1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/*
* KQEMU support
*
* Copyright ( c ) 2005 Fabrice Bellard
*
* This library is free software ; you can redistribute it and / or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation ; either
* version 2 of the License , or ( at your option ) any later version .
*
* This library is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU
* Lesser General Public License for more details .
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library ; if not , write to the Free Software
* Foundation , Inc ., 59 Temple Place , Suite 330 , Boston , MA 02111 - 1307 USA
*/
# include "config.h"
# ifdef _WIN32
# include < windows . h >
23
# include < winioctl . h >
24
25
26
# else
# include < sys / types . h >
# include < sys / mman . h >
27
# include < sys / ioctl . h >
28
# endif
ths
authored
18 years ago
29
30
31
# ifdef HOST_SOLARIS
# include < sys / modctl . h >
# endif
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# include < stdlib . h >
# include < stdio . h >
# include < stdarg . h >
# include < string . h >
# include < errno . h >
# include < unistd . h >
# include < inttypes . h >
# include "cpu.h"
# include "exec-all.h"
# ifdef USE_KQEMU
# define DEBUG
46
// # define PROFILE
47
48
49
# include < unistd . h >
# include < fcntl . h >
50
# include "kqemu.h"
51
52
53
54
55
/* compatibility stuff */
# ifndef KQEMU_RET_SYSCALL
# define KQEMU_RET_SYSCALL 0x0300 /* syscall insn */
# endif
56
57
58
59
# ifndef KQEMU_MAX_RAM_PAGES_TO_UPDATE
# define KQEMU_MAX_RAM_PAGES_TO_UPDATE 512
# define KQEMU_RAM_PAGES_UPDATE_ALL ( KQEMU_MAX_RAM_PAGES_TO_UPDATE + 1 )
# endif
60
61
62
# ifndef KQEMU_MAX_MODIFIED_RAM_PAGES
# define KQEMU_MAX_MODIFIED_RAM_PAGES 512
# endif
63
64
65
66
# ifdef _WIN32
# define KQEMU_DEVICE " \\\\ . \\ kqemu"
# else
67
# define KQEMU_DEVICE "/dev/kqemu"
68
69
70
71
72
73
74
75
76
77
78
# endif
# ifdef _WIN32
# define KQEMU_INVALID_FD INVALID_HANDLE_VALUE
HANDLE kqemu_fd = KQEMU_INVALID_FD ;
# define kqemu_closefd ( x ) CloseHandle ( x )
# else
# define KQEMU_INVALID_FD - 1
int kqemu_fd = KQEMU_INVALID_FD ;
# define kqemu_closefd ( x ) close ( x )
# endif
79
80
81
82
83
/* 0 = not allowed
1 = user kqemu
2 = kernel kqemu
*/
84
85
86
int kqemu_allowed = 1 ;
unsigned long * pages_to_flush ;
unsigned int nb_pages_to_flush ;
87
88
unsigned long * ram_pages_to_update ;
unsigned int nb_ram_pages_to_update ;
89
90
91
unsigned long * modified_ram_pages ;
unsigned int nb_modified_ram_pages ;
uint8_t * modified_ram_pages_table ;
92
93
94
95
96
97
98
extern uint32_t ** l1_phys_map ;
# define cpuid ( index , eax , ebx , ecx , edx ) \
asm volatile ( "cpuid" \
: "=a" ( eax ), "=b" ( ebx ), "=c" ( ecx ), "=d" ( edx ) \
: "0" ( index ))
99
100
101
102
103
104
# ifdef __x86_64__
static int is_cpuid_supported ( void )
{
return 1 ;
}
# else
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
