Blame view

kvm-all.c 26.2 KB
1
2
3
4
/*
 * QEMU KVM support
 *
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
7
8
 *
 * Authors:
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
11
12
13
14
15
16
17
18
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
19
#include <stdarg.h>
20
21
22
23
24

#include <linux/kvm.h>

#include "qemu-common.h"
#include "sysemu.h"
Jan Kiszka authored
25
#include "hw/hw.h"
26
#include "gdbstub.h"
27
28
#include "kvm.h"
aliguori authored
29
30
31
/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
#define PAGE_SIZE TARGET_PAGE_SIZE
32
33
34
35
36
37
38
39
40
41
//#define DEBUG_KVM

#ifdef DEBUG_KVM
#define dprintf(fmt, ...) \
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
#define dprintf(fmt, ...) \
    do { } while (0)
#endif
42
43
44
45
46
47
48
49
typedef struct KVMSlot
{
    target_phys_addr_t start_addr;
    ram_addr_t memory_size;
    ram_addr_t phys_offset;
    int slot;
    int flags;
} KVMSlot;
50
51
52
typedef struct kvm_dirty_log KVMDirtyLog;
53
54
55
56
57
58
59
int kvm_allowed = 0;

struct KVMState
{
    KVMSlot slots[32];
    int fd;
    int vmfd;
aliguori authored
60
    int coalesced_mmio;
61
    int broken_set_mem_region;
62
    int migration_log;
63
64
65
#ifdef KVM_CAP_SET_GUEST_DEBUG
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
#endif
66
67
68
69
70
71
72
73
74
};

static KVMState *kvm_state;

static KVMSlot *kvm_alloc_slot(KVMState *s)
{
    int i;

    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
75
76
77
        /* KVM private memory slots */
        if (i >= 8 && i < 12)
            continue;
78
79
80
81
        if (s->slots[i].memory_size == 0)
            return &s->slots[i];
    }
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    fprintf(stderr, "%s: no free slot available\n", __func__);
    abort();
}

static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
                                         target_phys_addr_t start_addr,
                                         target_phys_addr_t end_addr)
{
    int i;

    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
        KVMSlot *mem = &s->slots[i];

        if (start_addr == mem->start_addr &&
            end_addr == mem->start_addr + mem->memory_size) {
            return mem;
        }
    }
101
102
103
    return NULL;
}
104
105
106
107
108
109
/*
 * Find overlapping slot with lowest start address
 */
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
                                            target_phys_addr_t start_addr,
                                            target_phys_addr_t end_addr)
110
{
111
    KVMSlot *found = NULL;
112
113
114
115
116
    int i;

    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
        KVMSlot *mem = &s->slots[i];
117
118
119
120
121
122
123
124
125
        if (mem->memory_size == 0 ||
            (found && found->start_addr < mem->start_addr)) {
            continue;
        }

        if (end_addr > mem->start_addr &&
            start_addr < mem->start_addr + mem->memory_size) {
            found = mem;
        }
126
127
    }
128
    return found;
129
130
}
131
132
133
134
135
136
137
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
{
    struct kvm_userspace_memory_region mem;

    mem.slot = slot->slot;
    mem.guest_phys_addr = slot->start_addr;
    mem.memory_size = slot->memory_size;
138
    mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
139
    mem.flags = slot->flags;
140
141
142
    if (s->migration_log) {
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
    }
143
144
145
146
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
}
147
148
149
150
151
152
153
154
int kvm_init_vcpu(CPUState *env)
{
    KVMState *s = kvm_state;
    long mmap_size;
    int ret;

    dprintf("kvm_init_vcpu\n");
155
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    if (ret < 0) {
        dprintf("kvm_create_vcpu failed\n");
        goto err;
    }

    env->kvm_fd = ret;
    env->kvm_state = s;

    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
    if (mmap_size < 0) {
        dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
        goto err;
    }

    env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
                        env->kvm_fd, 0);
    if (env->kvm_run == MAP_FAILED) {
        ret = -errno;
        dprintf("mmap'ing vcpu state failed\n");
        goto err;
    }

    ret = kvm_arch_init_vcpu(env);

err:
    return ret;
}
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
int kvm_put_mp_state(CPUState *env)
{
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };

