Blame view

net.c 78.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/*
 * QEMU System Emulator
 *
 * Copyright (c) 2003-2008 Fabrice Bellard
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <unistd.h>
#include <fcntl.h>
#include <signal.h>
#include <time.h>
#include <errno.h>
#include <sys/time.h>
#include <zlib.h>
32
/* Needed early for HOST_BSD etc. */
33
34
#include "config-host.h"
35
36
37
38
39
40
#ifndef _WIN32
#include <sys/times.h>
#include <sys/wait.h>
#include <termios.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
41
#include <sys/resource.h>
42
43
#include <sys/socket.h>
#include <netinet/in.h>
44
45
46
47
48
49
50
51
#include <net/if.h>
#ifdef __NetBSD__
#include <net/if_tap.h>
#endif
#ifdef __linux__
#include <linux/if_tun.h>
#endif
#include <arpa/inet.h>
52
53
54
#include <dirent.h>
#include <netdb.h>
#include <sys/select.h>
55
#ifdef HOST_BSD
56
#include <sys/stat.h>
57
#if defined(__FreeBSD__) || defined(__DragonFly__)
58
#include <libutil.h>
59
60
#else
#include <util.h>
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#endif
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
#include <freebsd/stdlib.h>
#else
#ifdef __linux__
#include <pty.h>
#include <malloc.h>
#include <linux/rtc.h>

/* For the benefit of older linux systems which don't supply it,
   we use a local copy of hpet.h. */
/* #include <linux/hpet.h> */
#include "hpet.h"

#include <linux/ppdev.h>
#include <linux/parport.h>
#endif
#ifdef __sun__
#include <sys/stat.h>
#include <sys/ethernet.h>
#include <sys/sockio.h>
#include <netinet/arp.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h> // must come after ip.h
#include <netinet/udp.h>
#include <netinet/tcp.h>
#include <net/if.h>
#include <syslog.h>
#include <stropts.h>
#endif
#endif
#endif

#if defined(__OpenBSD__)
#include <util.h>
#endif

#if defined(CONFIG_VDE)
#include <libvdeplug.h>
#endif

#ifdef _WIN32
105
#include <windows.h>
106
107
108
109
110
111
112
#include <malloc.h>
#include <sys/timeb.h>
#include <mmsystem.h>
#define getopt_long_only getopt_long
#define memalign(align, size) malloc(size)
#endif
113
114
115
116
117
118
119
120
#include "qemu-common.h"
#include "net.h"
#include "monitor.h"
#include "sysemu.h"
#include "qemu-timer.h"
#include "qemu-char.h"
#include "audio/audio.h"
#include "qemu_socket.h"
121
#include "qemu-log.h"
122
123
#include "slirp/libslirp.h"
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
static VLANState *first_vlan;

/***********************************************************/
/* network device redirectors */

#if defined(DEBUG_NET) || defined(DEBUG_SLIRP)
static void hex_dump(FILE *f, const uint8_t *buf, int size)
{
    int len, i, j, c;

    for(i=0;i<size;i+=16) {
        len = size - i;
        if (len > 16)
            len = 16;
        fprintf(f, "%08x ", i);
        for(j=0;j<16;j++) {
            if (j < len)
                fprintf(f, " %02x", buf[i+j]);
            else
                fprintf(f, "   ");
        }
        fprintf(f, " ");
        for(j=0;j<len;j++) {
            c = buf[i+j];
            if (c < ' ' || c > '~')
                c = '.';
            fprintf(f, "%c", c);
        }
        fprintf(f, "\n");
    }
}
#endif

static int parse_macaddr(uint8_t *macaddr, const char *p)
{
    int i;
    char *last_char;
    long int offset;

    errno = 0;
    offset = strtol(p, &last_char, 0);    
    if (0 == errno && '\0' == *last_char &&
            offset >= 0 && offset <= 0xFFFFFF) {
        macaddr[3] = (offset & 0xFF0000) >> 16;
        macaddr[4] = (offset & 0xFF00) >> 8;
        macaddr[5] = offset & 0xFF;
        return 0;
    } else {
        for(i = 0; i < 6; i++) {
            macaddr[i] = strtol(p, (char **)&p, 16);
            if (i == 5) {
                if (*p != '\0')
                    return -1;
            } else {
                if (*p != ':' && *p != '-')
                    return -1;
                p++;
            }
        }
        return 0;    
    }

    return -1;
}

static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
{
    const char *p, *p1;
    int len;
    p = *pp;
    p1 = strchr(p, sep);
    if (!p1)
        return -1;
    len = p1 - p;
    p1++;
    if (buf_size > 0) {
        if (len > buf_size - 1)
            len = buf_size - 1;
        memcpy(buf, p, len);
        buf[len] = '\0';
    }
    *pp = p1;
    return 0;
}

int parse_host_src_port(struct sockaddr_in *haddr,
                        struct sockaddr_in *saddr,
                        const char *input_str)
{
    char *str = strdup(input_str);
    char *host_str = str;
    char *src_str;
    const char *src_str2;
    char *ptr;

    /*
     * Chop off any extra arguments at the end of the string which
     * would start with a comma, then fill in the src port information
     * if it was provided else use the "any address" and "any port".
     */
    if ((ptr = strchr(str,',')))
        *ptr = '\0';

    if ((src_str = strchr(input_str,'@'))) {
        *src_str = '\0';
        src_str++;
    }

    if (parse_host_port(haddr, host_str) < 0)
        goto fail;

    src_str2 = src_str;
    if (!src_str || *src_str == '\0')
        src_str2 = ":0";

    if (parse_host_port(saddr, src_str2) < 0)
        goto fail;

    free(str);
    return(0);

fail:
    free(str);
    return -1;
}

int parse_host_port(struct sockaddr_in *saddr, const char *str)
{
    char buf[512];
    struct hostent *he;
    const char *p, *r;
    int port;

    p = str;
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
        return -1;
    saddr->sin_family = AF_INET;
    if (buf[0] == '\0') {
        saddr->sin_addr.s_addr = 0;
    } else {
266
        if (qemu_isdigit(buf[0])) {
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
            if (!inet_aton(buf, &saddr->sin_addr))
                return -1;
        } else {
            if ((he = gethostbyname(buf)) == NULL)
                return - 1;
            saddr->sin_addr = *(struct in_addr *)he->h_addr;
        }
    }
    port = strtol(p, (char **)&r, 0);
    if (r == p)
        return -1;
    saddr->sin_port = htons(port);
    return 0;
}
282
283
#if !defined(_WIN32) && 0
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
{
    const char *p;
    int len;

    len = MIN(108, strlen(str));
    p = strchr(str, ',');
    if (p)
	len = MIN(len, p - str);

    memset(uaddr, 0, sizeof(*uaddr));

    uaddr->sun_family = AF_UNIX;
    memcpy(uaddr->sun_path, str, len);

    return 0;
}
#endif
302
303
304
void qemu_format_nic_info_str(VLANClientState *vc, uint8_t macaddr[6])
{
    snprintf(vc->info_str, sizeof(vc->info_str),
305
306
             "model=%s,macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
             vc->model,
307
308
309
310
             macaddr[0], macaddr[1], macaddr[2],
             macaddr[3], macaddr[4], macaddr[5]);
}
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
static char *assign_name(VLANClientState *vc1, const char *model)
{
    VLANState *vlan;
    char buf[256];
    int id = 0;

    for (vlan = first_vlan; vlan; vlan = vlan->next) {
        VLANClientState *vc;

        for (vc = vlan->first_client; vc; vc = vc->next)
            if (vc != vc1 && strcmp(vc->model, model) == 0)
                id++;
    }

    snprintf(buf, sizeof(buf), "%s.%d", model, id);

    return strdup(buf);
}
330
VLANClientState *qemu_new_vlan_client(VLANState *vlan,
331
                                      const char *model,
332
                                      const char *name,
333
334
335
                                      NetCanReceive *can_receive,
                                      NetReceive *receive,
                                      NetReceiveIOV *receive_iov,
336
                                      NetCleanup *cleanup,
337
338
339
340
                                      void *opaque)
{
    VLANClientState *vc, **pvc;
    vc = qemu_mallocz(sizeof(VLANClientState));
341
    vc->model = strdup(model);
342
343
344
345
    if (name)
        vc->name = strdup(name);
    else
        vc->name = assign_name(vc, model);
346
347
348
    vc->can_receive = can_receive;
    vc->receive = receive;
    vc->receive_iov = receive_iov;
349
    vc->cleanup = cleanup;
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
    vc->opaque = opaque;
    vc->vlan = vlan;

    vc->next = NULL;
    pvc = &vlan->first_client;
    while (*pvc != NULL)
        pvc = &(*pvc)->next;
    *pvc = vc;
    return vc;
}

void qemu_del_vlan_client(VLANClientState *vc)
{
    VLANClientState **pvc = &vc->vlan->first_client;

    while (*pvc != NULL)
        if (*pvc == vc) {
            *pvc = vc->next;
368
369
370
            if (vc->cleanup) {
                vc->cleanup(vc);
            }
371
            free(vc->name);
372
            free(vc->model);
373
            qemu_free(vc);
374
375
376
377
378
            break;
        } else
            pvc = &(*pvc)->next;
}
379
380
381
382
383
384
385
386
387
388
389
390
391
VLANClientState *qemu_find_vlan_client(VLANState *vlan, void *opaque)
{
    VLANClientState **pvc = &vlan->first_client;

    while (*pvc != NULL)
        if ((*pvc)->opaque == opaque)
            return *pvc;
        else
            pvc = &(*pvc)->next;

    return NULL;
}
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
static VLANClientState *
qemu_find_vlan_client_by_name(Monitor *mon, int vlan_id,
                              const char *client_str)
{
    VLANState *vlan;
    VLANClientState *vc;

    vlan = qemu_find_vlan(vlan_id, 0);
    if (!vlan) {
        monitor_printf(mon, "unknown VLAN %d\n", vlan_id);
        return NULL;
    }

    for (vc = vlan->first_client; vc != NULL; vc = vc->next) {
        if (!strcmp(vc->name, client_str)) {
            break;
        }
    }
    if (!vc) {
        monitor_printf(mon, "can't find device %s on VLAN %d\n",
                       client_str, vlan_id);
    }

    return vc;
}
418
int qemu_can_send_packet(VLANClientState *sender)
419
{
420
    VLANState *vlan = sender->vlan;
421
422
    VLANClientState *vc;
423
424
425
426
427
    for (vc = vlan->first_client; vc != NULL; vc = vc->next) {
        if (vc == sender) {
            continue;
        }
428
        /* no can_receive() handler, they can always receive */
429
        if (!vc->can_receive || vc->can_receive(vc)) {
430
            return 1;
431
432
433
434
435
        }
    }
    return 0;
}
436
static int
437
qemu_deliver_packet(VLANClientState *sender, const uint8_t *buf, int size)
438
439
{
    VLANClientState *vc;
440
    int ret = -1;
441
442
443
    sender->vlan->delivering = 1;
444
    for (vc = sender->vlan->first_client; vc != NULL; vc = vc->next) {
445
446
447
448
        ssize_t len;

        if (vc == sender) {
            continue;
449
        }
450
451
452
453
454
455
456
457
458

        if (vc->link_down) {
            ret = size;
            continue;
        }

        len = vc->receive(vc, buf, size);

        ret = (ret >= 0) ? ret : len;
459
    }
460
461
462
    sender->vlan->delivering = 0;
463
    return ret;
464
465
}
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
void qemu_purge_queued_packets(VLANClientState *vc)
{
    VLANPacket **pp = &vc->vlan->send_queue;