static int is_cpuid_supported ( void )
{
int v0 , v1 ;
asm volatile ( "pushf \n "
"popl %0 \n "
"movl %0, %1 \n "
"xorl $0x00200000, %0 \n "
"pushl %0 \n "
"popf \n "
"pushf \n "
"popl %0 \n "
: "=a" ( v0 ), "=d" ( v1 )
:
: "cc" );
return ( v0 != v1 );
}
121
# endif
122
123
124
static void kqemu_update_cpuid ( CPUState * env )
{
125
int critical_features_mask , features , ext_features , ext_features_mask ;
126
127
128
129
130
131
132
133
134
uint32_t eax , ebx , ecx , edx ;
/* the following features are kept identical on the host and
target cpus because they are important for user code . Strictly
speaking , only SSE really matters because the OS must support
it if the user code uses it . */
critical_features_mask =
CPUID_CMOV | CPUID_CX8 |
CPUID_FXSR | CPUID_MMX | CPUID_SSE |
135
CPUID_SSE2 | CPUID_SEP ;
136
ext_features_mask = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR ;
137
138
if ( ! is_cpuid_supported ()) {
features = 0 ;
139
ext_features = 0 ;
140
141
142
} else {
cpuid ( 1 , eax , ebx , ecx , edx );
features = edx ;
143
ext_features = ecx ;
144
}
145
146
147
148
149
150
# ifdef __x86_64__
/* NOTE : on x86_64 CPUs , SYSENTER is not supported in
compatibility mode , so in order to have the best performances
it is better not to use it */
features &= ~ CPUID_SEP ;
# endif
151
152
env -> cpuid_features = ( env -> cpuid_features & ~ critical_features_mask ) |
( features & critical_features_mask );
153
154
env -> cpuid_ext_features = ( env -> cpuid_ext_features & ~ ext_features_mask ) |
( ext_features & ext_features_mask );
155
156
157
158
159
160
161
162
163
/* XXX : we could update more of the target CPUID state so that the
non accelerated code sees exactly the same CPU features as the
accelerated code */
}
int kqemu_init ( CPUState * env )
{
struct kqemu_init init ;
int ret , version ;
164
165
166
# ifdef _WIN32
DWORD temp ;
# endif
167
168
169
170
if ( ! kqemu_allowed )
return - 1 ;
171
172
173
174
175
176
# ifdef _WIN32
kqemu_fd = CreateFile ( KQEMU_DEVICE , GENERIC_WRITE | GENERIC_READ ,
FILE_SHARE_READ | FILE_SHARE_WRITE ,
NULL , OPEN_EXISTING , FILE_ATTRIBUTE_NORMAL ,
NULL );
# else
177
kqemu_fd = open ( KQEMU_DEVICE , O_RDWR );
178
179
# endif
if ( kqemu_fd == KQEMU_INVALID_FD ) {
180
181
182
183
fprintf ( stderr , "Could not open '%s' - QEMU acceleration layer not activated \n " , KQEMU_DEVICE );
return - 1 ;
}
version = 0 ;
184
185
186
187
# ifdef _WIN32
DeviceIoControl ( kqemu_fd , KQEMU_GET_VERSION , NULL , 0 ,
& version , sizeof ( version ), & temp , NULL );
# else
188
ioctl ( kqemu_fd , KQEMU_GET_VERSION , & version );
189
# endif
190
191
192
193
194
195
196
197
198
199
200
if ( version != KQEMU_VERSION ) {
fprintf ( stderr , "Version mismatch between kqemu module and qemu (%08x %08x) - disabling kqemu use \n " ,
version , KQEMU_VERSION );
goto fail ;
}
