1
/*
2
* QEMU PowerMac CUDA device support
ths
authored
18 years ago
3
*
4
5
* Copyright ( c ) 2004 - 2007 Fabrice Bellard
* Copyright ( c ) 2007 Jocelyn Mayer
ths
authored
18 years ago
6
*
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
* Permission is hereby granted , free of charge , to any person obtaining a copy
* of this software and associated documentation files ( the "Software" ), to deal
* in the Software without restriction , including without limitation the rights
* to use , copy , modify , merge , publish , distribute , sublicense , and / or sell
* copies of the Software , and to permit persons to whom the Software is
* furnished to do so , subject to the following conditions :
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software .
*
* THE SOFTWARE IS PROVIDED "AS IS" , WITHOUT WARRANTY OF ANY KIND , EXPRESS OR
* IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY ,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT . IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER
* LIABILITY , WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING FROM ,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE .
*/
25
# include "hw.h"
26
# include "ppc_mac.h"
27
28
# include "qemu-timer.h"
# include "sysemu.h"
29
30
31
/* XXX: implement all timer modes */
32
33
34
// # define DEBUG_CUDA
// # define DEBUG_CUDA_PACKET
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
/* Bits in B data register: all active low */
# define TREQ 0x08 /* Transfer request (input) */
# define TACK 0x10 /* Transfer acknowledge (output) */
# define TIP 0x20 /* Transfer in progress (output) */
/* Bits in ACR */
# define SR_CTRL 0x1c /* Shift register control bits */
# define SR_EXT 0x0c /* Shift on external clock */
# define SR_OUT 0x10 /* Shift out if 1 */
/* Bits in IFR and IER */
# define IER_SET 0x80 /* set bits in IER */
# define IER_CLR 0 /* clear bits in IER */
# define SR_INT 0x04 /* Shift register full/empty */
# define T1_INT 0x40 /* Timer 1 interrupt */
50
# define T2_INT 0x20 /* Timer 2 interrupt */
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
/* Bits in ACR */
# define T1MODE 0xc0 /* Timer 1 mode */
# define T1MODE_CONT 0x40 /* continuous interrupts */
/* commands (1st byte) */
# define ADB_PACKET 0
# define CUDA_PACKET 1
# define ERROR_PACKET 2
# define TIMER_PACKET 3
# define POWER_PACKET 4
# define MACIIC_PACKET 5
# define PMU_PACKET 6
/* CUDA commands (2nd byte) */
# define CUDA_WARM_START 0x0
# define CUDA_AUTOPOLL 0x1
# define CUDA_GET_6805_ADDR 0x2
# define CUDA_GET_TIME 0x3
# define CUDA_GET_PRAM 0x7
# define CUDA_SET_6805_ADDR 0x8
# define CUDA_SET_TIME 0x9
# define CUDA_POWERDOWN 0xa
# define CUDA_POWERUP_TIME 0xb
# define CUDA_SET_PRAM 0xc
# define CUDA_MS_RESET 0xd
# define CUDA_SEND_DFAC 0xe
# define CUDA_BATTERY_SWAP_SENSE 0x10
# define CUDA_RESET_SYSTEM 0x11
# define CUDA_SET_IPL 0x12
# define CUDA_FILE_SERVER_FLAG 0x13
# define CUDA_SET_AUTO_RATE 0x14
# define CUDA_GET_AUTO_RATE 0x16
# define CUDA_SET_DEVICE_LIST 0x19
# define CUDA_GET_DEVICE_LIST 0x1a
# define CUDA_SET_ONE_SECOND_MODE 0x1b
# define CUDA_SET_POWER_MESSAGES 0x21
# define CUDA_GET_SET_IIC 0x22
# define CUDA_WAKEUP 0x23
# define CUDA_TIMER_TICKLE 0x24
# define CUDA_COMBINED_FORMAT_IIC 0x25
# define CUDA_TIMER_FREQ ( 4700000 / 6 )
95