    while (*pp != NULL) {
        VLANPacket *packet = *pp;

        if (packet->sender == vc) {
            *pp = packet->next;
            qemu_free(packet);
        } else {
            pp = &packet->next;
        }
    }
}
482
void qemu_flush_queued_packets(VLANClientState *vc)
483
484
485
486
{
    VLANPacket *packet;

    while ((packet = vc->vlan->send_queue) != NULL) {
487
488
        int ret;
489
        vc->vlan->send_queue = packet->next;
490
491
492
493
494
495
496
497
498

        ret = qemu_deliver_packet(packet->sender, packet->data, packet->size);
        if (ret == 0 && packet->sent_cb != NULL) {
            packet->next = vc->vlan->send_queue;
            vc->vlan->send_queue = packet;
            break;
        }

        if (packet->sent_cb)
499
            packet->sent_cb(packet->sender, ret);
500
501
502
503
504
        qemu_free(packet);
    }
}
505
506
507
static void qemu_enqueue_packet(VLANClientState *sender,
                                const uint8_t *buf, int size,
                                NetPacketSent *sent_cb)
508
509
510
511
512
513
514
{
    VLANPacket *packet;

    packet = qemu_malloc(sizeof(VLANPacket) + size);
    packet->next = sender->vlan->send_queue;
    packet->sender = sender;
    packet->size = size;
515
    packet->sent_cb = sent_cb;
516
517
518
519
    memcpy(packet->data, buf, size);
    sender->vlan->send_queue = packet;
}
520
521
522
ssize_t qemu_send_packet_async(VLANClientState *sender,
                               const uint8_t *buf, int size,
                               NetPacketSent *sent_cb)
523
{
524
    int ret;
525
526
527
528
    if (sender->link_down) {
        return size;
    }
529
530
#ifdef DEBUG_NET
531
    printf("vlan %d send:\n", sender->vlan->id);
532
533
    hex_dump(stdout, buf, size);
#endif
534
535
536
537
538
539
540
541
542
543

    if (sender->vlan->delivering) {
        qemu_enqueue_packet(sender, buf, size, NULL);
        return size;
    }

    ret = qemu_deliver_packet(sender, buf, size);
    if (ret == 0 && sent_cb != NULL) {
        qemu_enqueue_packet(sender, buf, size, sent_cb);
        return 0;
544
    }
545
546
547
548
549
550
551
552
553
    qemu_flush_queued_packets(sender);

    return ret;
}

void qemu_send_packet(VLANClientState *vc, const uint8_t *buf, int size)
{
    qemu_send_packet_async(vc, buf, size, NULL);
554
555
}
aliguori authored
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
static ssize_t vc_sendv_compat(VLANClientState *vc, const struct iovec *iov,
                               int iovcnt)
{
    uint8_t buffer[4096];
    size_t offset = 0;
    int i;

    for (i = 0; i < iovcnt; i++) {
        size_t len;

        len = MIN(sizeof(buffer) - offset, iov[i].iov_len);
        memcpy(buffer + offset, iov[i].iov_base, len);
        offset += len;
    }
571
    return vc->receive(vc, buffer, offset);
aliguori authored
572
573
}
574
575
576
577
578
579
580
581
582
583
static ssize_t calc_iov_length(const struct iovec *iov, int iovcnt)
{
    size_t offset = 0;
    int i;

    for (i = 0; i < iovcnt; i++)
        offset += iov[i].iov_len;
    return offset;
}
584
585
static int qemu_deliver_packet_iov(VLANClientState *sender,
                                   const struct iovec *iov, int iovcnt)
aliguori authored
586
587
{
    VLANClientState *vc;
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
    int ret = -1;

    sender->vlan->delivering = 1;

    for (vc = sender->vlan->first_client; vc != NULL; vc = vc->next) {
        ssize_t len;

        if (vc == sender) {
            continue;
        }

        if (vc->link_down) {
            ret = calc_iov_length(iov, iovcnt);
            continue;
        }

        if (vc->receive_iov) {
            len = vc->receive_iov(vc, iov, iovcnt);
        } else {
            len = vc_sendv_compat(vc, iov, iovcnt);
        }

        ret = (ret >= 0) ? ret : len;
    }

    sender->vlan->delivering = 0;

    return ret;
}

static ssize_t qemu_enqueue_packet_iov(VLANClientState *sender,
619
620
                                       const struct iovec *iov, int iovcnt,
                                       NetPacketSent *sent_cb)
621
{
622
    VLANPacket *packet;
623
    size_t max_len = 0;
624
    int i;
aliguori authored
625
626
    max_len = calc_iov_length(iov, iovcnt);
627
628
629
630
    packet = qemu_malloc(sizeof(VLANPacket) + max_len);
    packet->next = sender->vlan->send_queue;
    packet->sender = sender;
631
    packet->sent_cb = sent_cb;
632
    packet->size = 0;
633
634
635
    for (i = 0; i < iovcnt; i++) {
        size_t len = iov[i].iov_len;
636
637
638
639
        memcpy(packet->data + packet->size, iov[i].iov_base, len);
        packet->size += len;
    }
aliguori authored
640
641
    sender->vlan->send_queue = packet;
aliguori authored
642
643
644
    return packet->size;
}
aliguori authored
645
646
647
648
ssize_t qemu_sendv_packet_async(VLANClientState *sender,
                                const struct iovec *iov, int iovcnt,
                                NetPacketSent *sent_cb)
649
650
651
652
653
654
655
656
{
    int ret;

    if (sender->link_down) {
        return calc_iov_length(iov, iovcnt);
    }

    if (sender->vlan->delivering) {
657
        return qemu_enqueue_packet_iov(sender, iov, iovcnt, NULL);
aliguori authored
658
659
    }
660
    ret = qemu_deliver_packet_iov(sender, iov, iovcnt);
661
662
663
664
    if (ret == 0 && sent_cb != NULL) {
        qemu_enqueue_packet_iov(sender, iov, iovcnt, sent_cb);
        return 0;
    }
665
666
667
668

    qemu_flush_queued_packets(sender);

    return ret;
aliguori authored
669
670
}
671
672
673
674
675
676
ssize_t
qemu_sendv_packet(VLANClientState *vc, const struct iovec *iov, int iovcnt)
{
    return qemu_sendv_packet_async(vc, iov, iovcnt, NULL);
}
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
static void config_error(Monitor *mon, const char *fmt, ...)
{
    va_list ap;

    va_start(ap, fmt);
    if (mon) {
        monitor_vprintf(mon, fmt, ap);
    } else {
        fprintf(stderr, "qemu: ");
        vfprintf(stderr, fmt, ap);
        exit(1);
    }
    va_end(ap);
}
692
693
694
695
#if defined(CONFIG_SLIRP)

/* slirp network adapter */
696
697
#define SLIRP_CFG_HOSTFWD 1
#define SLIRP_CFG_LEGACY  2
698
699
700
struct slirp_config_str {
    struct slirp_config_str *next;
701
702
    int flags;
    char str[1024];
703
    int legacy_format;
704
705
};
706
typedef struct SlirpState {
707
    TAILQ_ENTRY(SlirpState) entry;
708
709
    VLANClientState *vc;
    Slirp *slirp;
710
711
712
#ifndef _WIN32
    char smb_dir[128];
#endif
713
714
} SlirpState;
715
716
717
static struct slirp_config_str *slirp_configs;
const char *legacy_tftp_prefix;
const char *legacy_bootp_filename;
718
719
static TAILQ_HEAD(slirp_stacks, SlirpState) slirp_stacks =
    TAILQ_HEAD_INITIALIZER(slirp_stacks);
720
721
static void slirp_hostfwd(SlirpState *s, Monitor *mon, const char *redir_str,
722
                          int legacy_format);
723
static void slirp_guestfwd(SlirpState *s, Monitor *mon, const char *config_str,
724
                           int legacy_format);
725
726
#ifndef _WIN32
727
728
static const char *legacy_smb_export;
729
static void slirp_smb(SlirpState *s, Monitor *mon, const char *exported_dir,
730
                      struct in_addr vserver_addr);
731
732
733
static void slirp_smb_cleanup(SlirpState *s);
#else
static inline void slirp_smb_cleanup(SlirpState *s) { }
734
#endif
735
736
int slirp_can_output(void *opaque)
737
{
738
739
740
    SlirpState *s = opaque;

    return qemu_can_send_packet(s->vc);
741
742
}
743
void slirp_output(void *opaque, const uint8_t *pkt, int pkt_len)
744
{
745
746
    SlirpState *s = opaque;
747
748
749
750
#ifdef DEBUG_SLIRP
    printf("slirp output:\n");
    hex_dump(stdout, pkt, pkt_len);
#endif
751
    qemu_send_packet(s->vc, pkt, pkt_len);
752
753
}
754
static ssize_t slirp_receive(VLANClientState *vc, const uint8_t *buf, size_t size)
755
{
756
757
    SlirpState *s = vc->opaque;
758
759
760
761
#ifdef DEBUG_SLIRP
    printf("slirp input:\n");
    hex_dump(stdout, buf, size);
#endif
762
    slirp_input(s->slirp, buf, size);
763
    return size;
764
765
}
766
767
static void net_slirp_cleanup(VLANClientState *vc)
{
768
769
770
    SlirpState *s = vc->opaque;

    slirp_cleanup(s->slirp);
771
    slirp_smb_cleanup(s);
772
    TAILQ_REMOVE(&slirp_stacks, s, entry);
773
    qemu_free(s);
774
775
}
776
static int net_slirp_init(Monitor *mon, VLANState *vlan, const char *model,
777
778
779
780
781
782
                          const char *name, int restricted,
                          const char *vnetwork, const char *vhost,
                          const char *vhostname, const char *tftp_export,
                          const char *bootfile, const char *vdhcp_start,
                          const char *vnameserver, const char *smb_export,
                          const char *vsmbserver)
783
{
784
785
786
787
788
789
    /* default settings according to historic slirp */
    struct in_addr net  = { .s_addr = htonl(0x0a000000) }; /* 10.0.0.0 */
    struct in_addr mask = { .s_addr = htonl(0xff000000) }; /* 255.0.0.0 */
    struct in_addr host = { .s_addr = htonl(0x0a000202) }; /* 10.0.2.2 */
    struct in_addr dhcp = { .s_addr = htonl(0x0a00020f) }; /* 10.0.2.15 */
    struct in_addr dns  = { .s_addr = htonl(0x0a000203) }; /* 10.0.2.3 */
790
#ifndef _WIN32
791
    struct in_addr smbsrv = { .s_addr = 0 };
792
#endif
793
794
795
796
797
798
799
800
801
802
803
804
    SlirpState *s;
    char buf[20];
    uint32_t addr;
    int shift;
    char *end;