pages_to_flush = qemu_vmalloc ( KQEMU_MAX_PAGES_TO_FLUSH *
sizeof ( unsigned long ));
if ( ! pages_to_flush )
goto fail ;
201
202
203
204
205
ram_pages_to_update = qemu_vmalloc ( KQEMU_MAX_RAM_PAGES_TO_UPDATE *
sizeof ( unsigned long ));
if ( ! ram_pages_to_update )
goto fail ;
206
207
208
209
210
211
212
213
modified_ram_pages = qemu_vmalloc ( KQEMU_MAX_MODIFIED_RAM_PAGES *
sizeof ( unsigned long ));
if ( ! modified_ram_pages )
goto fail ;
modified_ram_pages_table = qemu_mallocz ( phys_ram_size >> TARGET_PAGE_BITS );
if ( ! modified_ram_pages_table )
goto fail ;
214
215
216
217
218
init . ram_base = phys_ram_base ;
init . ram_size = phys_ram_size ;
init . ram_dirty = phys_ram_dirty ;
init . phys_to_ram_map = l1_phys_map ;
init . pages_to_flush = pages_to_flush ;
219
220
221
# if KQEMU_VERSION >= 0x010200
init . ram_pages_to_update = ram_pages_to_update ;
# endif
222
223
224
# if KQEMU_VERSION >= 0x010300
init . modified_ram_pages = modified_ram_pages ;
# endif
225
226
227
228
# ifdef _WIN32
ret = DeviceIoControl ( kqemu_fd , KQEMU_INIT , & init , sizeof ( init ),
NULL , 0 , & temp , NULL ) == TRUE ? 0 : - 1 ;
# else
229
ret = ioctl ( kqemu_fd , KQEMU_INIT , & init );
230
# endif
231
232
233
if ( ret < 0 ) {
fprintf ( stderr , "Error %d while initializing QEMU acceleration layer - disabling it for now \n " , ret );
fail :
234
235
kqemu_closefd ( kqemu_fd );
kqemu_fd = KQEMU_INVALID_FD ;
236
237
238
return - 1 ;
}
kqemu_update_cpuid ( env );
239
env -> kqemu_enabled = kqemu_allowed ;
240
nb_pages_to_flush = 0 ;
241
nb_ram_pages_to_update = 0 ;
242
243
244
245
246
return 0 ;
}
void kqemu_flush_page ( CPUState * env , target_ulong addr )
{
247
# if defined ( DEBUG )
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
if ( loglevel & CPU_LOG_INT ) {
fprintf ( logfile , "kqemu_flush_page: addr=" TARGET_FMT_lx " \n " , addr );
}
# endif
if ( nb_pages_to_flush >= KQEMU_MAX_PAGES_TO_FLUSH )
nb_pages_to_flush = KQEMU_FLUSH_ALL ;
else
pages_to_flush [ nb_pages_to_flush ++ ] = addr ;
}
void kqemu_flush ( CPUState * env , int global )
{
# ifdef DEBUG
if ( loglevel & CPU_LOG_INT ) {
fprintf ( logfile , "kqemu_flush: \n " );
}
# endif
nb_pages_to_flush = KQEMU_FLUSH_ALL ;
}
268
269
270
271
272
273
274
void kqemu_set_notdirty ( CPUState * env , ram_addr_t ram_addr )
{
# ifdef DEBUG
if ( loglevel & CPU_LOG_INT ) {
fprintf ( logfile , "kqemu_set_notdirty: addr=%08lx \n " , ram_addr );
}
# endif
275
276
277
/* we only track transitions to dirty state */
if ( phys_ram_dirty [ ram_addr >> TARGET_PAGE_BITS ] != 0xff )
return ;
278
279
280
281
282
283
if ( nb_ram_pages_to_update >= KQEMU_MAX_RAM_PAGES_TO_UPDATE )
nb_ram_pages_to_update = KQEMU_RAM_PAGES_UPDATE_ALL ;
else
ram_pages_to_update [ nb_ram_pages_to_update ++ ] = ram_addr ;
}
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
static void kqemu_reset_modified_ram_pages ( void )
{
int i ;
