)p2;
    if (r1->count < r2->count)
        return 1;
    else if (r1->count == r2->count)
        return 0;
    else
        return -1;
}
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
static void kqemu_record_flush(void)
{
    PCRecord *r, *r_next;
    int h;

    for(h = 0; h < PC_REC_HASH_SIZE; h++) {
        for(r = pc_rec_hash[h]; r != NULL; r = r_next) {
            r_next = r->next;
            free(r);
        }
        pc_rec_hash[h] = NULL;
    }
    nb_pc_records = 0;
}
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
void kqemu_record_dump(void)
{
    PCRecord **pr, *r;
    int i, h;
    FILE *f;
    int64_t total, sum;

    pr = malloc(sizeof(PCRecord *) * nb_pc_records);
    i = 0;
    total = 0;
    for(h = 0; h < PC_REC_HASH_SIZE; h++) {
        for(r = pc_rec_hash[h]; r != NULL; r = r->next) {
            pr[i++] = r;
            total += r->count;
        }
    }
    qsort(pr, nb_pc_records, sizeof(PCRecord *), pc_rec_cmp);
609
610
611
612
613
614
    f = fopen("/tmp/kqemu.stats", "w");
    if (!f) {
        perror("/tmp/kqemu.stats");
        exit(1);
    }
bellard authored
615
    fprintf(f, "total: %" PRId64 "\n", total);
616
617
618
619
    sum = 0;
    for(i = 0; i < nb_pc_records; i++) {
        r = pr[i];
        sum += r->count;
620
621
622
        fprintf(f, "%08lx: %" PRId64 " %0.2f%% %0.2f%%\n",
                r->pc,
                r->count,
623
624
625
626
627
                (double)r->count / (double)total * 100.0,
                (double)sum / (double)total * 100.0);
    }
    fclose(f);
    free(pr);
628
629

    kqemu_record_flush();
630
631
632
}
#endif
bellard authored
633
634
635
int kqemu_cpu_exec(CPUState *env)
{
    struct kqemu_cpu_state kcpu_state, *kenv = &kcpu_state;
636
637
638
639
640
    int ret, cpl, i;
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif
641
642
643
#ifdef _WIN32
    DWORD temp;
#endif
bellard authored
644
645
646
647
#ifdef CONFIG_PROFILER
    ti = profile_getclock();
#endif
bellard authored
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
#ifdef DEBUG
    if (loglevel & CPU_LOG_INT) {
        fprintf(logfile, "kqemu: cpu_exec: enter\n");
        cpu_dump_state(env, logfile, fprintf, 0);
    }
#endif
    memcpy(kenv->regs, env->regs, sizeof(kenv->regs));
    kenv->eip = env->eip;
    kenv->eflags = env->eflags;
    memcpy(&kenv->segs, &env->segs, sizeof(env->segs));
    memcpy(&kenv->ldt, &env->ldt, sizeof(env->ldt));
    memcpy(&kenv->tr, &env->tr, sizeof(env->tr));
    memcpy(&kenv->gdt, &env->gdt, sizeof(env->gdt));
    memcpy(&kenv->idt, &env->idt, sizeof(env->idt));
    kenv->cr0 = env->cr[0];
    kenv->cr2 = env->cr[2];
    kenv->cr3 = env->cr[3];
    kenv->cr4 = env->cr[4];
    kenv->a20_mask = env->a20_mask;
667
#if KQEMU_VERSION >= 0x010100
bellard authored
668
669
    kenv->efer = env->efer;
#endif
670
671
672
673
674
675
676
677
678
679
680
681
682
#if KQEMU_VERSION >= 0x010300
    kenv->tsc_offset = 0;
    kenv->star = env->star;
    kenv->sysenter_cs = env->sysenter_cs;
    kenv->sysenter_esp = env->sysenter_esp;
    kenv->sysenter_eip = env->sysenter_eip;
#ifdef __x86_64__
    kenv->lstar = env->lstar;
    kenv->cstar = env->cstar;
    kenv->fmask = env->fmask;
    kenv->kernelgsbase = env->kernelgsbase;
#endif
#endif
bellard authored
683
684
685
686
687
688
689
690
691
692
    if (env->dr[7] & 0xff) {
        kenv->dr7 = env->dr[7];
        kenv->dr0 = env->dr[0];
        kenv->dr1 = env->dr[1];
        kenv->dr2 = env->dr[2];
        kenv->dr3 = env->dr[3];
    } else {
        kenv->dr7 = 0;
    }
    kenv->dr6 = env->dr[6];
693
694
    cpl = (env->hflags & HF_CPL_MASK);
    kenv->cpl = cpl;
bellard authored
695
    kenv->nb_pages_to_flush = nb_pages_to_flush;
696
#if KQEMU_VERSION >= 0x010200
697
    kenv->user_only = (env->kqemu_enabled == 1);
698
699
700
    kenv->nb_ram_pages_to_update = nb_ram_pages_to_update;
#endif
    nb_ram_pages_to_update = 0;
701
702
703
704
705
706
707
708
709
710
#if KQEMU_VERSION >= 0x010300
    kenv->nb_modified_ram_pages = nb_modified_ram_pages;
#endif
    kqemu_reset_modified_ram_pages();