    if (!tftp_export) {
        tftp_export = legacy_tftp_prefix;
    }
    if (!bootfile) {
        bootfile = legacy_bootp_filename;
    }
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
    if (vnetwork) {
        if (get_str_sep(buf, sizeof(buf), &vnetwork, '/') < 0) {
            if (!inet_aton(vnetwork, &net)) {
                return -1;
            }
            addr = ntohl(net.s_addr);
            if (!(addr & 0x80000000)) {
                mask.s_addr = htonl(0xff000000); /* class A */
            } else if ((addr & 0xfff00000) == 0xac100000) {
                mask.s_addr = htonl(0xfff00000); /* priv. 172.16.0.0/12 */
            } else if ((addr & 0xc0000000) == 0x80000000) {
                mask.s_addr = htonl(0xffff0000); /* class B */
            } else if ((addr & 0xffff0000) == 0xc0a80000) {
                mask.s_addr = htonl(0xffff0000); /* priv. 192.168.0.0/16 */
            } else if ((addr & 0xffff0000) == 0xc6120000) {
                mask.s_addr = htonl(0xfffe0000); /* tests 198.18.0.0/15 */
            } else if ((addr & 0xe0000000) == 0xe0000000) {
                mask.s_addr = htonl(0xffffff00); /* class C */
824
            } else {
825
826
827
828
829
830
831
832
833
                mask.s_addr = htonl(0xfffffff0); /* multicast/reserved */
            }
        } else {
            if (!inet_aton(buf, &net)) {
                return -1;
            }
            shift = strtol(vnetwork, &end, 10);
            if (*end != '\0') {
                if (!inet_aton(vnetwork, &mask)) {
834
835
                    return -1;
                }
836
837
838
839
            } else if (shift < 4 || shift > 32) {
                return -1;
            } else {
                mask.s_addr = htonl(0xffffffff << (32 - shift));
840
841
            }
        }
842
843
844
845
846
        net.s_addr &= mask.s_addr;
        host.s_addr = net.s_addr | (htonl(0x0202) & ~mask.s_addr);
        dhcp.s_addr = net.s_addr | (htonl(0x020f) & ~mask.s_addr);
        dns.s_addr  = net.s_addr | (htonl(0x0203) & ~mask.s_addr);
    }
847
848
849
850
851
852
853
    if (vhost && !inet_aton(vhost, &host)) {
        return -1;
    }
    if ((host.s_addr & mask.s_addr) != net.s_addr) {
        return -1;
    }
854
855
856
857
858
859
860
861
    if (vdhcp_start && !inet_aton(vdhcp_start, &dhcp)) {
        return -1;
    }
    if ((dhcp.s_addr & mask.s_addr) != net.s_addr ||
        dhcp.s_addr == host.s_addr || dhcp.s_addr == dns.s_addr) {
        return -1;
    }
862
863
864
865
866
867
868
869
    if (vnameserver && !inet_aton(vnameserver, &dns)) {
        return -1;
    }
    if ((dns.s_addr & mask.s_addr) != net.s_addr ||
        dns.s_addr == host.s_addr) {
        return -1;
    }
870
871

#ifndef _WIN32
872
873
874
    if (vsmbserver && !inet_aton(vsmbserver, &smbsrv)) {
        return -1;
    }
875
876
#endif
877
878
879
    s = qemu_mallocz(sizeof(SlirpState));
    s->slirp = slirp_init(restricted, net, mask, host, vhostname,
                          tftp_export, bootfile, dhcp, dns, s);
880
    TAILQ_INSERT_TAIL(&slirp_stacks, s, entry);
881
882
883
    while (slirp_configs) {
        struct slirp_config_str *config = slirp_configs;
884
885
886
887
888
889
890
        if (config->flags & SLIRP_CFG_HOSTFWD) {
            slirp_hostfwd(s, mon, config->str,
                          config->flags & SLIRP_CFG_LEGACY);
        } else {
            slirp_guestfwd(s, mon, config->str,
                           config->flags & SLIRP_CFG_LEGACY);
891
        }
892
893
894
        slirp_configs = config->next;
        qemu_free(config);
    }
895
#ifndef _WIN32
896
897
898
899
    if (!smb_export) {
        smb_export = legacy_smb_export;
    }
    if (smb_export) {
900
        slirp_smb(s, mon, smb_export, smbsrv);
901
    }
902
#endif
903
904
905
    s->vc = qemu_new_vlan_client(vlan, model, name, NULL, slirp_receive, NULL,
                                 net_slirp_cleanup, s);
906
907
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
             "net=%s, restricted=%c", inet_ntoa(net), restricted ? 'y' : 'n');
908
909
910
    return 0;
}
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
static SlirpState *slirp_lookup(Monitor *mon, const char *vlan,
                                const char *stack)
{
    VLANClientState *vc;

    if (vlan) {
        vc = qemu_find_vlan_client_by_name(mon, strtol(vlan, NULL, 0), stack);
        if (!vc) {
            return NULL;
        }
        if (strcmp(vc->model, "user")) {
            monitor_printf(mon, "invalid device specified\n");
            return NULL;
        }
        return vc->opaque;
    } else {
        if (TAILQ_EMPTY(&slirp_stacks)) {
            monitor_printf(mon, "user mode network stack not in use\n");
            return NULL;
        }
        return TAILQ_FIRST(&slirp_stacks);
    }
}

void net_slirp_hostfwd_remove(Monitor *mon, const char *arg1,
                              const char *arg2, const char *arg3)
937
{
938
    struct in_addr host_addr = { .s_addr = INADDR_ANY };
939
940
    int host_port;
    char buf[256] = "";
941
942
    const char *src_str, *p;
    SlirpState *s;
943
    int is_udp = 0;
944
    int err;
945
946
947
948
949
950
951
952
953
    if (arg2) {
        s = slirp_lookup(mon, arg1, arg2);
        src_str = arg3;
    } else {
        s = slirp_lookup(mon, NULL, NULL);
        src_str = arg1;
    }
    if (!s) {
954
        return;
955
    }
956
957
    if (!src_str || !src_str[0])
958
959
        goto fail_syntax;
960
    p = src_str;
961
962
963
964
965
966
967
968
969
970
    get_str_sep(buf, sizeof(buf), &p, ':');

    if (!strcmp(buf, "tcp") || buf[0] == '\0') {
        is_udp = 0;
    } else if (!strcmp(buf, "udp")) {
        is_udp = 1;
    } else {
        goto fail_syntax;
    }
971
972
973
974
975
976
977
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) {
        goto fail_syntax;
    }
    if (buf[0] != '\0' && !inet_aton(buf, &host_addr)) {
        goto fail_syntax;
    }
978
979
    host_port = atoi(p);
980
    err = slirp_remove_hostfwd(TAILQ_FIRST(&slirp_stacks)->slirp, is_udp,
981
                               host_addr, host_port);
982
983
984
    monitor_printf(mon, "host forwarding rule for %s %s\n", src_str,
                   err ? "removed" : "not found");
985
986
987
988
989
990
    return;

 fail_syntax:
    monitor_printf(mon, "invalid format\n");
}
991
static void slirp_hostfwd(SlirpState *s, Monitor *mon, const char *redir_str,
992
                          int legacy_format)
993
{
994
    struct in_addr host_addr = { .s_addr = INADDR_ANY };
995
    struct in_addr guest_addr = { .s_addr = 0 };
996
    int host_port, guest_port;
997
    const char *p;
998
    char buf[256];
999
    int is_udp;
1000
    char *end;
1001
1002
    p = redir_str;
1003
    if (!p || get_str_sep(buf, sizeof(buf), &p, ':') < 0) {
1004
        goto fail_syntax;
1005
    }
1006
    if (!strcmp(buf, "tcp") || buf[0] == '\0') {
1007
1008
1009
1010
        is_udp = 0;
    } else if (!strcmp(buf, "udp")) {
        is_udp = 1;
    } else {
1011
        goto fail_syntax;
1012
1013
    }
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
    if (!legacy_format) {
        if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) {
            goto fail_syntax;
        }
        if (buf[0] != '\0' && !inet_aton(buf, &host_addr)) {
            goto fail_syntax;
        }
    }

    if (get_str_sep(buf, sizeof(buf), &p, legacy_format ? ':' : '-') < 0) {
1024
        goto fail_syntax;
1025
    }
1026
1027
    host_port = strtol(buf, &end, 0);
    if (*end != '\0' || host_port < 1 || host_port > 65535) {
1028
        goto fail_syntax;
1029
    }
1030
1031
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) {
1032
        goto fail_syntax;
1033
    }
1034
    if (buf[0] != '\0' && !inet_aton(buf, &guest_addr)) {
1035
        goto fail_syntax;
1036
    }
1037
1038
1039
    guest_port = strtol(p, &end, 0);
    if (*end != '\0' || guest_port < 1 || guest_port > 65535) {
1040
        goto fail_syntax;
1041
    }
1042
1043
1044
    if (slirp_add_hostfwd(s->slirp, is_udp, host_addr, host_port, guest_addr,
                          guest_port) < 0) {
1045
1046
        config_error(mon, "could not set up host forwarding rule '%s'\n",
                     redir_str);
1047
1048
    }
    return;
1049
1050

 fail_syntax:
1051
    config_error(mon, "invalid host forwarding rule '%s'\n", redir_str);
1052
1053
}
1054
1055
void net_slirp_hostfwd_add(Monitor *mon, const char *arg1,
                           const char *arg2, const char *arg3)
1056
{
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
    const char *redir_str;
    SlirpState *s;

    if (arg2) {
        s = slirp_lookup(mon, arg1, arg2);
        redir_str = arg3;
    } else {
        s = slirp_lookup(mon, NULL, NULL);
        redir_str = arg1;
    }
    if (s) {
        slirp_hostfwd(s, mon, redir_str, 0);
1069
1070
    }
1071
1072
1073
1074
1075
1076
}

void net_slirp_redir(const char *redir_str)
{
    struct slirp_config_str *config;
1077
    if (TAILQ_EMPTY(&slirp_stacks)) {
1078
1079
        config = qemu_malloc(sizeof(*config));
        pstrcpy(config->str, sizeof(config->str), redir_str);
1080
        config->flags = SLIRP_CFG_HOSTFWD | SLIRP_CFG_LEGACY;
1081
1082
        config->next = slirp_configs;
        slirp_configs = config;
1083
1084
1085
        return;
    }
1086
    slirp_hostfwd(TAILQ_FIRST(&slirp_stacks), NULL, redir_str, 1);
1087
1088
}
1089
1090
1091
#ifndef _WIN32

/* automatic user mode samba server configuration */
1092
static void slirp_smb_cleanup(SlirpState *s)
1093
{
1094
    char cmd[128];
1095
1096
1097
1098
1099
1100
    if (s->smb_dir[0] != '\0') {
        snprintf(cmd, sizeof(cmd), "rm -rf %s", s->smb_dir);
        system(cmd);
        s->smb_dir[0] = '\0';
    }
1101
1102
}
1103
static void slirp_smb(SlirpState* s, Monitor *mon, const char *exported_dir,
1104
                      struct in_addr vserver_addr)
1105
{
1106
1107
1108
    static int instance;
    char smb_conf[128];
    char smb_cmdline[128];
1109
1110
    FILE *f;
1111
1112
1113
1114
1115
    snprintf(s->smb_dir, sizeof(s->smb_dir), "/tmp/qemu-smb.%ld-%d",
             (long)getpid(), instance++);
    if (mkdir(s->smb_dir, 0700) < 0) {
        config_error(mon, "could not create samba server dir '%s'\n",
                     s->smb_dir);
1116
        return;
1117
    }
1118
    snprintf(smb_conf, sizeof(smb_conf), "%s/%s", s->smb_dir, "smb.conf");
1119
1120
1121

    f = fopen(smb_conf, "w");
    if (!f) {
1122
        slirp_smb_cleanup(s);
1123
1124
1125
        config_error(mon, "could not create samba server "
                     "configuration file '%s'\n", smb_conf);
        return;
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
    }
    fprintf(f,
            "[global]\n"
            "private dir=%s\n"
            "smb ports=0\n"
            "socket address=127.0.0.1\n"
            "pid directory=%s\n"
            "lock directory=%s\n"
            "log file=%s/log.smbd\n"
            "smb passwd file=%s/smbpasswd\n"
            "security = share\n"
            "[qemu]\n"
            "path=%s\n"
            "read only=no\n"
            "guest ok=yes\n",
1141
1142
1143
1144
1145
            s->smb_dir,
            s->smb_dir,
            s->smb_dir,
            s->smb_dir,
            s->smb_dir,
1146
1147
1148
1149
1150
1151
1152
            exported_dir
            );
    fclose(f);

    snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
             SMBD_COMMAND, smb_conf);
1153
    if (slirp_add_exec(s->slirp, 0, smb_cmdline, vserver_addr, 139) < 0) {
1154
        slirp_smb_cleanup(s);
1155
        config_error(mon, "conflicting/invalid smbserver address\n");
1156
    }
1157
1158
}
1159
/* automatic user mode samba server configuration (legacy interface) */
1160
1161
void net_slirp_smb(const char *exported_dir)
{
1162
1163
    struct in_addr vserver_addr = { .s_addr = 0 };
1164
    if (legacy_smb_export) {
1165
1166
1167
        fprintf(stderr, "-smb given twice\n");
        exit(1);
    }
1168
    legacy_smb_export = exported_dir;
1169
    if (!TAILQ_EMPTY(&slirp_stacks)) {
1170
1171
        slirp_smb(TAILQ_FIRST(&slirp_stacks), NULL, exported_dir,
                  vserver_addr);
1172
1173
1174
    }
}
1175
#endif /* !defined(_WIN32) */
1176
1177
struct GuestFwd {
1178
    CharDriverState *hd;
1179
    struct in_addr server;
1180
    int port;
1181
    Slirp *slirp;
1182
};
1183
1184
static int guestfwd_can_read(void *opaque)
1185
{
1186
    struct GuestFwd *fwd = opaque;
1187
    return slirp_socket_can_recv(fwd->slirp, fwd->server, fwd->port);
1188
1189
}
1190
static void guestfwd_read(void *opaque, const uint8_t *buf, int size)
1191
{
1192
    struct GuestFwd *fwd = opaque;
1193
    slirp_socket_recv(fwd->slirp, fwd->server, fwd->port, buf, size);
1194
1195
}
1196
static void slirp_guestfwd(SlirpState *s, Monitor *mon, const char *config_str,
1197
                           int legacy_format)
1198
{
1199
1200
1201
1202
1203
    struct in_addr server = { .s_addr = 0 };
    struct GuestFwd *fwd;
    const char *p;
    char buf[128];
    char *end;
1204
1205
    int port;
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
    p = config_str;
    if (legacy_format) {
        if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) {
            goto fail_syntax;
        }
    } else {
        if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) {
            goto fail_syntax;
        }
        if (strcmp(buf, "tcp") && buf[0] != '\0') {
            goto fail_syntax;
        }
        if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) {
            goto fail_syntax;
        }
        if (buf[0] != '\0' && !inet_aton(buf, &server)) {
            goto fail_syntax;
        }
        if (get_str_sep(buf, sizeof(buf), &p, '-') < 0) {
            goto fail_syntax;
        }
    }
    port = strtol(buf, &end, 10);
    if (*end != '\0' || port < 1 || port > 65535) {
        goto fail_syntax;
1231
1232
    }
1233
1234
1235
1236
1237
1238
1239
    fwd = qemu_malloc(sizeof(struct GuestFwd));
    snprintf(buf, sizeof(buf), "guestfwd.tcp:%d", port);
    fwd->hd = qemu_chr_open(buf, p, NULL);
    if (!fwd->hd) {
        config_error(mon, "could not open guest forwarding device '%s'\n",
                     buf);
        qemu_free(fwd);
1240
1241
        return;
    }
1242
1243
    fwd->server = server;
    fwd->port = port;
1244
    fwd->slirp = s->slirp;
1245
1246
    if (slirp_add_exec(s->slirp, 3, fwd->hd, server, port) < 0) {
1247
1248
1249
1250
1251
1252
1253
        config_error(mon, "conflicting/invalid host:port in guest forwarding "
                     "rule '%s'\n", config_str);
        qemu_free(fwd);
        return;
    }
    qemu_chr_add_handlers(fwd->hd, guestfwd_can_read, guestfwd_read,
                          NULL, fwd);
1254
    return;
1255
1256
1257

 fail_syntax:
    config_error(mon, "invalid guest forwarding rule '%s'\n", config_str);
1258
1259
}
1260
1261
void do_info_usernet(Monitor *mon)
{
1262
    SlirpState *s;
1263
1264
1265
1266
    TAILQ_FOREACH(s, &slirp_stacks, entry) {
        monitor_printf(mon, "VLAN %d (%s):\n", s->vc->vlan->id, s->vc->name);
        slirp_connection_info(s->slirp, mon);
1267
    }
1268
1269
}
1270
1271
1272
1273
1274
1275
1276
1277
#endif /* CONFIG_SLIRP */

#if !defined(_WIN32)

typedef struct TAPState {
    VLANClientState *vc;
    int fd;
    char down_script[1024];
1278
    char down_script_arg[128];
1279
    uint8_t buf[4096];
1280
    unsigned int read_poll : 1;
1281
    unsigned int write_poll : 1;
1282
1283
} TAPState;
1284
1285
static int launch_script(const char *setup_script, const char *ifname, int fd);
1286
1287
static int tap_can_send(void *opaque);
static void tap_send(void *opaque);
1288
static void tap_writable(void *opaque);
1289
1290
1291
1292
1293
1294

static void tap_update_fd_handler(TAPState *s)
{
    qemu_set_fd_handler2(s->fd,
                         s->read_poll  ? tap_can_send : NULL,
                         s->read_poll  ? tap_send     : NULL,
1295
                         s->write_poll ? tap_writable : NULL,
1296
1297
1298
1299
1300
1301
1302
1303
1304
                         s);
}

static void tap_read_poll(TAPState *s, int enable)
{
    s->read_poll = !!enable;
    tap_update_fd_handler(s);
}
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
static void tap_write_poll(TAPState *s, int enable)
{
    s->write_poll = !!enable;
    tap_update_fd_handler(s);
}

static void tap_writable(void *opaque)
{
    TAPState *s = opaque;

    tap_write_poll(s, 0);

    qemu_flush_queued_packets(s->vc);
}
1320
static ssize_t tap_receive_iov(VLANClientState *vc, const struct iovec *iov,
1321
1322
                               int iovcnt)
{
1323
    TAPState *s = vc->opaque;
1324
1325
1326
1327
    ssize_t len;

    do {
        len = writev(s->fd, iov, iovcnt);
1328
1329
1330
1331
1332
1333
    } while (len == -1 && errno == EINTR);

    if (len == -1 && errno == EAGAIN) {
        tap_write_poll(s, 1);
        return 0;
    }
1334
1335
1336
1337

    return len;
}
1338
static ssize_t tap_receive(VLANClientState *vc, const uint8_t *buf, size_t size)
1339
{
1340
    TAPState *s = vc->opaque;
1341
1342
1343
1344
1345
1346
1347
    ssize_t len;

    do {
        len = write(s->fd, buf, size);
    } while (len == -1 && (errno == EINTR || errno == EAGAIN));

    return len;
1348
1349
}
1350
1351
1352
1353
1354
1355
1356
static int tap_can_send(void *opaque)
{
    TAPState *s = opaque;

    return qemu_can_send_packet(s->vc);
}
1357
#ifdef __sun__
1358
1359
static ssize_t tap_read_packet(int tapfd, uint8_t *buf, int maxlen)
{
1360
1361
    struct strbuf sbuf;
    int f = 0;
1362
1363

    sbuf.maxlen = maxlen;
1364
    sbuf.buf = (char *)buf;
1365
1366
1367

    return getmsg(tapfd, NULL, &sbuf, &f) >= 0 ? sbuf.len : -1;
}
1368
#else
1369
1370
1371
1372
static ssize_t tap_read_packet(int tapfd, uint8_t *buf, int maxlen)
{
    return read(tapfd, buf, maxlen);
}
1373
#endif
1374
1375
static void tap_send_completed(VLANClientState *vc, ssize_t len)
1376
1377
{
    TAPState *s = vc->opaque;
1378
    tap_read_poll(s, 1);
1379
1380
}
1381
1382
1383
1384
1385
static void tap_send(void *opaque)
{
    TAPState *s = opaque;
    int size;
1386
1387
1388
1389
1390
1391
1392
1393
    do {
        size = tap_read_packet(s->fd, s->buf, sizeof(s->buf));
        if (size <= 0) {
            break;
        }

        size = qemu_send_packet_async(s->vc, s->buf, size, tap_send_completed);
        if (size == 0) {
1394
            tap_read_poll(s, 0);
1395
1396
        }
    } while (size > 0);
1397
1398
}
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
static void tap_set_sndbuf(TAPState *s, int sndbuf, Monitor *mon)
{
#ifdef TUNSETSNDBUF
    if (ioctl(s->fd, TUNSETSNDBUF, &sndbuf) == -1) {
        config_error(mon, "TUNSETSNDBUF ioctl failed: %s\n",
                     strerror(errno));
    }
#else
    config_error(mon, "No '-net tap,sndbuf=<nbytes>' support available\n");
#endif
}
1411
1412
1413
1414
static void tap_cleanup(VLANClientState *vc)
{
    TAPState *s = vc->opaque;
1415
1416
    qemu_purge_queued_packets(vc);
1417
1418
1419
    if (s->down_script[0])
        launch_script(s->down_script, s->down_script_arg, s->fd);
1420
    tap_read_poll(s, 0);
1421
    tap_write_poll(s, 0);
1422
1423
1424
1425
    close(s->fd);
    qemu_free(s);
}
1426
1427
/* fd support */
1428
1429
1430
1431
static TAPState *net_tap_fd_init(VLANState *vlan,
                                 const char *model,
                                 const char *name,
                                 int fd)
1432
1433
1434
1435
1436
{
    TAPState *s;

    s = qemu_mallocz(sizeof(TAPState));
    s->fd = fd;
1437
1438
    s->vc = qemu_new_vlan_client(vlan, model, name, NULL, tap_receive,
                                 tap_receive_iov, tap_cleanup, s);
1439
    tap_read_poll(s, 1);
1440
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), "fd=%d", fd);
1441
1442
1443
    return s;
}
1444
#if defined (HOST_BSD) || defined (__FreeBSD_kernel__)
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
static int tap_open(char *ifname, int ifname_size)
{
    int fd;
    char *dev;
    struct stat s;

    TFR(fd = open("/dev/tap", O_RDWR));
    if (fd < 0) {
        fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
        return -1;
    }

    fstat(fd, &s);
    dev = devname(s.st_rdev, S_IFCHR);
    pstrcpy(ifname, ifname_size, dev);

    fcntl(fd, F_SETFL, O_NONBLOCK);
    return fd;
}
#elif defined(__sun__)
#define TUNNEWPPA       (('T'<<16) | 0x0001)
/*
 * Allocate TAP device, returns opened fd.
 * Stores dev name in the first arg(must be large enough).
 */
1470
static int tap_alloc(char *dev, size_t dev_size)
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
{
    int tap_fd, if_fd, ppa = -1;
    static int ip_fd = 0;
    char *ptr;

    static int arp_fd = 0;
    int ip_muxid, arp_muxid;
    struct strioctl  strioc_if, strioc_ppa;
    int link_type = I_PLINK;;
    struct lifreq ifr;
    char actual_name[32] = "";

    memset(&ifr, 0x0, sizeof(ifr));

    if( *dev ){
       ptr = dev;
1487
       while( *ptr && !qemu_isdigit((int)*ptr) ) ptr++;
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
       ppa = atoi(ptr);
    }