unsigned long page_index ;
for ( i = 0 ; i < nb_modified_ram_pages ; i ++ ) {
page_index = modified_ram_pages [ i ] >> TARGET_PAGE_BITS ;
modified_ram_pages_table [ page_index ] = 0 ;
}
nb_modified_ram_pages = 0 ;
}
void kqemu_modify_page ( CPUState * env , ram_addr_t ram_addr )
{
unsigned long page_index ;
int ret ;
# ifdef _WIN32
DWORD temp ;
# endif
page_index = ram_addr >> TARGET_PAGE_BITS ;
if ( ! modified_ram_pages_table [ page_index ]) {
# if 0
printf ( "%d: modify_page=%08lx \n " , nb_modified_ram_pages , ram_addr );
# endif
modified_ram_pages_table [ page_index ] = 1 ;
modified_ram_pages [ nb_modified_ram_pages ++ ] = ram_addr ;
if ( nb_modified_ram_pages >= KQEMU_MAX_MODIFIED_RAM_PAGES ) {
/* flush */
# ifdef _WIN32
ret = DeviceIoControl ( kqemu_fd , KQEMU_MODIFY_RAM_PAGES ,
& nb_modified_ram_pages ,
sizeof ( nb_modified_ram_pages ),
NULL , 0 , & temp , NULL );
# else
ret = ioctl ( kqemu_fd , KQEMU_MODIFY_RAM_PAGES ,
& nb_modified_ram_pages );
# endif
kqemu_reset_modified_ram_pages ();
}
}
}
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
struct fpstate {
uint16_t fpuc ;
uint16_t dummy1 ;
uint16_t fpus ;
uint16_t dummy2 ;
uint16_t fptag ;
uint16_t dummy3 ;
uint32_t fpip ;
uint32_t fpcs ;
uint32_t fpoo ;
uint32_t fpos ;
uint8_t fpregs1 [ 8 * 10 ];
};
struct fpxstate {
uint16_t fpuc ;
uint16_t fpus ;
uint16_t fptag ;
uint16_t fop ;
uint32_t fpuip ;
uint16_t cs_sel ;
uint16_t dummy0 ;
uint32_t fpudp ;
uint16_t ds_sel ;
uint16_t dummy1 ;
uint32_t mxcsr ;
uint32_t mxcsr_mask ;
uint8_t fpregs1 [ 8 * 16 ];
356
357
uint8_t xmm_regs [ 16 * 16 ];
uint8_t dummy2 [ 96 ];
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
};
static struct fpxstate fpx1 __attribute__ (( aligned ( 16 )));
static void restore_native_fp_frstor ( CPUState * env )
{
int fptag , i , j ;
struct fpstate fp1 , * fp = & fp1 ;
fp -> fpuc = env -> fpuc ;
fp -> fpus = ( env -> fpus & ~ 0x3800 ) | ( env -> fpstt & 0x7 ) << 11 ;
fptag = 0 ;
for ( i = 7 ; i >= 0 ; i -- ) {
fptag <<= 2 ;
if ( env -> fptags [ i ]) {
fptag |= 3 ;
} else {
/* the FPU automatically computes it */
}
}
fp -> fptag = fptag ;
j = env -> fpstt ;
for ( i = 0 ; i < 8 ; i ++ ) {
memcpy ( & fp -> fpregs1 [ i * 10 ], & env -> fpregs [ j ]. d , 10 );
j = ( j + 1 ) & 7 ;
}
asm volatile ( "frstor %0" : "=m" ( * fp ));
}
static void save_native_fp_fsave ( CPUState * env )
{
int fptag , i , j ;
uint16_t fpuc ;
struct fpstate fp1 , * fp = & fp1 ;
asm volatile ( "fsave %0" : : "m" ( * fp ));
env -> fpuc = fp -> fpuc ;
env -> fpstt = ( fp -> fpus >> 11 ) & 7 ;
env -> fpus = fp -> fpus & ~ 0x3800 ;
fptag = fp -> fptag ;
for ( i = 0 ; i < 8 ; i ++ ) {
env -> fptags [ i ] = (( fptag & 3 ) == 3 );
fptag >>= 2 ;
}
j = env -> fpstt ;
for ( i = 0 ; i < 8 ; i ++ ) {
memcpy ( & env -> fpregs [ j ]. d , & fp -> fpregs1 [ i * 10 ], 10 );
j = ( j + 1 ) & 7 ;
}
/* we must restore the default rounding state */