    if (env->cpuid_features & CPUID_FXSR)
        restore_native_fp_fxrstor(env);
    else
        restore_native_fp_frstor(env);
bellard authored
711
712
#ifdef _WIN32
713
714
715
716
717
718
719
720
    if (DeviceIoControl(kqemu_fd, KQEMU_EXEC,
                        kenv, sizeof(struct kqemu_cpu_state),
                        kenv, sizeof(struct kqemu_cpu_state),
                        &temp, NULL)) {
        ret = kenv->retval;
    } else {
        ret = -1;
    }
721
722
723
724
725
#else
#if KQEMU_VERSION >= 0x010100
    ioctl(kqemu_fd, KQEMU_EXEC, kenv);
    ret = kenv->retval;
#else
bellard authored
726
    ret = ioctl(kqemu_fd, KQEMU_EXEC, kenv);
727
728
#endif
#endif
729
730
731
732
    if (env->cpuid_features & CPUID_FXSR)
        save_native_fp_fxsave(env);
    else
        save_native_fp_fsave(env);
bellard authored
733
734
735
736
737

    memcpy(env->regs, kenv->regs, sizeof(env->regs));
    env->eip = kenv->eip;
    env->eflags = kenv->eflags;
    memcpy(env->segs, kenv->segs, sizeof(env->segs));
738
739
    cpu_x86_set_cpl(env, kenv->cpl);
    memcpy(&env->ldt, &kenv->ldt, sizeof(env->ldt));
bellard authored
740
741
742
743
744
745
746
#if 0
    /* no need to restore that */
    memcpy(env->tr, kenv->tr, sizeof(env->tr));
    memcpy(env->gdt, kenv->gdt, sizeof(env->gdt));
    memcpy(env->idt, kenv->idt, sizeof(env->idt));
    env->a20_mask = kenv->a20_mask;
#endif
747
748
749
    env->cr[0] = kenv->cr0;
    env->cr[4] = kenv->cr4;
    env->cr[3] = kenv->cr3;
bellard authored
750
751
    env->cr[2] = kenv->cr2;
    env->dr[6] = kenv->dr6;
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
#if KQEMU_VERSION >= 0x010300
#ifdef __x86_64__
    env->kernelgsbase = kenv->kernelgsbase;
#endif
#endif

    /* flush pages as indicated by kqemu */
    if (kenv->nb_pages_to_flush >= KQEMU_FLUSH_ALL) {
        tlb_flush(env, 1);
    } else {
        for(i = 0; i < kenv->nb_pages_to_flush; i++) {
            tlb_flush_page(env, pages_to_flush[i]);
        }
    }
    nb_pages_to_flush = 0;