    /* Check if IP device was opened */
    if( ip_fd )
       close(ip_fd);

    TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
    if (ip_fd < 0) {
       syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
       return -1;
    }

    TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
    if (tap_fd < 0) {
       syslog(LOG_ERR, "Can't open /dev/tap");
       return -1;
    }

    /* Assign a new PPA and get its unit number. */
    strioc_ppa.ic_cmd = TUNNEWPPA;
    strioc_ppa.ic_timout = 0;
    strioc_ppa.ic_len = sizeof(ppa);
    strioc_ppa.ic_dp = (char *)&ppa;
    if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
       syslog (LOG_ERR, "Can't assign new interface");

    TFR(if_fd = open("/dev/tap", O_RDWR, 0));
    if (if_fd < 0) {
       syslog(LOG_ERR, "Can't open /dev/tap (2)");
       return -1;
    }
    if(ioctl(if_fd, I_PUSH, "ip") < 0){
       syslog(LOG_ERR, "Can't push IP module");
       return -1;
    }

    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
	syslog(LOG_ERR, "Can't get flags\n");

    snprintf (actual_name, 32, "tap%d", ppa);
    pstrcpy(ifr.lifr_name, sizeof(ifr.lifr_name), actual_name);

    ifr.lifr_ppa = ppa;
    /* Assign ppa according to the unit number returned by tun device */

    if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
        syslog (LOG_ERR, "Can't set PPA %d", ppa);
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
        syslog (LOG_ERR, "Can't get flags\n");
    /* Push arp module to if_fd */
    if (ioctl (if_fd, I_PUSH, "arp") < 0)
        syslog (LOG_ERR, "Can't push ARP module (2)");

    /* Push arp module to ip_fd */
    if (ioctl (ip_fd, I_POP, NULL) < 0)
        syslog (LOG_ERR, "I_POP failed\n");
    if (ioctl (ip_fd, I_PUSH, "arp") < 0)
        syslog (LOG_ERR, "Can't push ARP module (3)\n");
    /* Open arp_fd */
    TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
    if (arp_fd < 0)
       syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");

    /* Set ifname to arp */
    strioc_if.ic_cmd = SIOCSLIFNAME;
    strioc_if.ic_timout = 0;
    strioc_if.ic_len = sizeof(ifr);
    strioc_if.ic_dp = (char *)&ifr;
    if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
        syslog (LOG_ERR, "Can't set ifname to arp\n");
    }

    if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
       syslog(LOG_ERR, "Can't link TAP device to IP");
       return -1;
    }

    if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
        syslog (LOG_ERR, "Can't link TAP device to ARP");

    close (if_fd);

    memset(&ifr, 0x0, sizeof(ifr));
    pstrcpy(ifr.lifr_name, sizeof(ifr.lifr_name), actual_name);
    ifr.lifr_ip_muxid  = ip_muxid;
    ifr.lifr_arp_muxid = arp_muxid;

    if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
    {
      ioctl (ip_fd, I_PUNLINK , arp_muxid);
      ioctl (ip_fd, I_PUNLINK, ip_muxid);
      syslog (LOG_ERR, "Can't set multiplexor id");
    }

    snprintf(dev, dev_size, "tap%d", ppa);
    return tap_fd;
}

static int tap_open(char *ifname, int ifname_size)
{
    char  dev[10]="";
    int fd;
    if( (fd = tap_alloc(dev, sizeof(dev))) < 0 ){
       fprintf(stderr, "Cannot allocate TAP device\n");
       return -1;
    }
    pstrcpy(ifname, ifname_size, dev);
    fcntl(fd, F_SETFL, O_NONBLOCK);
    return fd;
}
malc authored
1599
1600
1601
1602
1603
1604
#elif defined (_AIX)
static int tap_open(char *ifname, int ifname_size)
{
    fprintf (stderr, "no tap on AIX\n");
    return -1;
}
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
#else
static int tap_open(char *ifname, int ifname_size)
{
    struct ifreq ifr;
    int fd, ret;

    TFR(fd = open("/dev/net/tun", O_RDWR));
    if (fd < 0) {
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
        return -1;
    }
    memset(&ifr, 0, sizeof(ifr));
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
    if (ifname[0] != '\0')
        pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
    else
        pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
    if (ret != 0) {
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
        close(fd);
        return -1;
    }
    pstrcpy(ifname, ifname_size, ifr.ifr_name);
    fcntl(fd, F_SETFL, O_NONBLOCK);
    return fd;
}
#endif

static int launch_script(const char *setup_script, const char *ifname, int fd)
{
1636
    sigset_t oldmask, mask;
1637
1638
1639
1640
    int pid, status;
    char *args[3];
    char **parg;
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
    sigemptyset(&mask);
    sigaddset(&mask, SIGCHLD);
    sigprocmask(SIG_BLOCK, &mask, &oldmask);

    /* try to launch network script */
    pid = fork();
    if (pid == 0) {
        int open_max = sysconf(_SC_OPEN_MAX), i;

        for (i = 0; i < open_max; i++) {
            if (i != STDIN_FILENO &&
                i != STDOUT_FILENO &&
                i != STDERR_FILENO &&
                i != fd) {
                close(i);
1656
1657
            }
        }
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
        parg = args;
        *parg++ = (char *)setup_script;
        *parg++ = (char *)ifname;
        *parg++ = NULL;
        execv(setup_script, args);
        _exit(1);
    } else if (pid > 0) {
        while (waitpid(pid, &status, 0) != pid) {
            /* loop */
        }
        sigprocmask(SIG_SETMASK, &oldmask, NULL);

        if (WIFEXITED(status) && WEXITSTATUS(status) == 0) {
            return 0;
        }
    }
    fprintf(stderr, "%s: could not launch network script\n", setup_script);
    return -1;
1676
1677
}
1678
1679
1680
static TAPState *net_tap_init(VLANState *vlan, const char *model,
                              const char *name, const char *ifname1,
                              const char *setup_script, const char *down_script)
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
{
    TAPState *s;
    int fd;
    char ifname[128];

    if (ifname1 != NULL)
        pstrcpy(ifname, sizeof(ifname), ifname1);
    else
        ifname[0] = '\0';
    TFR(fd = tap_open(ifname, sizeof(ifname)));
    if (fd < 0)
1692
        return NULL;
1693
1694
1695

    if (!setup_script || !strcmp(setup_script, "no"))
        setup_script = "";
1696
1697
1698
    if (setup_script[0] != '\0' &&
        launch_script(setup_script, ifname, fd)) {
        return NULL;
1699
    }
1700
    s = net_tap_fd_init(vlan, model, name, fd);
1701
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
1702
1703
             "ifname=%s,script=%s,downscript=%s",
             ifname, setup_script, down_script);
1704
    if (down_script && strcmp(down_script, "no")) {
1705
        snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
1706
1707
        snprintf(s->down_script_arg, sizeof(s->down_script_arg), "%s", ifname);
    }
1708
    return s;
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
}

#endif /* !_WIN32 */

#if defined(CONFIG_VDE)
typedef struct VDEState {
    VLANClientState *vc;
    VDECONN *vde;
} VDEState;

static void vde_to_qemu(void *opaque)
{
    VDEState *s = opaque;
    uint8_t buf[4096];
    int size;
1725
    size = vde_recv(s->vde, (char *)buf, sizeof(buf), 0);
1726
1727
1728
1729
1730
    if (size > 0) {
        qemu_send_packet(s->vc, buf, size);
    }
}
1731
static ssize_t vde_receive(VLANClientState *vc, const uint8_t *buf, size_t size)
1732
{
1733
    VDEState *s = vc->opaque;
1734
    ssize_t ret;
1735
1736
1737
1738
1739
1740

    do {
      ret = vde_send(s->vde, (const char *)buf, size, 0);
    } while (ret < 0 && errno == EINTR);

    return ret;
1741
1742
}
1743
1744
1745
1746
1747
1748
1749
1750
static void vde_cleanup(VLANClientState *vc)
{
    VDEState *s = vc->opaque;
    qemu_set_fd_handler(vde_datafd(s->vde), NULL, NULL, NULL);
    vde_close(s->vde);
    qemu_free(s);
}
1751
1752
static int net_vde_init(VLANState *vlan, const char *model,
                        const char *name, const char *sock,
1753
                        int port, const char *group, int mode)
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
{
    VDEState *s;
    char *init_group = strlen(group) ? (char *)group : NULL;
    char *init_sock = strlen(sock) ? (char *)sock : NULL;

    struct vde_open_args args = {
        .port = port,
        .group = init_group,
        .mode = mode,
    };

    s = qemu_mallocz(sizeof(VDEState));
1766
    s->vde = vde_open(init_sock, (char *)"QEMU", &args);
1767
1768
1769
1770
    if (!s->vde){
        free(s);
        return -1;
    }
1771
    s->vc = qemu_new_vlan_client(vlan, model, name, NULL, vde_receive,
1772
                                 NULL, vde_cleanup, s);
1773
    qemu_set_fd_handler(vde_datafd(s->vde), vde_to_qemu, NULL, s);
1774
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), "sock=%s,fd=%d",
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
             sock, vde_datafd(s->vde));
    return 0;
}
#endif

/* network connection */
typedef struct NetSocketState {
    VLANClientState *vc;
    int fd;
    int state; /* 0 = getting length, 1 = getting data */
1785
1786
    unsigned int index;
    unsigned int packet_len;
1787
1788
1789
1790
1791
1792
    uint8_t buf[4096];
    struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
} NetSocketState;

typedef struct NetSocketListenState {
    VLANState *vlan;
1793
    char *model;
1794
    char *name;
1795
1796
1797
1798
    int fd;
} NetSocketListenState;

/* XXX: we consider we can send the whole packet without blocking */
1799
static ssize_t net_socket_receive(VLANClientState *vc, const uint8_t *buf, size_t size)
1800
{
1801
    NetSocketState *s = vc->opaque;
1802
1803
1804
1805
    uint32_t len;
    len = htonl(size);

    send_all(s->fd, (const uint8_t *)&len, sizeof(len));
1806
    return send_all(s->fd, buf, size);
1807
1808
}
1809
static ssize_t net_socket_receive_dgram(VLANClientState *vc, const uint8_t *buf, size_t size)
1810
{
1811
    NetSocketState *s = vc->opaque;
1812
1813
    return sendto(s->fd, (const void *)buf, size, 0,
1814
                  (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
1815
1816
1817
1818
1819
}

static void net_socket_send(void *opaque)
{
    NetSocketState *s = opaque;
1820
1821
    int size, err;
    unsigned l;
1822
1823
1824
    uint8_t buf1[4096];
    const uint8_t *buf;
1825
    size = recv(s->fd, (void *)buf1, sizeof(buf1), 0);
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
    if (size < 0) {
        err = socket_error();
        if (err != EWOULDBLOCK)
            goto eoc;
    } else if (size == 0) {
        /* end of connection */
    eoc:
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
        closesocket(s->fd);
        return;
    }
    buf = buf1;
    while (size > 0) {
        /* reassemble a packet from the network */
        switch(s->state) {
        case 0:
            l = 4 - s->index;
            if (l > size)
                l = size;
            memcpy(s->buf + s->index, buf, l);
            buf += l;
            size -= l;
            s->index += l;
            if (s->index == 4) {
                /* got length */
                s->packet_len = ntohl(*(uint32_t *)s->buf);
                s->index = 0;
                s->state = 1;
            }
            break;
        case 1:
            l = s->packet_len - s->index;
            if (l > size)
                l = size;
1860
1861
1862
1863
1864
1865
1866
1867
1868
            if (s->index + l <= sizeof(s->buf)) {
                memcpy(s->buf + s->index, buf, l);
            } else {
                fprintf(stderr, "serious error: oversized packet received,"
                    "connection terminated.\n");
                s->state = 0;
                goto eoc;
            }
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
            s->index += l;
            buf += l;
            size -= l;
            if (s->index >= s->packet_len) {
                qemu_send_packet(s->vc, s->buf, s->packet_len);
                s->index = 0;
                s->state = 0;
            }
            break;
        }
    }
}

static void net_socket_send_dgram(void *opaque)
{
    NetSocketState *s = opaque;
    int size;
1887
    size = recv(s->fd, (void *)s->buf, sizeof(s->buf), 0);
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
    if (size < 0)
        return;
    if (size == 0) {
        /* end of connection */
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
        return;
    }
    qemu_send_packet(s->vc, s->buf, size);
}

static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
{
    struct ip_mreq imr;
    int fd;
    int val, ret;
    if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
	fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
		inet_ntoa(mcastaddr->sin_addr),
                (int)ntohl(mcastaddr->sin_addr.s_addr));
	return -1;