fpuc = 0x037f | ( env -> fpuc & ( 3 << 10 ));
asm volatile ( "fldcw %0" : : "m" ( fpuc ));
}
static void restore_native_fp_fxrstor ( CPUState * env )
{
struct fpxstate * fp = & fpx1 ;
int i , j , fptag ;
fp -> fpuc = env -> fpuc ;
fp -> fpus = ( env -> fpus & ~ 0x3800 ) | ( env -> fpstt & 0x7 ) << 11 ;
fptag = 0 ;
for ( i = 0 ; i < 8 ; i ++ )
fptag |= ( env -> fptags [ i ] << i );
fp -> fptag = fptag ^ 0xff ;
j = env -> fpstt ;
for ( i = 0 ; i < 8 ; i ++ ) {
memcpy ( & fp -> fpregs1 [ i * 16 ], & env -> fpregs [ j ]. d , 10 );
j = ( j + 1 ) & 7 ;
}
if ( env -> cpuid_features & CPUID_SSE ) {
fp -> mxcsr = env -> mxcsr ;
/* XXX: check if DAZ is not available */
fp -> mxcsr_mask = 0xffff ;
433
memcpy ( fp -> xmm_regs , env -> xmm_regs , CPU_NB_REGS * 16 );
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
}
asm volatile ( "fxrstor %0" : "=m" ( * fp ));
}
static void save_native_fp_fxsave ( CPUState * env )
{
struct fpxstate * fp = & fpx1 ;
int fptag , i , j ;
uint16_t fpuc ;
asm volatile ( "fxsave %0" : : "m" ( * fp ));
env -> fpuc = fp -> fpuc ;
env -> fpstt = ( fp -> fpus >> 11 ) & 7 ;
env -> fpus = fp -> fpus & ~ 0x3800 ;
fptag = fp -> fptag ^ 0xff ;
for ( i = 0 ; i < 8 ; i ++ ) {
env -> fptags [ i ] = ( fptag >> i ) & 1 ;
}
j = env -> fpstt ;
for ( i = 0 ; i < 8 ; i ++ ) {
memcpy ( & env -> fpregs [ j ]. d , & fp -> fpregs1 [ i * 16 ], 10 );
j = ( j + 1 ) & 7 ;
}
if ( env -> cpuid_features & CPUID_SSE ) {
env -> mxcsr = fp -> mxcsr ;
459
memcpy ( env -> xmm_regs , fp -> xmm_regs , CPU_NB_REGS * 16 );
460
461
462
463
464
465
466
467
}
/* we must restore the default rounding state */
asm volatile ( "fninit" );
fpuc = 0x037f | ( env -> fpuc & ( 3 << 10 ));
asm volatile ( "fldcw %0" : : "m" ( fpuc ));
}
468
469
470
471
472
473
474
475
static int do_syscall ( CPUState * env ,
struct kqemu_cpu_state * kenv )
{
int selector ;
selector = ( env -> star >> 32 ) & 0xffff ;
# ifdef __x86_64__
if ( env -> hflags & HF_LMA_MASK ) {
476
477
int code64 ;
478
479
480
env -> regs [ R_ECX ] = kenv -> next_eip ;
env -> regs [ 11 ] = env -> eflags ;
481
482
code64 = env -> hflags & HF_CS64_MASK ;
483
484
485
486
487
488
489
490
491
492
493
494
cpu_x86_set_cpl ( env , 0 );
cpu_x86_load_seg_cache ( env , R_CS , selector & 0xfffc ,
0 , 0xffffffff ,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK );
cpu_x86_load_seg_cache ( env , R_SS , ( selector + 8 ) & 0xfffc ,
0 , 0xffffffff ,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_W_MASK | DESC_A_MASK );
env -> eflags &= ~ env -> fmask ;
495
if ( code64 )
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
env -> eip = env -> lstar ;
else
env -> eip = env -> cstar ;
} else
# endif
{
env -> regs [ R_ECX ] = ( uint32_t ) kenv -> next_eip ;
cpu_x86_set_cpl ( env , 0 );
cpu_x86_load_seg_cache ( env , R_CS , selector & 0xfffc ,
0 , 0xffffffff ,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK );
cpu_x86_load_seg_cache ( env , R_SS , ( selector + 8 ) & 0xfffc ,
0 , 0xffffffff ,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_W_MASK | DESC_A_MASK );
env -> eflags &= ~ ( IF_MASK | RF_MASK | VM_MASK );
env -> eip = ( uint32_t ) env -> star ;
}
return 2 ;
}
521
# ifdef CONFIG_PROFILER
522
523
524
525
526
527
528
529
530
531
532
# define PC_REC_SIZE 1
# define PC_REC_HASH_BITS 16
# define PC_REC_HASH_SIZE ( 1 << PC_REC_HASH_BITS )
typedef struct PCRecord {
unsigned long pc ;
int64_t count ;
struct PCRecord * next ;
} PCRecord ;
533
534
static PCRecord * pc_rec_hash [ PC_REC_HASH_SIZE ];
static int nb_pc_records ;
535
536
static void kqemu_record_pc ( unsigned long pc )
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
{
unsigned long h ;
PCRecord ** pr , * r ;
h = pc / PC_REC_SIZE ;
h = h ^ ( h >> PC_REC_HASH_BITS );
h &= ( PC_REC_HASH_SIZE - 1 );
pr = & pc_rec_hash [ h ];
for (;;) {
r = * pr ;
if ( r == NULL )
break ;
if ( r -> pc == pc ) {
r -> count ++ ;
return ;
}
pr = & r -> next ;
}
r = malloc ( sizeof ( PCRecord ));
r -> count = 1 ;
r -> pc = pc ;
r -> next = NULL ;
* pr = r ;
nb_pc_records ++ ;
}
563
static int pc_rec_cmp ( const void * p1 , const void * p2 )
564
565
566
567
568
569
570
571
572
573
574
{
PCRecord * r1 = * ( PCRecord ** ) p1 ;
PCRecord * r2 = * ( PCRecord ** ) p2 ;
if ( r1 -> count < r2 -> count )
return 1 ;
else if ( r1 -> count == r2 -> count )
return 0 ;
else
return - 1 ;
}
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
static void kqemu_record_flush ( void )
{
PCRecord * r , * r_next ;
int h ;
for ( h = 0 ; h < PC_REC_HASH_SIZE ; h ++ ) {
for ( r = pc_rec_hash [ h ]; r != NULL ; r = r_next ) {
r_next = r -> next ;
free ( r );
}
pc_rec_hash [ h ] = NULL ;
}
nb_pc_records = 0 ;
}
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
void kqemu_record_dump ( void )
{
PCRecord ** pr , * r ;
int i , h ;
FILE * f ;
int64_t total , sum ;
pr = malloc ( sizeof ( PCRecord * ) * nb_pc_records );
i = 0 ;
total = 0 ;
for ( h = 0 ; h < PC_REC_HASH_SIZE ; h ++ ) {
for ( r = pc_rec_hash [ h ]; r != NULL ; r = r -> next ) {
pr [ i ++ ] = r ;
total += r -> count ;
}
}
qsort ( pr , nb_pc_records , sizeof ( PCRecord * ), pc_rec_cmp );
f = fopen ( "/tmp/kqemu.stats" , "w" );
if ( ! f ) {
perror ( "/tmp/kqemu.stats" );
exit ( 1 );
}
613
fprintf ( f , "total: %" PRId64 " \n " , total );
614
615
616
617
sum = 0 ;
for ( i = 0 ; i < nb_pc_records ; i ++ ) {
r = pr [ i ];
sum += r -> count ;
618
fprintf ( f , "%08lx: %" PRId64 " %0.2f%% %0.2f%% \n " ,
619
620
621
622
623
624
625
r -> pc ,
r -> count ,
( double ) r -> count / ( double ) total * 100 . 0 ,
( double ) sum / ( double ) total * 100 . 0 );
}
fclose ( f );
free ( pr );
626
627
kqemu_record_flush ();
628
629
630
}
# endif
631
632
633
int kqemu_cpu_exec ( CPUState * env )
{
struct kqemu_cpu_state kcpu_state , * kenv = & kcpu_state ;