#ifdef CONFIG_PROFILER
    kqemu_time += profile_getclock() - ti;
    kqemu_exec_count++;
#endif
bellard authored
772
773
774
775
776
777
778
#if KQEMU_VERSION >= 0x010200
    if (kenv->nb_ram_pages_to_update > 0) {
        cpu_tlb_update_dirty(env);
    }
#endif
779
780
781
782
783
784
785
786
787
788
#if KQEMU_VERSION >= 0x010300
    if (kenv->nb_modified_ram_pages > 0) {
        for(i = 0; i < kenv->nb_modified_ram_pages; i++) {
            unsigned long addr;
            addr = modified_ram_pages[i];
            tb_invalidate_phys_page_range(addr, addr + TARGET_PAGE_SIZE, 0);
        }
    }
#endif
789
790
791
792
    /* restore the hidden flags */
    {
        unsigned int new_hflags;
#ifdef TARGET_X86_64
793
        if ((env->hflags & HF_LMA_MASK) &&
794
795
796
797
798
799
800
801
802
803
804
            (env->segs[R_CS].flags & DESC_L_MASK)) {
            /* long mode */
            new_hflags = HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
        } else
#endif
        {
            /* legacy / compatibility case */
            new_hflags = (env->segs[R_CS].flags & DESC_B_MASK)
                >> (DESC_B_SHIFT - HF_CS32_SHIFT);
            new_hflags |= (env->segs[R_SS].flags & DESC_B_MASK)
                >> (DESC_B_SHIFT - HF_SS32_SHIFT);
805
            if (!(env->cr[0] & CR0_PE_MASK) ||
806
807
808
809
810
811
812
813
814
                   (env->eflags & VM_MASK) ||
                   !(env->hflags & HF_CS32_MASK)) {
                /* XXX: try to avoid this test. The problem comes from the
                   fact that is real mode or vm86 mode we only modify the
                   'base' and 'selector' fields of the segment cache to go
                   faster. A solution may be to force addseg to one in
                   translate-i386.c. */
                new_hflags |= HF_ADDSEG_MASK;
            } else {
815
                new_hflags |= ((env->segs[R_DS].base |
816
                                env->segs[R_ES].base |
817
                                env->segs[R_SS].base) != 0) <<
818
819
820
                    HF_ADDSEG_SHIFT;
            }
        }
821
        env->hflags = (env->hflags &
822
823
824
           ~(HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)) |
            new_hflags;
    }
825
826
827
828
829
830
831
    /* update FPU flags */
    env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
        ((env->cr[0] << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
    if (env->cr[4] & CR4_OSFXSR_MASK)
        env->hflags |= HF_OSFXSR_MASK;
    else
        env->hflags &= ~HF_OSFXSR_MASK;
832
bellard authored
833
834
835
836
837
#ifdef DEBUG
    if (loglevel & CPU_LOG_INT) {
        fprintf(logfile, "kqemu: kqemu_cpu_exec: ret=0x%x\n", ret);
    }
#endif
bellard authored
838
839
840
    if (ret == KQEMU_RET_SYSCALL) {
        /* syscall instruction */
        return do_syscall(env, kenv);
841
    } else
bellard authored
842
843
844
845
846
    if ((ret & 0xff00) == KQEMU_RET_INT) {
        env->exception_index = ret & 0xff;
        env->error_code = 0;
        env->exception_is_int = 1;
        env->exception_next_eip = kenv->next_eip;
847
848
849
#ifdef CONFIG_PROFILER
        kqemu_ret_int_count++;
#endif
bellard authored
850
#ifdef DEBUG
bellard authored
851
        if (loglevel & CPU_LOG_INT) {
852
            fprintf(logfile, "kqemu: interrupt v=%02x:\n",
bellard authored
853
854
855
                    env->exception_index);
            cpu_dump_state(env, logfile, fprintf, 0);
        }
bellard authored
856
857
858
859
860
861
862
#endif
        return 1;
    } else if ((ret & 0xff00) == KQEMU_RET_EXCEPTION) {
        env->exception_index = ret & 0xff;
        env->error_code = kenv->error_code;
        env->exception_is_int = 0;
        env->exception_next_eip = 0;
863
864
865
#ifdef CONFIG_PROFILER
        kqemu_ret_excp_count++;
#endif
bellard authored
866
867
868
869
870
871
872
873
874
#ifdef DEBUG
        if (loglevel & CPU_LOG_INT) {
            fprintf(logfile, "kqemu: exception v=%02x e=%04x:\n",
                    env->exception_index, env->error_code);
            cpu_dump_state(env, logfile, fprintf, 0);
        }
#endif
        return 1;
    } else if (ret == KQEMU_RET_INTR) {
875
876
877
#ifdef CONFIG_PROFILER
        kqemu_ret_intr_count++;
#endif
878
879
880
881
882
#ifdef DEBUG
        if (loglevel & CPU_LOG_INT) {
            cpu_dump_state(env, logfile, fprintf, 0);
        }
#endif
bellard authored
883
        return 0;
884
    } else if (ret == KQEMU_RET_SOFTMMU) {
885
886
887
888
889
#ifdef CONFIG_PROFILER
        {
            unsigned long pc = env->eip + env->segs[R_CS].base;
            kqemu_record_pc(pc);
        }
890
891
892
893
894
895
#endif
#ifdef DEBUG
        if (loglevel & CPU_LOG_INT) {
            cpu_dump_state(env, logfile, fprintf, 0);
        }
#endif
bellard authored
896
897
898
899
900
901
902
903
904
        return 2;
    } else {
        cpu_dump_state(env, stderr, fprintf, 0);
        fprintf(stderr, "Unsupported return value: 0x%x\n", ret);
        exit(1);
    }
    return 0;
}
905
906
907
void kqemu_cpu_interrupt(CPUState *env)
{
#if defined(_WIN32) && KQEMU_VERSION >= 0x010101
908
    /* cancelling the I/O request causes KQEMU to finish executing the
909
910
911
912
913
       current block and successfully returning. */
    CancelIo(kqemu_fd);
#endif
}
bellard authored
914
#endif