    }
    fd = socket(PF_INET, SOCK_DGRAM, 0);
    if (fd < 0) {
        perror("socket(PF_INET, SOCK_DGRAM)");
        return -1;
    }

    val = 1;
    ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
                   (const char *)&val, sizeof(val));
    if (ret < 0) {
	perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
	goto fail;
    }

    ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
    if (ret < 0) {
        perror("bind");
        goto fail;
    }

    /* Add host to multicast group */
    imr.imr_multiaddr = mcastaddr->sin_addr;
    imr.imr_interface.s_addr = htonl(INADDR_ANY);

    ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
                     (const char *)&imr, sizeof(struct ip_mreq));
    if (ret < 0) {
	perror("setsockopt(IP_ADD_MEMBERSHIP)");
	goto fail;
    }

    /* Force mcast msgs to loopback (eg. several QEMUs in same host */
    val = 1;
    ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
                   (const char *)&val, sizeof(val));
    if (ret < 0) {
	perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
	goto fail;
    }

    socket_set_nonblock(fd);
    return fd;
fail:
    if (fd >= 0)
        closesocket(fd);
    return -1;
}
1958
1959
1960
1961
1962
1963
1964
1965
static void net_socket_cleanup(VLANClientState *vc)
{
    NetSocketState *s = vc->opaque;
    qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
    close(s->fd);
    qemu_free(s);
}
1966
1967
1968
static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan,
                                                const char *model,
                                                const char *name,
1969
                                                int fd, int is_connected)
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
{
    struct sockaddr_in saddr;
    int newfd;
    socklen_t saddr_len;
    NetSocketState *s;

    /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
     * Because this may be "shared" socket from a "master" process, datagrams would be recv()
     * by ONLY ONE process: we must "clone" this dgram socket --jjo
     */

    if (is_connected) {
	if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
	    /* must be bound */
	    if (saddr.sin_addr.s_addr==0) {
		fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
			fd);
		return NULL;
	    }
	    /* clone dgram socket */
	    newfd = net_socket_mcast_create(&saddr);
	    if (newfd < 0) {
		/* error already reported by net_socket_mcast_create() */
		close(fd);
		return NULL;
	    }
	    /* clone newfd to fd, close newfd */
	    dup2(newfd, fd);
	    close(newfd);

	} else {
	    fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
		    fd, strerror(errno));
	    return NULL;
	}
    }

    s = qemu_mallocz(sizeof(NetSocketState));
    s->fd = fd;
2010
    s->vc = qemu_new_vlan_client(vlan, model, name, NULL, net_socket_receive_dgram,
2011
                                 NULL, net_socket_cleanup, s);
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
    qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);

    /* mcast: save bound address as dst */
    if (is_connected) s->dgram_dst=saddr;

    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
	    "socket: fd=%d (%s mcast=%s:%d)",
	    fd, is_connected? "cloned" : "",
	    inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
    return s;
}

static void net_socket_connect(void *opaque)
{
    NetSocketState *s = opaque;
    qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
}
2030
2031
2032
static NetSocketState *net_socket_fd_init_stream(VLANState *vlan,
                                                 const char *model,
                                                 const char *name,
2033
                                                 int fd, int is_connected)
2034
2035
2036
2037
{
    NetSocketState *s;
    s = qemu_mallocz(sizeof(NetSocketState));
    s->fd = fd;
2038
    s->vc = qemu_new_vlan_client(vlan, model, name, NULL, net_socket_receive,
2039
                                 NULL, net_socket_cleanup, s);
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
             "socket: fd=%d", fd);
    if (is_connected) {
        net_socket_connect(s);
    } else {
        qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
    }
    return s;
}
2050
2051
static NetSocketState *net_socket_fd_init(VLANState *vlan,
                                          const char *model, const char *name,
2052
                                          int fd, int is_connected)
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
{
    int so_type=-1, optlen=sizeof(so_type);

    if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type,
        (socklen_t *)&optlen)< 0) {
	fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
	return NULL;
    }
    switch(so_type) {
    case SOCK_DGRAM:
2063
        return net_socket_fd_init_dgram(vlan, model, name, fd, is_connected);
2064
    case SOCK_STREAM:
2065
        return net_socket_fd_init_stream(vlan, model, name, fd, is_connected);
2066
2067
2068
    default:
        /* who knows ... this could be a eg. a pty, do warn and continue as stream */
        fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
2069
        return net_socket_fd_init_stream(vlan, model, name, fd, is_connected);
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
    }
    return NULL;
}

static void net_socket_accept(void *opaque)
{
    NetSocketListenState *s = opaque;
    NetSocketState *s1;
    struct sockaddr_in saddr;
    socklen_t len;
    int fd;

    for(;;) {
        len = sizeof(saddr);
        fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
        if (fd < 0 && errno != EINTR) {
            return;
        } else if (fd >= 0) {
            break;
        }
    }
2091
    s1 = net_socket_fd_init(s->vlan, s->model, s->name, fd, 1);
2092
2093
2094
2095
2096
2097
2098
2099
2100
    if (!s1) {
        closesocket(fd);
    } else {
        snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
                 "socket: connection from %s:%d",
                 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
    }
}
2101
2102
2103
static int net_socket_listen_init(VLANState *vlan,
                                  const char *model,
                                  const char *name,
2104
                                  const char *host_str)
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
{
    NetSocketListenState *s;
    int fd, val, ret;
    struct sockaddr_in saddr;

    if (parse_host_port(&saddr, host_str) < 0)
        return -1;

    s = qemu_mallocz(sizeof(NetSocketListenState));

    fd = socket(PF_INET, SOCK_STREAM, 0);
    if (fd < 0) {
        perror("socket");
        return -1;
    }
    socket_set_nonblock(fd);

    /* allow fast reuse */
    val = 1;
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));

    ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
    if (ret < 0) {
        perror("bind");
        return -1;
    }
    ret = listen(fd, 0);
    if (ret < 0) {
        perror("listen");
        return -1;
    }
    s->vlan = vlan;
2137
    s->model = strdup(model);
2138
    s->name = name ? strdup(name) : NULL;
2139
2140
2141
2142
2143
    s->fd = fd;
    qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
    return 0;
}
2144
2145
2146
static int net_socket_connect_init(VLANState *vlan,
                                   const char *model,
                                   const char *name,
2147
                                   const char *host_str)
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
{
    NetSocketState *s;
    int fd, connected, ret, err;
    struct sockaddr_in saddr;

    if (parse_host_port(&saddr, host_str) < 0)
        return -1;

    fd = socket(PF_INET, SOCK_STREAM, 0);
    if (fd < 0) {
        perror("socket");
        return -1;
    }
    socket_set_nonblock(fd);

    connected = 0;
    for(;;) {
        ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
        if (ret < 0) {
            err = socket_error();
            if (err == EINTR || err == EWOULDBLOCK) {
            } else if (err == EINPROGRESS) {
                break;
#ifdef _WIN32
            } else if (err == WSAEALREADY) {
                break;
#endif
            } else {
                perror("connect");
                closesocket(fd);
                return -1;
            }
        } else {
            connected = 1;
            break;
        }
    }
2185
    s = net_socket_fd_init(vlan, model, name, fd, connected);
2186
2187
2188
2189
2190
2191
2192
2193
    if (!s)
        return -1;
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
             "socket: connect to %s:%d",
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
    return 0;
}
2194
2195
2196
static int net_socket_mcast_init(VLANState *vlan,
                                 const char *model,
                                 const char *name,
2197
                                 const char *host_str)
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
{
    NetSocketState *s;
    int fd;
    struct sockaddr_in saddr;

    if (parse_host_port(&saddr, host_str) < 0)
        return -1;


    fd = net_socket_mcast_create(&saddr);
    if (fd < 0)
	return -1;
2211
    s = net_socket_fd_init(vlan, model, name, fd, 0);
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
    if (!s)
        return -1;

    s->dgram_dst = saddr;

    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
             "socket: mcast=%s:%d",
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
    return 0;

}
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
typedef struct DumpState {
    VLANClientState *pcap_vc;
    int fd;
    int pcap_caplen;
} DumpState;

#define PCAP_MAGIC 0xa1b2c3d4

struct pcap_file_hdr {
    uint32_t magic;
    uint16_t version_major;
    uint16_t version_minor;
    int32_t thiszone;
    uint32_t sigfigs;
    uint32_t snaplen;
    uint32_t linktype;
};

struct pcap_sf_pkthdr {
    struct {
        int32_t tv_sec;
        int32_t tv_usec;
    } ts;
    uint32_t caplen;
    uint32_t len;
};
2251
static ssize_t dump_receive(VLANClientState *vc, const uint8_t *buf, size_t size)
2252
{
2253
    DumpState *s = vc->opaque;
2254
2255
2256
2257
2258
2259
    struct pcap_sf_pkthdr hdr;
    int64_t ts;
    int caplen;