    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
}

int kvm_get_mp_state(CPUState *env)
{
    struct kvm_mp_state mp_state;
    int ret;

    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
    if (ret < 0) {
        return ret;
    }
    env->mp_state = mp_state.mp_state;
    return 0;
}
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
int kvm_sync_vcpus(void)
{
    CPUState *env;

    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        int ret;

        ret = kvm_arch_put_registers(env);
        if (ret)
            return ret;
    }

    return 0;
}
219
220
221
/*
 * dirty pages logging control
 */
222
static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
223
                                      ram_addr_t size, int flags, int mask)
224
225
{
    KVMState *s = kvm_state;
226
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
227
228
    int old_flags;
229
    if (mem == NULL)  {
230
231
232
            fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
                    TARGET_FMT_plx "\n", __func__, phys_addr,
                    phys_addr + size - 1);
233
234
235
            return -EINVAL;
    }
236
    old_flags = mem->flags;
237
238
    flags = (mem->flags & ~mask) | flags;
239
240
    mem->flags = flags;
241
242
243
244
245
246
247
248
    /* If nothing changed effectively, no need to issue ioctl */
    if (s->migration_log) {
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
    }
    if (flags == old_flags) {
            return 0;
    }
249
250
251
    return kvm_set_user_memory_region(s, mem);
}
252
int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
253
{
254
        return kvm_dirty_pages_log_change(phys_addr, size,
255
256
257
258
                                          KVM_MEM_LOG_DIRTY_PAGES,
                                          KVM_MEM_LOG_DIRTY_PAGES);
}
259
int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
260
{
261
        return kvm_dirty_pages_log_change(phys_addr, size,
262
263
264
265
                                          0,
                                          KVM_MEM_LOG_DIRTY_PAGES);
}
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
int kvm_set_migration_log(int enable)
{
    KVMState *s = kvm_state;
    KVMSlot *mem;
    int i, err;

    s->migration_log = enable;

    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
        mem = &s->slots[i];

        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
            continue;
        }
        err = kvm_set_user_memory_region(s, mem);
        if (err) {
            return err;
        }
    }
    return 0;
}
288
289
290
291
292
/**
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
 * This means all bits are set to dirty.
 *
293
 * @start_add: start of logged region.
294
295
 * @end_addr: end of logged region.
 */
296
297
int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
                                   target_phys_addr_t end_addr)
298
299
{
    KVMState *s = kvm_state;
300
301
    unsigned long size, allocated_size = 0;
    target_phys_addr_t phys_addr;
302
    ram_addr_t addr;
303
304
305
    KVMDirtyLog d;
    KVMSlot *mem;
    int ret = 0;
306
307
308
309
310
311
312
    d.dirty_bitmap = NULL;
    while (start_addr < end_addr) {
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
        if (mem == NULL) {
            break;
        }
313
314
315
316
317
318
319
320
321
        size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
        if (!d.dirty_bitmap) {
            d.dirty_bitmap = qemu_malloc(size);
        } else if (size > allocated_size) {
            d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
        }
        allocated_size = size;
        memset(d.dirty_bitmap, 0, allocated_size);
322
323
        d.slot = mem->slot;
324
325
326
327
328
329
        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
            dprintf("ioctl failed %d\n", errno);
            ret = -1;
            break;
        }
330
331
332
333
334
335
336
337
338
339
340
341
342
343
        for (phys_addr = mem->start_addr, addr = mem->phys_offset;
             phys_addr < mem->start_addr + mem->memory_size;
             phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
            unsigned long *bitmap = (unsigned long *)d.dirty_bitmap;
            unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
            unsigned word = nr / (sizeof(*bitmap) * 8);
            unsigned bit = nr % (sizeof(*bitmap) * 8);

            if ((bitmap[word] >> bit) & 1) {
                cpu_physical_memory_set_dirty(addr);
            }
        }
        start_addr = phys_addr;
344
345
    }
    qemu_free(d.dirty_bitmap);
346
347

    return ret;
348
349
}
aliguori authored
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
{
    int ret = -ENOSYS;
#ifdef KVM_CAP_COALESCED_MMIO
    KVMState *s = kvm_state;

    if (s->coalesced_mmio) {
        struct kvm_coalesced_mmio_zone zone;

        zone.addr = start;
        zone.size = size;

        ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
    }
#endif

    return ret;
}

int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
{
    int ret = -ENOSYS;
#ifdef KVM_CAP_COALESCED_MMIO
    KVMState *s = kvm_state;

    if (s->coalesced_mmio) {
        struct kvm_coalesced_mmio_zone zone;

        zone.addr = start;
        zone.size = size;

        ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
    }
#endif

    return ret;
}
388
389
390
391
392
393
394
395
396
397
398
399
int kvm_check_extension(KVMState *s, unsigned int extension)
{
    int ret;

    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
    if (ret < 0) {
        ret = 0;
    }

    return ret;
}
Jan Kiszka authored
400
401
402
403
404
static void kvm_reset_vcpus(void *opaque)
{
    kvm_sync_vcpus();
}
405
406
int kvm_init(int smp_cpus)
{
407
408
409
    static const char upgrade_note[] =
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
        "(see http://sourceforge.net/projects/kvm).\n";
410
411
412
413
    KVMState *s;
    int ret;
    int i;
414
415
    if (smp_cpus > 1) {
        fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
416
        return -EINVAL;
417
    }
418
419
420

    s = qemu_mallocz(sizeof(KVMState));
421
422
423
#ifdef KVM_CAP_SET_GUEST_DEBUG
    TAILQ_INIT(&s->kvm_sw_breakpoints);
#endif
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
    for (i = 0; i < ARRAY_SIZE(s->slots); i++)
        s->slots[i].slot = i;

    s->vmfd = -1;
    s->fd = open("/dev/kvm", O_RDWR);
    if (s->fd == -1) {
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
        ret = -errno;
        goto err;
    }

    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
    if (ret < KVM_API_VERSION) {
        if (ret > 0)
            ret = -EINVAL;
        fprintf(stderr, "kvm version too old\n");
        goto err;
    }

    if (ret > KVM_API_VERSION) {
        ret = -EINVAL;
        fprintf(stderr, "kvm version not supported\n");
        goto err;
    }

    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
    if (s->vmfd < 0)
        goto err;

    /* initially, KVM allocated its own memory and we had to jump through
     * hooks to make phys_ram_base point to this.  Modern versions of KVM
455
     * just use a user allocated buffer so we can use regular pages
456
457
     * unmodified.  Make sure we have a sufficiently modern version of KVM.
     */
458
459
    if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
        ret = -EINVAL;
460
461
        fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
                upgrade_note);
462
463
464
        goto err;
    }
465
466
467
    /* There was a nasty bug in < kvm-80 that prevents memory slots from being
     * destroyed properly.  Since we rely on this capability, refuse to work
     * with any kernel without this capability. */
468
469
    if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
        ret = -EINVAL;
470
471

        fprintf(stderr,
472
473
                "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
                upgrade_note);
474
475
476
        goto err;
    }
aliguori authored
477
#ifdef KVM_CAP_COALESCED_MMIO
478
479
480
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
#else
    s->coalesced_mmio = 0;
aliguori authored
481
482
#endif
483
484
485
486
487
488
489
490
    s->broken_set_mem_region = 1;
#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
    if (ret > 0) {
        s->broken_set_mem_region = 0;
    }
#endif
491
492
493
494
    ret = kvm_arch_init(s, smp_cpus);
    if (ret < 0)
        goto err;
Jan Kiszka authored
495
496
    qemu_register_reset(kvm_reset_vcpus, INT_MAX, NULL);
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
    kvm_state = s;

    return 0;

err:
    if (s) {
        if (s->vmfd != -1)
            close(s->vmfd);
        if (s->fd != -1)
            close(s->fd);
    }
    qemu_free(s);

    return ret;
}

static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
                         int direction, int size, uint32_t count)
{
    int i;
    uint8_t *ptr = data;

    for (i = 0; i < count; i++) {
        if (direction == KVM_EXIT_IO_IN) {
            switch (size) {
            case 1:
                stb_p(ptr, cpu_inb(env, port));
                break;
            case 2:
                stw_p(ptr, cpu_inw(env, port));
                break;
            case 4:
                stl_p(ptr, cpu_inl(env, port));
                break;
            }
        } else {
            switch (size) {
            case 1:
                cpu_outb(env, port, ldub_p(ptr));
                break;
            case 2:
                cpu_outw(env, port, lduw_p(ptr));
                break;
            case 4:
                cpu_outl(env, port, ldl_p(ptr));
                break;
            }
        }

        ptr += size;
    }

    return 1;
}
aliguori authored
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
{
#ifdef KVM_CAP_COALESCED_MMIO
    KVMState *s = kvm_state;
    if (s->coalesced_mmio) {
        struct kvm_coalesced_mmio_ring *ring;

        ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
        while (ring->first != ring->last) {
            struct kvm_coalesced_mmio *ent;

            ent = &ring->coalesced_mmio[ring->first];

            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
            /* FIXME smp_wmb() */
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
        }
    }
#endif
}
573
574
575
576
577
578
579
580
int kvm_cpu_exec(CPUState *env)
{
    struct kvm_run *run = env->kvm_run;
    int ret;

    dprintf("kvm_cpu_exec()\n");

    do {
581
        if (env->exit_request) {
582
583
584
585
586
            dprintf("interrupt exit requested\n");
            ret = 0;
            break;
        }
587
        kvm_arch_pre_run(env, run);
588
589
590
591
592
593
594
595
596
597
598
599
600
601
        ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
        kvm_arch_post_run(env, run);

        if (ret == -EINTR || ret == -EAGAIN) {
            dprintf("io window exit\n");
            ret = 0;
            break;
        }

        if (ret < 0) {
            dprintf("kvm run failed %s\n", strerror(-ret));
            abort();
        }
aliguori authored
602
603
        kvm_run_coalesced_mmio(env, run);
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
        ret = 0; /* exit loop */
        switch (run->exit_reason) {
        case KVM_EXIT_IO:
            dprintf("handle_io\n");
            ret = kvm_handle_io(env, run->io.port,
                                (uint8_t *)run + run->io.data_offset,
                                run->io.direction,
                                run->io.size,
                                run->io.count);
            break;
        case KVM_EXIT_MMIO:
            dprintf("handle_mmio\n");
            cpu_physical_memory_rw(run->mmio.phys_addr,
                                   run->mmio.data,
                                   run->mmio.len,
                                   run->mmio.is_write);
            ret = 1;
            break;
        case KVM_EXIT_IRQ_WINDOW_OPEN:
            dprintf("irq_window_open\n");
            break;
        case KVM_EXIT_SHUTDOWN:
            dprintf("shutdown\n");
            qemu_system_reset_request();
            ret = 1;
            break;
        case KVM_EXIT_UNKNOWN:
            dprintf("kvm_exit_unknown\n");
            break;
        case KVM_EXIT_FAIL_ENTRY:
            dprintf("kvm_exit_fail_entry\n");
            break;
        case KVM_EXIT_EXCEPTION:
            dprintf("kvm_exit_exception\n");
            break;
        case KVM_EXIT_DEBUG:
            dprintf("kvm_exit_debug\n");
641
642
643
644
645
646
647
648
649
650
#ifdef KVM_CAP_SET_GUEST_DEBUG
            if (kvm_arch_debug(&run->debug.arch)) {
                gdb_set_stop_cpu(env);
                vm_stop(EXCP_DEBUG);
                env->exception_index = EXCP_DEBUG;
                return 0;
            }
            /* re-enter, this exception was guest-internal */
            ret = 1;
#endif /* KVM_CAP_SET_GUEST_DEBUG */
651
652
653
654
655
656
657
658
            break;
        default:
            dprintf("kvm_arch_handle_exit\n");
            ret = kvm_arch_handle_exit(env, run);
            break;
        }
    } while (ret > 0);
659
660
    if (env->exit_request) {
        env->exit_request = 0;
661
662
663
        env->exception_index = EXCP_INTERRUPT;
    }
664
665
666
667
668
669
670
671
672
    return ret;
}