# define CUDA_ADB_POLL_FREQ 50
96
97
98
99
/* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
# define RTC_OFFSET 2082844800
100
typedef struct CUDATimer {
ths
authored
18 years ago
101
int index ;
102
uint16_t latch ;
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
uint16_t counter_value ; /* counter value at load time */
int64_t load_time ;
int64_t next_irq_time ;
QEMUTimer * timer ;
} CUDATimer ;
typedef struct CUDAState {
/* cuda registers */
uint8_t b ; /* B-side data */
uint8_t a ; /* A-side data */
uint8_t dirb ; /* B-side direction (1=output) */
uint8_t dira ; /* A-side direction (1=output) */
uint8_t sr ; /* Shift register */
uint8_t acr ; /* Auxiliary control register */
uint8_t pcr ; /* Peripheral control register */
uint8_t ifr ; /* Interrupt flag register */
uint8_t ier ; /* Interrupt enable register */
uint8_t anh ; /* A-side data, no handshake */
CUDATimer timers [ 2 ];
ths
authored
18 years ago
123
124
125
uint8_t last_b ; /* last value of B register */
uint8_t last_acr ; /* last value of B register */
ths
authored
18 years ago
126
127
128
129
130
int data_in_size ;
int data_in_index ;
int data_out_index ;
131
qemu_irq irq ;
132
133
134
uint8_t autopoll ;
uint8_t data_in [ 128 ];
uint8_t data_out [ 16 ];
135
QEMUTimer * adb_poll_timer ;
136
137
138
139
140
141
} CUDAState ;
static CUDAState cuda_state ;
ADBBusState adb_bus ;
static void cuda_update ( CUDAState * s );
ths
authored
18 years ago
142
static void cuda_receive_packet_from_host ( CUDAState * s ,
143
const uint8_t * data , int len );
ths
authored
18 years ago
144
static void cuda_timer_update ( CUDAState * s , CUDATimer * ti ,
145
int64_t current_time );
146
147
148
static void cuda_update_irq ( CUDAState * s )
{
149
if ( s -> ifr & s -> ier & ( SR_INT | T1_INT )) {
150
qemu_irq_raise ( s -> irq );
151
} else {
152
qemu_irq_lower ( s -> irq );
153
154
155
156
157
158
159
160
}
}
static unsigned int get_counter ( CUDATimer * s )
{
int64_t d ;
unsigned int counter ;
ths
authored
18 years ago
161
d = muldiv64 ( qemu_get_clock ( vm_clock ) - s -> load_time ,
162
CUDA_TIMER_FREQ , ticks_per_sec );
163
164
165
166
167
168
if ( s -> index == 0 ) {
/* the timer goes down from latch to -1 (period of latch + 2) */
if ( d <= ( s -> counter_value + 1 )) {
counter = ( s -> counter_value - d ) & 0xffff ;
} else {
counter = ( d - ( s -> counter_value + 1 )) % ( s -> latch + 2 );
ths
authored
18 years ago
169
counter = ( s -> latch - counter ) & 0xffff ;
170
}
171
} else {
172
counter = ( s -> counter_value - d ) & 0xffff ;
173
174
175
176
}
return counter ;
}
177
static void set_counter ( CUDAState * s , CUDATimer * ti , unsigned int val )
178
{
179
180
181
182
183
184
185
# ifdef DEBUG_CUDA
printf ( "cuda: T%d.counter=%d \n " ,
1 + ( ti -> timer == NULL ), val );
# endif
ti -> load_time = qemu_get_clock ( vm_clock );
ti -> counter_value = val ;
cuda_timer_update ( s , ti , ti -> load_time );
186
187
188
189
}