    /* Early return in case of previous error. */
    if (s->fd < 0) {
2260
        return size;
2261
2262
    }
Jan Kiszka authored
2263
    ts = muldiv64(qemu_get_clock(vm_clock), 1000000, ticks_per_sec);
2264
2265
    caplen = size > s->pcap_caplen ? s->pcap_caplen : size;
Jan Kiszka authored
2266
    hdr.ts.tv_sec = ts / 1000000;
2267
2268
2269
2270
2271
2272
2273
2274
2275
    hdr.ts.tv_usec = ts % 1000000;
    hdr.caplen = caplen;
    hdr.len = size;
    if (write(s->fd, &hdr, sizeof(hdr)) != sizeof(hdr) ||
        write(s->fd, buf, caplen) != caplen) {
        qemu_log("-net dump write error - stop dump\n");
        close(s->fd);
        s->fd = -1;
    }
2276
2277

    return size;
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
}

static void net_dump_cleanup(VLANClientState *vc)
{
    DumpState *s = vc->opaque;

    close(s->fd);
    qemu_free(s);
}
2288
static int net_dump_init(Monitor *mon, VLANState *vlan, const char *device,
2289
2290
2291
2292
2293
2294
2295
                         const char *name, const char *filename, int len)
{
    struct pcap_file_hdr hdr;
    DumpState *s;

    s = qemu_malloc(sizeof(DumpState));
2296
    s->fd = open(filename, O_CREAT | O_WRONLY | O_BINARY, 0644);
2297
    if (s->fd < 0) {
2298
        config_error(mon, "-net dump: can't open %s\n", filename);
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
        return -1;
    }

    s->pcap_caplen = len;

    hdr.magic = PCAP_MAGIC;
    hdr.version_major = 2;
    hdr.version_minor = 4;
    hdr.thiszone = 0;
    hdr.sigfigs = 0;
    hdr.snaplen = s->pcap_caplen;
    hdr.linktype = 1;

    if (write(s->fd, &hdr, sizeof(hdr)) < sizeof(hdr)) {
2313
        config_error(mon, "-net dump write error: %s\n", strerror(errno));
2314
2315
2316
2317
2318
        close(s->fd);
        qemu_free(s);
        return -1;
    }
2319
    s->pcap_vc = qemu_new_vlan_client(vlan, device, name, NULL, dump_receive, NULL,
2320
2321
2322
2323
2324
2325
                                      net_dump_cleanup, s);
    snprintf(s->pcap_vc->info_str, sizeof(s->pcap_vc->info_str),
             "dump to %s (len=%d)", filename, len);
    return 0;
}
2326
/* find or alloc a new VLAN */
2327
VLANState *qemu_find_vlan(int id, int allocate)
2328
2329
2330
2331
2332
2333
{
    VLANState **pvlan, *vlan;
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
        if (vlan->id == id)
            return vlan;
    }
2334
2335
2336
    if (!allocate) {
        return NULL;
    }
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
    vlan = qemu_mallocz(sizeof(VLANState));
    vlan->id = id;
    vlan->next = NULL;
    pvlan = &first_vlan;
    while (*pvlan != NULL)
        pvlan = &(*pvlan)->next;
    *pvlan = vlan;
    return vlan;
}
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
static int nic_get_free_idx(void)
{
    int index;

    for (index = 0; index < MAX_NICS; index++)
        if (!nd_table[index].used)
            return index;
    return -1;
}
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
void qemu_check_nic_model(NICInfo *nd, const char *model)
{
    const char *models[2];

    models[0] = model;
    models[1] = NULL;

    qemu_check_nic_model_list(nd, models, model);
}

void qemu_check_nic_model_list(NICInfo *nd, const char * const *models,
                               const char *default_model)
{
    int i, exit_status = 0;

    if (!nd->model)
        nd->model = strdup(default_model);

    if (strcmp(nd->model, "?") != 0) {
        for (i = 0 ; models[i]; i++)
            if (strcmp(nd->model, models[i]) == 0)
                return;

        fprintf(stderr, "qemu: Unsupported NIC model: %s\n", nd->model);
        exit_status = 1;
    }

    fprintf(stderr, "qemu: Supported NIC models: ");
    for (i = 0 ; models[i]; i++)
        fprintf(stderr, "%s%c", models[i], models[i+1] ? ',' : '\n');

    exit(exit_status);
}
2391
int net_client_init(Monitor *mon, const char *device, const char *p)
2392
2393
2394
2395
{
    char buf[1024];
    int vlan_id, ret;
    VLANState *vlan;
2396
    char *name = NULL;
2397
2398
2399
2400
2401

    vlan_id = 0;
    if (get_param_value(buf, sizeof(buf), "vlan", p)) {
        vlan_id = strtol(buf, NULL, 0);
    }
2402
    vlan = qemu_find_vlan(vlan_id, 1);
2403
2404
    if (get_param_value(buf, sizeof(buf), "name", p)) {
2405
        name = qemu_strdup(buf);
2406
    }
2407
    if (!strcmp(device, "nic")) {
2408
        static const char * const nic_params[] = {
2409
            "vlan", "name", "macaddr", "model", "addr", "vectors", NULL
2410
        };
2411
2412
        NICInfo *nd;
        uint8_t *macaddr;
2413
        int idx = nic_get_free_idx();
2414
2415
        if (check_params(buf, sizeof(buf), nic_params, p) < 0) {
2416
2417
2418
            config_error(mon, "invalid parameter '%s' in '%s'\n", buf, p);
            ret = -1;
            goto out;
2419
        }
2420
        if (idx == -1 || nb_nics >= MAX_NICS) {
2421
            config_error(mon, "Too Many NICs\n");
2422
2423
            ret = -1;
            goto out;
2424
        }
2425
        nd = &nd_table[idx];
2426
2427
2428
2429
2430
2431
        macaddr = nd->macaddr;
        macaddr[0] = 0x52;
        macaddr[1] = 0x54;
        macaddr[2] = 0x00;
        macaddr[3] = 0x12;
        macaddr[4] = 0x34;
2432
        macaddr[5] = 0x56 + idx;
2433
2434
2435

        if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
            if (parse_macaddr(macaddr, buf) < 0) {
2436
                config_error(mon, "invalid syntax for ethernet address\n");
2437
2438
                ret = -1;
                goto out;
2439
2440
2441
2442
2443
            }
        }
        if (get_param_value(buf, sizeof(buf), "model", p)) {
            nd->model = strdup(buf);
        }
2444
2445
2446
        if (get_param_value(buf, sizeof(buf), "addr", p)) {
            nd->devaddr = strdup(buf);
        }
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
        nd->nvectors = NIC_NVECTORS_UNSPECIFIED;
        if (get_param_value(buf, sizeof(buf), "vectors", p)) {
            char *endptr;
            long vectors = strtol(buf, &endptr, 0);
            if (*endptr) {
                config_error(mon, "invalid syntax for # of vectors\n");
                ret = -1;
                goto out;
            }
            if (vectors < 0 || vectors > 0x7ffffff) {
                config_error(mon, "invalid # of vectors\n");
                ret = -1;
                goto out;
            }
            nd->nvectors = vectors;
        }
2463
        nd->vlan = vlan;
2464
        nd->name = name;
2465
        nd->used = 1;
2466
        name = NULL;
2467
2468
        nb_nics++;
        vlan->nb_guest_devs++;
2469
        ret = idx;
2470
2471
    } else
    if (!strcmp(device, "none")) {
2472
        if (*p != '\0') {
2473
2474
2475
            config_error(mon, "'none' takes no parameters\n");
            ret = -1;
            goto out;
2476
        }
2477
2478
2479
2480
2481
2482
        /* does nothing. It is needed to signal that no network cards
           are wanted */
        ret = 0;
    } else
#ifdef CONFIG_SLIRP
    if (!strcmp(device, "user")) {
2483
        static const char * const slirp_params[] = {
2484
2485
2486
            "vlan", "name", "hostname", "restrict", "ip", "net", "host",
            "tftp", "bootfile", "dhcpstart", "dns", "smb", "smbserver",
            "hostfwd", "guestfwd", NULL
2487
        };
2488
        struct slirp_config_str *config;
2489
2490
2491
2492
        int restricted = 0;
        char *vnet = NULL;
        char *vhost = NULL;
        char *vhostname = NULL;
2493
2494
        char *tftp_export = NULL;
        char *bootfile = NULL;
2495
2496
        char *vdhcp_start = NULL;
        char *vnamesrv = NULL;
2497
        char *smb_export = NULL;
2498
        char *vsmbsrv = NULL;
2499
        const char *q;
2500
2501
        if (check_params(buf, sizeof(buf), slirp_params, p) < 0) {
2502
2503
2504
            config_error(mon, "invalid parameter '%s' in '%s'\n", buf, p);
            ret = -1;
            goto out;
2505
        }
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
        if (get_param_value(buf, sizeof(buf), "ip", p)) {
            /* emulate legacy parameter */
            vnet = qemu_malloc(strlen(buf) + strlen("/24") + 1);
            strcpy(vnet, buf);
            strcat(vnet, "/24");
        }
        if (get_param_value(buf, sizeof(buf), "net", p)) {
            vnet = qemu_strdup(buf);
        }
        if (get_param_value(buf, sizeof(buf), "host", p)) {
            vhost = qemu_strdup(buf);
        }
2518
        if (get_param_value(buf, sizeof(buf), "hostname", p)) {
2519
            vhostname = qemu_strdup(buf);
2520
        }
2521
        if (get_param_value(buf, sizeof(buf), "restrict", p)) {
2522
            restricted = (buf[0] == 'y') ? 1 : 0;
2523
        }
2524
2525
2526
2527
2528
        if (get_param_value(buf, sizeof(buf), "dhcpstart", p)) {
            vdhcp_start = qemu_strdup(buf);
        }
        if (get_param_value(buf, sizeof(buf), "dns", p)) {
            vnamesrv = qemu_strdup(buf);
2529
        }
2530
2531
2532
2533
2534
2535
2536
2537
        if (get_param_value(buf, sizeof(buf), "tftp", p)) {
            tftp_export = qemu_strdup(buf);
        }
        if (get_param_value(buf, sizeof(buf), "bootfile", p)) {
            bootfile = qemu_strdup(buf);
        }
        if (get_param_value(buf, sizeof(buf), "smb", p)) {
            smb_export = qemu_strdup(buf);
2538
2539
2540
            if (get_param_value(buf, sizeof(buf), "smbserver", p)) {
                vsmbsrv = qemu_strdup(buf);
            }
2541
2542
2543
2544
2545
        }
        q = p;
        while (1) {
            config = qemu_malloc(sizeof(*config));
            if (!get_next_param_value(config->str, sizeof(config->str),
2546
                                      "hostfwd", &q)) {
2547
2548
                break;
            }
2549
            config->flags = SLIRP_CFG_HOSTFWD;
2550
2551
2552
2553
2554
2555
2556
2557
            config->next = slirp_configs;
            slirp_configs = config;
            config = NULL;
        }
        q = p;
        while (1) {
            config = qemu_malloc(sizeof(*config));
            if (!get_next_param_value(config->str, sizeof(config->str),
2558
                                      "guestfwd", &q)) {
2559
2560
2561
2562
2563
2564
2565
2566
                break;
            }
            config->flags = 0;
            config->next = slirp_configs;
            slirp_configs = config;
            config = NULL;
        }
        qemu_free(config);
2567
        vlan->nb_host_devs++;
2568
2569
2570
2571
2572
2573
        ret = net_slirp_init(mon, vlan, device, name, restricted, vnet, vhost,
                             vhostname, tftp_export, bootfile, vdhcp_start,
                             vnamesrv, smb_export, vsmbsrv);
        qemu_free(vnet);
        qemu_free(vhost);
        qemu_free(vhostname);
2574
2575
        qemu_free(tftp_export);
        qemu_free(bootfile);
2576
2577
        qemu_free(vdhcp_start);
        qemu_free(vnamesrv);
2578
        qemu_free(smb_export);
2579
        qemu_free(vsmbsrv);
2580
    } else if (!strcmp(device, "channel")) {
2581
        if (TAILQ_EMPTY(&slirp_stacks)) {
2582
2583
2584
2585
            struct slirp_config_str *config;