void kvm_set_phys_mem(target_phys_addr_t start_addr,
                      ram_addr_t size,
                      ram_addr_t phys_offset)
{
    KVMState *s = kvm_state;
    ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
673
674
    KVMSlot *mem, old;
    int err;
675
676
    if (start_addr & ~TARGET_PAGE_MASK) {
677
678
679
680
681
682
683
684
685
        if (flags >= IO_MEM_UNASSIGNED) {
            if (!kvm_lookup_overlapping_slot(s, start_addr,
                                             start_addr + size)) {
                return;
            }
            fprintf(stderr, "Unaligned split of a KVM memory slot\n");
        } else {
            fprintf(stderr, "Only page-aligned memory slots supported\n");
        }
686
687
688
        abort();
    }
689
690
691
    /* KVM does not support read-only slots */
    phys_offset &= ~IO_MEM_ROM;
692
693
694
695
696
    while (1) {
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
        if (!mem) {
            break;
        }
697
698
699
700
701
702
        if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
            (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
            /* The new slot fits into the existing one and comes with
             * identical parameters - nothing to be done. */
703
            return;
704
705
706
707
708
709
710
711
712
713
        }

        old = *mem;

        /* unregister the overlapping slot */
        mem->memory_size = 0;
        err = kvm_set_user_memory_region(s, mem);
        if (err) {
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
                    __func__, strerror(-err));
714
715
            abort();
        }
716
717
718
719
720
721
722
723
724

        /* Workaround for older KVM versions: we can't join slots, even not by
         * unregistering the previous ones and then registering the larger
         * slot. We have to maintain the existing fragmentation. Sigh.
         *
         * This workaround assumes that the new slot starts at the same
         * address as the first existing one. If not or if some overlapping
         * slot comes around later, we will fail (not seen in practice so far)
         * - and actually require a recent KVM version. */
725
726
        if (s->broken_set_mem_region &&
            old.start_addr == start_addr && old.memory_size < size &&
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
            flags < IO_MEM_UNASSIGNED) {
            mem = kvm_alloc_slot(s);
            mem->memory_size = old.memory_size;
            mem->start_addr = old.start_addr;
            mem->phys_offset = old.phys_offset;
            mem->flags = 0;

            err = kvm_set_user_memory_region(s, mem);
            if (err) {
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
                        strerror(-err));
                abort();
            }

            start_addr += old.memory_size;
            phys_offset += old.memory_size;
            size -= old.memory_size;
            continue;
        }

        /* register prefix slot */
        if (old.start_addr < start_addr) {
            mem = kvm_alloc_slot(s);
            mem->memory_size = start_addr - old.start_addr;
            mem->start_addr = old.start_addr;
            mem->phys_offset = old.phys_offset;
            mem->flags = 0;

            err = kvm_set_user_memory_region(s, mem);
            if (err) {
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
                        __func__, strerror(-err));
                abort();
            }
        }

        /* register suffix slot */
        if (old.start_addr + old.memory_size > start_addr + size) {
            ram_addr_t size_delta;

            mem = kvm_alloc_slot(s);
            mem->start_addr = start_addr + size;
            size_delta = mem->start_addr - old.start_addr;
            mem->memory_size = old.memory_size - size_delta;
            mem->phys_offset = old.phys_offset + size_delta;
            mem->flags = 0;

            err = kvm_set_user_memory_region(s, mem);
            if (err) {
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
                        __func__, strerror(-err));
                abort();
            }
        }
781
    }
782
783
784
785
786

    /* in case the KVM bug workaround already "consumed" the new slot */
    if (!size)
        return;
787
788
789
790
791
792
    /* KVM does not need to know about this memory */
    if (flags >= IO_MEM_UNASSIGNED)
        return;

    mem = kvm_alloc_slot(s);
    mem->memory_size = size;
793
794
    mem->start_addr = start_addr;
    mem->phys_offset = phys_offset;
795
796
    mem->flags = 0;
797
798
799
800
801
802
    err = kvm_set_user_memory_region(s, mem);
    if (err) {
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
                strerror(-err));
        abort();
    }
803
804
}
805
int kvm_ioctl(KVMState *s, int type, ...)
806
807
{
    int ret;
808
809
    void *arg;
    va_list ap;
810
811
812
813
814
815
    va_start(ap, type);
    arg = va_arg(ap, void *);
    va_end(ap);

    ret = ioctl(s->fd, type, arg);
816
817
818
819
820
821
    if (ret == -1)
        ret = -errno;

    return ret;
}
822
int kvm_vm_ioctl(KVMState *s, int type, ...)
823
824
{
    int ret;
825
826
827
828
829
830
    void *arg;
    va_list ap;