static int64_t get_next_irq_time ( CUDATimer * s , int64_t current_time )
{
190
191
192
int64_t d , next_time ;
unsigned int counter ;
193
/* current counter value */
ths
authored
18 years ago
194
d = muldiv64 ( current_time - s -> load_time ,
195
CUDA_TIMER_FREQ , ticks_per_sec );
196
197
198
199
200
/* the timer goes down from latch to -1 (period of latch + 2) */
if ( d <= ( s -> counter_value + 1 )) {
counter = ( s -> counter_value - d ) & 0xffff ;
} else {
counter = ( d - ( s -> counter_value + 1 )) % ( s -> latch + 2 );
ths
authored
18 years ago
201
counter = ( s -> latch - counter ) & 0xffff ;
202
}
ths
authored
18 years ago
203
204
205
206
207
208
209
210
/* Note: we consider the irq is raised on 0 */
if ( counter == 0xffff ) {
next_time = d + s -> latch + 1 ;
} else if ( counter == 0 ) {
next_time = d + s -> latch + 2 ;
} else {
next_time = d + counter ;
211
}
212
# if 0
213
# ifdef DEBUG_CUDA
ths
authored
18 years ago
214
printf ( "latch=%d counter=%" PRId64 " delta_next=%" PRId64 " \n " ,
215
216
s -> latch , d , next_time - d );
# endif
217
# endif
ths
authored
18 years ago
218
next_time = muldiv64 ( next_time , ticks_per_sec , CUDA_TIMER_FREQ ) +
219
220
221
222
223
224
s -> load_time ;
if ( next_time <= current_time )
next_time = current_time + 1 ;
return next_time ;
}
ths
authored
18 years ago
225
static void cuda_timer_update ( CUDAState * s , CUDATimer * ti ,
226
227
228
229
230
231
232
233
234
235
236
237
int64_t current_time )
{
if ( ! ti -> timer )
return ;
if (( s -> acr & T1MODE ) != T1MODE_CONT ) {
qemu_del_timer ( ti -> timer );
} else {
ti -> next_irq_time = get_next_irq_time ( ti , current_time );
qemu_mod_timer ( ti -> timer , ti -> next_irq_time );
}
}
238
239
240
241
242
static void cuda_timer1 ( void * opaque )
{
CUDAState * s = opaque ;
CUDATimer * ti = & s -> timers [ 0 ];
243
cuda_timer_update ( s , ti , ti -> next_irq_time );
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
s -> ifr |= T1_INT ;
cuda_update_irq ( s );
}
static uint32_t cuda_readb ( void * opaque , target_phys_addr_t addr )
{
CUDAState * s = opaque ;
uint32_t val ;
addr = ( addr >> 9 ) & 0xf ;
switch ( addr ) {
case 0 :
val = s -> b ;
break ;
case 1 :
val = s -> a ;
break ;
case 2 :
val = s -> dirb ;
break ;
case 3 :
val = s -> dira ;
break ;
case 4 :
val = get_counter ( & s -> timers [ 0 ]) & 0xff ;
s -> ifr &= ~ T1_INT ;
cuda_update_irq ( s );
break ;
case 5 :
val = get_counter ( & s -> timers [ 0 ]) >> 8 ;
cuda_update_irq ( s );
break ;
case 6 :
val = s -> timers [ 0 ]. latch & 0xff ;
break ;
case 7 :
280
/* XXX: check this */
281
282
283
284
val = ( s -> timers [ 0 ]. latch >> 8 ) & 0xff ;
break ;
case 8 :
val = get_counter ( & s -> timers [ 1 ]) & 0xff ;
285
s -> ifr &= ~ T2_INT ;
286
287
288
289
290
break ;
case 9 :
val = get_counter ( & s -> timers [ 1 ]) >> 8 ;
break ;
case 10 :
291
292
293
val = s -> sr ;
s -> ifr &= ~ SR_INT ;
cuda_update_irq ( s );
294
295
296
297
298
299
300
301
302
break ;
case 11 :
val = s -> acr ;
break ;
case 12 :
val = s -> pcr ;
break ;
case 13 :
val = s -> ifr ;
ths
authored
18 years ago
303
if ( s -> ifr & s -> ier )
304