            config = qemu_malloc(sizeof(*config));
            pstrcpy(config->str, sizeof(config->str), p);
2586
            config->flags = SLIRP_CFG_LEGACY;
2587
2588
2589
            config->next = slirp_configs;
            slirp_configs = config;
        } else {
2590
            slirp_guestfwd(TAILQ_FIRST(&slirp_stacks), mon, p, 1);
2591
2592
        }
        ret = 0;
2593
2594
2595
2596
    } else
#endif
#ifdef _WIN32
    if (!strcmp(device, "tap")) {
2597
2598
2599
        static const char * const tap_params[] = {
            "vlan", "name", "ifname", NULL
        };
2600
        char ifname[64];
2601
2602
        if (check_params(buf, sizeof(buf), tap_params, p) < 0) {
2603
2604
2605
            config_error(mon, "invalid parameter '%s' in '%s'\n", buf, p);
            ret = -1;
            goto out;
2606
        }
2607
        if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
2608
            config_error(mon, "tap: no interface name\n");
2609
2610
            ret = -1;
            goto out;
2611
2612
        }
        vlan->nb_host_devs++;
2613
        ret = tap_win32_init(vlan, device, name, ifname);
2614
    } else
malc authored
2615
#elif defined (_AIX)
2616
2617
#else
    if (!strcmp(device, "tap")) {
2618
        char ifname[64], chkbuf[64];
2619
        char setup_script[1024], down_script[1024];
2620
        TAPState *s;
2621
2622
2623
        int fd;
        vlan->nb_host_devs++;
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
2624
2625
2626
            static const char * const fd_params[] = {
                "vlan", "name", "fd", "sndbuf", NULL
            };
2627
            if (check_params(chkbuf, sizeof(chkbuf), fd_params, p) < 0) {
2628
2629
2630
                config_error(mon, "invalid parameter '%s' in '%s'\n", chkbuf, p);
                ret = -1;
                goto out;
2631
            }
2632
2633
            fd = strtol(buf, NULL, 0);
            fcntl(fd, F_SETFL, O_NONBLOCK);
2634
            s = net_tap_fd_init(vlan, device, name, fd);
2635
        } else {
2636
            static const char * const tap_params[] = {
2637
                "vlan", "name", "ifname", "script", "downscript", "sndbuf", NULL
2638
            };
2639
            if (check_params(chkbuf, sizeof(chkbuf), tap_params, p) < 0) {
2640
2641
2642
                config_error(mon, "invalid parameter '%s' in '%s'\n", chkbuf, p);
                ret = -1;
                goto out;
2643
            }
2644
2645
2646
2647
2648
2649
2650
2651
2652
            if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
                ifname[0] = '\0';
            }
            if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
                pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
            }
            if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
                pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
            }
2653
2654
2655
            s = net_tap_init(vlan, device, name, ifname, setup_script, down_script);
        }
        if (s != NULL) {
2656
2657
2658
            if (get_param_value(buf, sizeof(buf), "sndbuf", p)) {
                tap_set_sndbuf(s, atoi(buf), mon);
            }
2659
2660
2661
            ret = 0;
        } else {
            ret = -1;
2662
2663
2664
2665
        }
    } else
#endif
    if (!strcmp(device, "socket")) {
2666
        char chkbuf[64];
2667
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
2668
2669
2670
            static const char * const fd_params[] = {
                "vlan", "name", "fd", NULL
            };
2671
            int fd;
2672
            if (check_params(chkbuf, sizeof(chkbuf), fd_params, p) < 0) {
2673
2674
2675
                config_error(mon, "invalid parameter '%s' in '%s'\n", chkbuf, p);
                ret = -1;
                goto out;
2676
            }
2677
2678
            fd = strtol(buf, NULL, 0);
            ret = -1;
2679
            if (net_socket_fd_init(vlan, device, name, fd, 1))
2680
2681
                ret = 0;
        } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
2682
2683
2684
            static const char * const listen_params[] = {
                "vlan", "name", "listen", NULL
            };
2685
            if (check_params(chkbuf, sizeof(chkbuf), listen_params, p) < 0) {
2686
2687
2688
                config_error(mon, "invalid parameter '%s' in '%s'\n", chkbuf, p);
                ret = -1;
                goto out;
2689
            }
2690
            ret = net_socket_listen_init(vlan, device, name, buf);
2691
        } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
2692
2693
2694
            static const char * const connect_params[] = {
                "vlan", "name", "connect", NULL
            };
2695
            if (check_params(chkbuf, sizeof(chkbuf), connect_params, p) < 0) {
2696
2697
2698
                config_error(mon, "invalid parameter '%s' in '%s'\n", chkbuf, p);
                ret = -1;
                goto out;
2699
            }
2700
            ret = net_socket_connect_init(vlan, device, name, buf);
2701
        } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
2702
2703
2704
            static const char * const mcast_params[] = {
                "vlan", "name", "mcast", NULL
            };
2705
            if (check_params(chkbuf, sizeof(chkbuf), mcast_params, p) < 0) {
2706
2707
2708
                config_error(mon, "invalid parameter '%s' in '%s'\n", chkbuf, p);
                ret = -1;
                goto out;
2709
            }
2710
            ret = net_socket_mcast_init(vlan, device, name, buf);
2711
        } else {
2712
            config_error(mon, "Unknown socket options: %s\n", p);
2713
2714
            ret = -1;
            goto out;
2715
2716
2717
2718
2719
        }
        vlan->nb_host_devs++;
    } else
#ifdef CONFIG_VDE
    if (!strcmp(device, "vde")) {
2720
2721
2722
        static const char * const vde_params[] = {
            "vlan", "name", "sock", "port", "group", "mode", NULL
        };
2723
2724
        char vde_sock[1024], vde_group[512];
	int vde_port, vde_mode;
2725
2726
        if (check_params(buf, sizeof(buf), vde_params, p) < 0) {
2727
2728
2729
            config_error(mon, "invalid parameter '%s' in '%s'\n", buf, p);
            ret = -1;
            goto out;
2730
        }
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
        vlan->nb_host_devs++;
        if (get_param_value(vde_sock, sizeof(vde_sock), "sock", p) <= 0) {
	    vde_sock[0] = '\0';
	}
	if (get_param_value(buf, sizeof(buf), "port", p) > 0) {
	    vde_port = strtol(buf, NULL, 10);
	} else {
	    vde_port = 0;
	}
	if (get_param_value(vde_group, sizeof(vde_group), "group", p) <= 0) {
	    vde_group[0] = '\0';
	}
	if (get_param_value(buf, sizeof(buf), "mode", p) > 0) {
	    vde_mode = strtol(buf, NULL, 8);
	} else {
	    vde_mode = 0700;
	}
2748
	ret = net_vde_init(vlan, device, name, vde_sock, vde_port, vde_group, vde_mode);
2749
2750
    } else
#endif
2751
2752
2753
2754
2755
2756
2757
2758
2759
    if (!strcmp(device, "dump")) {
        int len = 65536;

        if (get_param_value(buf, sizeof(buf), "len", p) > 0) {
            len = strtol(buf, NULL, 0);
        }
        if (!get_param_value(buf, sizeof(buf), "file", p)) {
            snprintf(buf, sizeof(buf), "qemu-vlan%d.pcap", vlan_id);
        }
2760
        ret = net_dump_init(mon, vlan, device, name, buf, len);
2761
    } else {
2762
        config_error(mon, "Unknown network device: %s\n", device);
2763
2764
        ret = -1;
        goto out;
2765
2766
    }
    if (ret < 0) {
2767
        config_error(mon, "Could not initialize device '%s'\n", device);
2768
    }
2769
out:
2770
    qemu_free(name);
2771
2772
2773
    return ret;
}
2774
2775
2776
2777
2778
2779
2780
2781
void net_client_uninit(NICInfo *nd)
{
    nd->vlan->nb_guest_devs--;
    nb_nics--;
    nd->used = 0;
    free((void *)nd->model);
}
2782
2783
2784
static int net_host_check_device(const char *device)
{
    int i;
2785
    const char *valid_param_list[] = { "tap", "socket", "dump"
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
#ifdef CONFIG_SLIRP
                                       ,"user"
#endif
#ifdef CONFIG_VDE
                                       ,"vde"
#endif
    };
    for (i = 0; i < sizeof(valid_param_list) / sizeof(char *); i++) {
        if (!strncmp(valid_param_list[i], device,
                     strlen(valid_param_list[i])))
            return 1;
    }

    return 0;
}
2802
void net_host_device_add(Monitor *mon, const char *device, const char *opts)
2803
2804
{
    if (!net_host_check_device(device)) {
2805
        monitor_printf(mon, "invalid host network device %s\n", device);
2806
2807
        return;
    }
2808
    if (net_client_init(mon, device, opts ? opts : "") < 0) {
2809
2810
        monitor_printf(mon, "adding host network device %s failed\n", device);
    }
2811
2812
}
2813
void net_host_device_remove(Monitor *mon, int vlan_id, const char *device)
2814
2815
2816
{
    VLANClientState *vc;
2817
    vc = qemu_find_vlan_client_by_name(mon, vlan_id, device);
2818
2819
2820
    if (!vc) {
        return;
    }
2821
2822
2823
2824
    if (!net_host_check_device(vc->model)) {
        monitor_printf(mon, "invalid host network device %s\n", device);
        return;
    }
2825
2826
2827
    qemu_del_vlan_client(vc);
}
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
int net_client_parse(const char *str)
{
    const char *p;
    char *q;
    char device[64];

    p = str;
    q = device;
    while (*p != '\0' && *p != ',') {
        if ((q - device) < sizeof(device) - 1)
            *q++ = *p;
        p++;
    }
    *q = '\0';
    if (*p == ',')
        p++;
2845
    return net_client_init(NULL, device, p);
2846
2847
}
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
void net_set_boot_mask(int net_boot_mask)
{
    int i;

    /* Only the first four NICs may be bootable */
    net_boot_mask = net_boot_mask & 0xF;

    for (i = 0; i < nb_nics; i++) {
        if (net_boot_mask & (1 << i)) {
            nd_table[i].bootable = 1;
            net_boot_mask &= ~(1 << i);
        }
    }

    if (net_boot_mask) {
        fprintf(stderr, "Cannot boot from non-existent NIC\n");
        exit(1);
    }
}
2868
void do_info_network(Monitor *mon)
2869
2870
2871
2872
2873
{
    VLANState *vlan;
    VLANClientState *vc;

    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
2874
        monitor_printf(mon, "VLAN %d devices:\n", vlan->id);
2875
        for(vc = vlan->first_client; vc != NULL; vc = vc->next)
2876
            monitor_printf(mon, "  %s: %s\n", vc->name, vc->info_str);
2877
2878
2879
    }
}
2880
int do_set_link(Monitor *mon, const char *name, const char *up_or_down)
2881
2882
2883
2884
2885
2886
2887
{
    VLANState *vlan;
    VLANClientState *vc = NULL;

    for (vlan = first_vlan; vlan != NULL; vlan = vlan->next)
        for (vc = vlan->first_client; vc != NULL; vc = vc->next)
            if (strcmp(vc->name, name) == 0)
2888
2889
                goto done;
done:
2890
2891

    if (!vc) {
2892
        monitor_printf(mon, "could not find network device '%s'", name);
2893
2894
2895
2896
2897
2898
2899
2900
        return 0;
    }

    if (strcmp(up_or_down, "up") == 0)
        vc->link_down = 0;
    else if (strcmp(up_or_down, "down") == 0)
        vc->link_down = 1;
    else
2901
2902
        monitor_printf(mon, "invalid link status '%s'; only 'up' or 'down' "
                       "valid\n", up_or_down);
2903
2904
2905
2906
    if (vc->link_status_changed)
        vc->link_status_changed(vc);
2907
2908
2909
    return 1;
}
2910
2911
2912
2913
2914
2915
void net_cleanup(void)
{
    VLANState *vlan;

    /* close network clients */
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
2916
        VLANClientState *vc = vlan->first_client;
2917
2918
2919
        while (vc) {
            VLANClientState *next = vc->next;
2920
2921
2922
2923
            qemu_del_vlan_client(vc);

            vc = next;
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
        }
    }
}

void net_client_check(void)
{
    VLANState *vlan;

    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
        if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
            continue;
        if (vlan->nb_guest_devs == 0)
            fprintf(stderr, "Warning: vlan %d with no nics\n", vlan->id);
        if (vlan->nb_host_devs == 0)
            fprintf(stderr,
                    "Warning: vlan %d is not connected to host network\n",
                    vlan->id);
    }
}