    va_start(ap, type);
    arg = va_arg(ap, void *);
    va_end(ap);
831
832
    ret = ioctl(s->vmfd, type, arg);
833
834
835
836
837
838
    if (ret == -1)
        ret = -errno;

    return ret;
}
839
int kvm_vcpu_ioctl(CPUState *env, int type, ...)
840
841
{
    int ret;
842
843
844
845
846
847
    void *arg;
    va_list ap;

    va_start(ap, type);
    arg = va_arg(ap, void *);
    va_end(ap);
848
849
    ret = ioctl(env->kvm_fd, type, arg);
850
851
852
853
854
    if (ret == -1)
        ret = -errno;

    return ret;
}
aliguori authored
855
856
857

int kvm_has_sync_mmu(void)
{
858
#ifdef KVM_CAP_SYNC_MMU
aliguori authored
859
860
    KVMState *s = kvm_state;
861
862
    return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
#else
aliguori authored
863
    return 0;
864
#endif
aliguori authored
865
}
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
void kvm_setup_guest_memory(void *start, size_t size)
{
    if (!kvm_has_sync_mmu()) {
#ifdef MADV_DONTFORK
        int ret = madvise(start, size, MADV_DONTFORK);

        if (ret) {
            perror("madvice");
            exit(1);
        }
#else
        fprintf(stderr,
                "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
        exit(1);
#endif
    }
}
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
#ifdef KVM_CAP_SET_GUEST_DEBUG
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
                                                 target_ulong pc)
{
    struct kvm_sw_breakpoint *bp;

    TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
        if (bp->pc == pc)
            return bp;
    }
    return NULL;
}

int kvm_sw_breakpoints_active(CPUState *env)
{
    return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
}

int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
{
    struct kvm_guest_debug dbg;

    dbg.control = 0;
    if (env->singlestep_enabled)
        dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;

    kvm_arch_update_guest_debug(env, &dbg);
    dbg.control |= reinject_trap;

    return kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg);
}

int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
                          target_ulong len, int type)
{
    struct kvm_sw_breakpoint *bp;
    CPUState *env;
    int err;

    if (type == GDB_BREAKPOINT_SW) {
        bp = kvm_find_sw_breakpoint(current_env, addr);
        if (bp) {
            bp->use_count++;
            return 0;
        }

        bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
        if (!bp)
            return -ENOMEM;

        bp->pc = addr;
        bp->use_count = 1;
        err = kvm_arch_insert_sw_breakpoint(current_env, bp);
        if (err) {
            free(bp);
            return err;
        }

        TAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
                          bp, entry);
    } else {
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
        if (err)
            return err;
    }

    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        err = kvm_update_guest_debug(env, 0);
        if (err)
            return err;
    }
    return 0;
}

int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
                          target_ulong len, int type)
{
    struct kvm_sw_breakpoint *bp;
    CPUState *env;
    int err;

    if (type == GDB_BREAKPOINT_SW) {
        bp = kvm_find_sw_breakpoint(current_env, addr);
        if (!bp)
            return -ENOENT;

        if (bp->use_count > 1) {
            bp->use_count--;
            return 0;
        }

        err = kvm_arch_remove_sw_breakpoint(current_env, bp);
        if (err)
            return err;

        TAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
        qemu_free(bp);
    } else {
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
        if (err)
            return err;
    }

    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        err = kvm_update_guest_debug(env, 0);
        if (err)
            return err;
    }
    return 0;
}

void kvm_remove_all_breakpoints(CPUState *current_env)
{
    struct kvm_sw_breakpoint *bp, *next;
    KVMState *s = current_env->kvm_state;
    CPUState *env;

    TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
        if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
            /* Try harder to find a CPU that currently sees the breakpoint. */
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
                if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
                    break;
            }
        }
    }
    kvm_arch_remove_all_hw_breakpoints();

    for (env = first_cpu; env != NULL; env = env->next_cpu)
        kvm_update_guest_debug(env, 0);
}

#else /* !KVM_CAP_SET_GUEST_DEBUG */

int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
{
    return -EINVAL;
}

int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
                          target_ulong len, int type)
{
    return -EINVAL;
}

int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
                          target_ulong len, int type)
{
    return -EINVAL;
}

void kvm_remove_all_breakpoints(CPUState *current_env)
{
}
#endif /* !KVM_CAP_SET_GUEST_DEBUG */