val |= 0x80 ;
305
306
break ;
case 14 :
307
val = s -> ier | 0x80 ;
308
309
310
311
312
313
314
break ;
default :
case 15 :
val = s -> anh ;
break ;
}
# ifdef DEBUG_CUDA
315
316
if ( addr != 13 || val != 0 )
printf ( "cuda: read: reg=0x%x val=%02x \n " , addr , val );
317
318
319
320
321
322
323
# endif
return val ;
}
static void cuda_writeb ( void * opaque , target_phys_addr_t addr , uint32_t val )
{
CUDAState * s = opaque ;
ths
authored
18 years ago
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
addr = ( addr >> 9 ) & 0xf ;
# ifdef DEBUG_CUDA
printf ( "cuda: write: reg=0x%x val=%02x \n " , addr , val );
# endif
switch ( addr ) {
case 0 :
s -> b = val ;
cuda_update ( s );
break ;
case 1 :
s -> a = val ;
break ;
case 2 :
s -> dirb = val ;
break ;
case 3 :
s -> dira = val ;
break ;
case 4 :
345
346
s -> timers [ 0 ]. latch = ( s -> timers [ 0 ]. latch & 0xff00 ) | val ;
cuda_timer_update ( s , & s -> timers [ 0 ], qemu_get_clock ( vm_clock ));
347
348
break ;
case 5 :
349
350
351
s -> timers [ 0 ]. latch = ( s -> timers [ 0 ]. latch & 0xff ) | ( val << 8 );
s -> ifr &= ~ T1_INT ;
set_counter ( s , & s -> timers [ 0 ], s -> timers [ 0 ]. latch );
352
353
354
break ;
case 6 :
s -> timers [ 0 ]. latch = ( s -> timers [ 0 ]. latch & 0xff00 ) | val ;
355
cuda_timer_update ( s , & s -> timers [ 0 ], qemu_get_clock ( vm_clock ));
356
357
358
break ;
case 7 :
s -> timers [ 0 ]. latch = ( s -> timers [ 0 ]. latch & 0xff ) | ( val << 8 );
359
s -> ifr &= ~ T1_INT ;
360
cuda_timer_update ( s , & s -> timers [ 0 ], qemu_get_clock ( vm_clock ));
361
362
break ;
case 8 :
363
s -> timers [ 1 ]. latch = val ;
364
set_counter ( s , & s -> timers [ 1 ], val );
365
366
break ;
case 9 :
367
set_counter ( s , & s -> timers [ 1 ], ( val << 8 ) | s -> timers [ 1 ]. latch );
368
369
370
371
372
373
break ;
case 10 :
s -> sr = val ;
break ;
case 11 :
s -> acr = val ;
374
cuda_timer_update ( s , & s -> timers [ 0 ], qemu_get_clock ( vm_clock ));
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
cuda_update ( s );
break ;
case 12 :
s -> pcr = val ;
break ;
case 13 :
/* reset bits */
s -> ifr &= ~ val ;
cuda_update_irq ( s );
break ;
case 14 :
if ( val & IER_SET ) {
/* set bits */
s -> ier |= val & 0x7f ;
} else {
/* reset bits */
s -> ier &= ~ val ;
}
cuda_update_irq ( s );
break ;
default :
case 15 :
s -> anh = val ;
break ;
}
}
/* NOTE: TIP and TREQ are negated */
static void cuda_update ( CUDAState * s )
{
405
406
407
408
409
int packet_received , len ;
packet_received = 0 ;
if ( ! ( s -> b & TIP )) {
/* transfer requested from host */
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
if ( s -> acr & SR_OUT ) {
/* data output */
if (( s -> b & ( TACK | TIP )) != ( s -> last_b & ( TACK | TIP ))) {
if ( s -> data_out_index < sizeof ( s -> data_out )) {
# ifdef DEBUG_CUDA
printf ( "cuda: send: %02x \n " , s -> sr );
# endif
s -> data_out [ s -> data_out_index ++ ] = s -> sr ;
s -> ifr |= SR_INT ;
cuda_update_irq ( s );
}
}
} else {
if ( s -> data_in_index < s -> data_in_size ) {
/* data input */
if (( s -> b & ( TACK | TIP )) != ( s -> last_b & ( TACK | TIP ))) {
s -> sr = s -> data_in [ s -> data_in_index ++ ];
# ifdef DEBUG_CUDA
printf ( "cuda: recv: %02x \n " , s -> sr );
# endif
/* indicate end of transfer */
if ( s -> data_in_index >= s -> data_in_size ) {
s -> b = ( s -> b | TREQ );
}
s -> ifr |= SR_INT ;
cuda_update_irq ( s );
}
438
}
439
440
441
442
443
444
445
446
447
}
} else {
/* no transfer requested: handle sync case */
if (( s -> last_b & TIP ) && ( s -> b & TACK ) != ( s -> last_b & TACK )) {
/* update TREQ state each time TACK change state */
if ( s -> b & TACK )
s -> b = ( s -> b | TREQ );
else
s -> b = ( s -> b & ~ TREQ );
448
449
s -> ifr |= SR_INT ;
cuda_update_irq ( s );
450
451
} else {
if ( ! ( s -> last_b & TIP )) {
ths
authored
18 years ago
452
/* handle end of host to cuda transfer */
453
packet_received = ( s -> data_out_index > 0 );
ths
authored
18 years ago
454
/* always an IRQ at the end of transfer */
455
456
457
458
459
460
461
s -> ifr |= SR_INT ;
cuda_update_irq ( s );
}
/* signal if there is data to read */
if ( s -> data_in_index < s -> data_in_size ) {
s -> b = ( s -> b & ~ TREQ );
}
462
463
464
465
466
}
}
s -> last_acr = s -> acr ;
s -> last_b = s -> b ;
467
468
469
470
471
472
473
474
/* NOTE : cuda_receive_packet_from_host () can call cuda_update ()
recursively */
if ( packet_received ) {
len = s -> data_out_index ;
s -> data_out_index = 0 ;
cuda_receive_packet_from_host ( s , s -> data_out , len );
}
475
476
}
ths
authored
18 years ago
477
static void cuda_send_packet_to_host ( CUDAState * s ,
478
479
const uint8_t * data , int len )
{
480
481
482
483
484
485
486
487
488
# ifdef DEBUG_CUDA_PACKET
{
int i ;
printf ( "cuda_send_packet_to_host: \n " );
for ( i = 0 ; i < len ; i ++ )
printf ( " %02x" , data [ i ]);
printf ( " \n " );
}
# endif
489
490
491
492
493
494
495
496
memcpy ( s -> data_in , data , len );
s -> data_in_size = len ;
s -> data_in_index = 0 ;
cuda_update ( s );
s -> ifr |= SR_INT ;
cuda_update_irq ( s );
}
497
static void cuda_adb_poll ( void * opaque )
498
499
500
501
502
503
504
505
506
507
508
{
CUDAState * s = opaque ;
uint8_t obuf [ ADB_MAX_OUT_LEN + 2 ];
int olen ;
olen = adb_poll ( & adb_bus , obuf + 2 );
if ( olen > 0 ) {
obuf [ 0 ] = ADB_PACKET ;
obuf [ 1 ] = 0x40 ; /* polled data */
cuda_send_packet_to_host ( s , obuf , olen + 2 );
}
ths
authored
18 years ago
509
510
qemu_mod_timer ( s -> adb_poll_timer ,
qemu_get_clock ( vm_clock ) +
511
512
513
( ticks_per_sec / CUDA_ADB_POLL_FREQ ));
}
ths
authored
18 years ago
514
static void cuda_receive_packet ( CUDAState * s ,
515
516
517
const uint8_t * data , int len )
{
uint8_t obuf [ 16 ];
518
int ti , autopoll ;
519
520
521
switch ( data [ 0 ]) {
case CUDA_AUTOPOLL :
522
523
524
525
autopoll = ( data [ 1 ] != 0 );
if ( autopoll != s -> autopoll ) {
s -> autopoll = autopoll ;
if ( autopoll ) {
ths
authored
18 years ago
526
527
qemu_mod_timer ( s -> adb_poll_timer ,
qemu_get_clock ( vm_clock ) +
528
529
530
531
532
( ticks_per_sec / CUDA_ADB_POLL_FREQ ));
} else {
qemu_del_timer ( s -> adb_poll_timer );
}
}
533
534
535
536
537
obuf [ 0 ] = CUDA_PACKET ;
obuf [ 1 ] = data [ 1 ];
cuda_send_packet_to_host ( s , obuf , 2 );
break ;
case CUDA_GET_TIME :
538
case CUDA_SET_TIME :
539
/* XXX: add time support ? */
540
ti = time ( NULL ) + RTC_OFFSET ;
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
obuf [ 0 ] = CUDA_PACKET ;
obuf [ 1 ] = 0 ;
obuf [ 2 ] = 0 ;
obuf [ 3 ] = ti >> 24 ;
obuf [ 4 ] = ti >> 16 ;
obuf [ 5 ] = ti >> 8 ;
obuf [ 6 ] = ti ;
cuda_send_packet_to_host ( s , obuf , 7 );
break ;
case CUDA_FILE_SERVER_FLAG :
case CUDA_SET_DEVICE_LIST :
case CUDA_SET_AUTO_RATE :
case CUDA_SET_POWER_MESSAGES :
obuf [ 0 ] = CUDA_PACKET ;
obuf [ 1 ] = 0 ;
cuda_send_packet_to_host ( s , obuf , 2 );
break ;
558
559
560
561
562
563
case CUDA_POWERDOWN :
obuf [ 0 ] = CUDA_PACKET ;
obuf [ 1 ] = 0 ;
cuda_send_packet_to_host ( s , obuf , 2 );
qemu_system_shutdown_request ();
break ;
564
565
566
567
568
569
case CUDA_RESET_SYSTEM :
obuf [ 0 ] = CUDA_PACKET ;
obuf [ 1 ] = 0 ;
cuda_send_packet_to_host ( s , obuf , 2 );
qemu_system_reset_request ();
break ;
570
571
572
573
574
default :
break ;
}
}
ths
authored
18 years ago
575
static void cuda_receive_packet_from_host ( CUDAState * s ,
576
577
const uint8_t * data , int len )
{
578
579
580
# ifdef DEBUG_CUDA_PACKET
{
int i ;
581
printf ( "cuda_receive_packet_from_host: \n " );
582
583
584
585
586
for ( i = 0 ; i < len ; i ++ )
printf ( " %02x" , data [ i ]);
printf ( " \n " );
}
# endif
587
588
switch ( data [ 0 ]) {
case ADB_PACKET :
589
590
591
592
{
uint8_t obuf [ ADB_MAX_OUT_LEN + 2 ];
int olen ;
olen = adb_request ( & adb_bus , obuf + 2 , data + 1 , len - 1 );
593
if ( olen > 0 ) {
594
595
596
obuf [ 0 ] = ADB_PACKET ;
obuf [ 1 ] = 0x00 ;
} else {
597
/* error */
598
obuf [ 0 ] = ADB_PACKET ;
599
600
obuf [ 1 ] = - olen ;
olen = 0 ;
601
602
603
}
cuda_send_packet_to_host ( s , obuf , olen + 2 );
}
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
break ;
case CUDA_PACKET :
cuda_receive_packet ( s , data + 1 , len - 1 );
break ;
}
}
static void cuda_writew ( void * opaque , target_phys_addr_t addr , uint32_t value )
{
}
static void cuda_writel ( void * opaque , target_phys_addr_t addr , uint32_t value )
{
}
static uint32_t cuda_readw ( void * opaque , target_phys_addr_t addr )
{
return 0 ;
}
static uint32_t cuda_readl ( void * opaque , target_phys_addr_t addr )
{
return 0 ;
}
static CPUWriteMemoryFunc * cuda_write [] = {
& cuda_writeb ,
& cuda_writew ,
& cuda_writel ,
};
static CPUReadMemoryFunc * cuda_read [] = {
& cuda_readb ,
& cuda_readw ,
& cuda_readl ,
};
641
void cuda_init ( int * cuda_mem_index , qemu_irq irq )
642
643
644
{
CUDAState * s = & cuda_state ;
645
646
s -> irq = irq ;
647
s -> timers [ 0 ]. index = 0 ;
648
s -> timers [ 0 ]. timer = qemu_new_timer ( vm_clock , cuda_timer1 , s );
649
s -> timers [ 0 ]. latch = 0xffff ;
650
set_counter ( s , & s -> timers [ 0 ], 0xffff );
651
652
653
s -> timers [ 1 ]. index = 1 ;
s -> timers [ 1 ]. latch = 0 ;
654
655
// s -> ier = T1_INT | SR_INT ;
s -> ier = 0 ;
656
set_counter ( s , & s -> timers [ 1 ], 0xffff );
657
658
s -> adb_poll_timer = qemu_new_timer ( vm_clock , cuda_adb_poll , s );
659
* cuda_mem_index = cpu_register_io_memory ( 0 , cuda_read , cuda_write , s );
660
}