634
635
636
637
638
int ret , cpl , i ;
# ifdef CONFIG_PROFILER
int64_t ti ;
# endif
639
640
641
# ifdef _WIN32
DWORD temp ;
# endif
642
643
644
645
# ifdef CONFIG_PROFILER
ti = profile_getclock ();
# endif
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
# ifdef DEBUG
if ( loglevel & CPU_LOG_INT ) {
fprintf ( logfile , "kqemu: cpu_exec: enter \n " );
cpu_dump_state ( env , logfile , fprintf , 0 );
}
# endif
memcpy ( kenv -> regs , env -> regs , sizeof ( kenv -> regs ));
kenv -> eip = env -> eip ;
kenv -> eflags = env -> eflags ;
memcpy ( & kenv -> segs , & env -> segs , sizeof ( env -> segs ));
memcpy ( & kenv -> ldt , & env -> ldt , sizeof ( env -> ldt ));
memcpy ( & kenv -> tr , & env -> tr , sizeof ( env -> tr ));
memcpy ( & kenv -> gdt , & env -> gdt , sizeof ( env -> gdt ));
memcpy ( & kenv -> idt , & env -> idt , sizeof ( env -> idt ));
kenv -> cr0 = env -> cr [ 0 ];
kenv -> cr2 = env -> cr [ 2 ];
kenv -> cr3 = env -> cr [ 3 ];
kenv -> cr4 = env -> cr [ 4 ];
kenv -> a20_mask = env -> a20_mask ;
665
# if KQEMU_VERSION >= 0x010100
666
667
kenv -> efer = env -> efer ;
# endif
668
669
670
671
672
673
674
675
676
677
678
679
680
# if KQEMU_VERSION >= 0x010300
kenv -> tsc_offset = 0 ;
kenv -> star = env -> star ;
kenv -> sysenter_cs = env -> sysenter_cs ;
kenv -> sysenter_esp = env -> sysenter_esp ;
kenv -> sysenter_eip = env -> sysenter_eip ;
# ifdef __x86_64__
kenv -> lstar = env -> lstar ;
kenv -> cstar = env -> cstar ;
kenv -> fmask = env -> fmask ;
kenv -> kernelgsbase = env -> kernelgsbase ;
# endif
# endif
681
682
683
684
685
686
687
688
689
690
if ( env -> dr [ 7 ] & 0xff ) {
kenv -> dr7 = env -> dr [ 7 ];
kenv -> dr0 = env -> dr [ 0 ];
kenv -> dr1 = env -> dr [ 1 ];
kenv -> dr2 = env -> dr [ 2 ];
kenv -> dr3 = env -> dr [ 3 ];
} else {
kenv -> dr7 = 0 ;
}
kenv -> dr6 = env -> dr [ 6 ];
691
692
cpl = ( env -> hflags & HF_CPL_MASK );
kenv -> cpl = cpl ;
693
kenv -> nb_pages_to_flush = nb_pages_to_flush ;
694
# if KQEMU_VERSION >= 0x010200
695
kenv -> user_only = ( env -> kqemu_enabled == 1 );
696
697
698
kenv -> nb_ram_pages_to_update = nb_ram_pages_to_update ;
# endif
nb_ram_pages_to_update = 0 ;
699
700
701
702
703
704
705
706
707
708
# if KQEMU_VERSION >= 0x010300
kenv -> nb_modified_ram_pages = nb_modified_ram_pages ;
# endif
kqemu_reset_modified_ram_pages ();
if ( env -> cpuid_features & CPUID_FXSR )
restore_native_fp_fxrstor ( env );
else
restore_native_fp_frstor ( env );
709
710
# ifdef _WIN32
711
712
713
714
715
716
717
718
if ( DeviceIoControl ( kqemu_fd , KQEMU_EXEC ,
kenv , sizeof ( struct kqemu_cpu_state ),
kenv , sizeof ( struct kqemu_cpu_state ),
& temp , NULL )) {
ret = kenv -> retval ;
} else {
ret = - 1 ;
}
719
720
721
722
723
# else
# if KQEMU_VERSION >= 0x010100
ioctl ( kqemu_fd , KQEMU_EXEC , kenv );
ret = kenv -> retval ;
# else
724
ret = ioctl ( kqemu_fd , KQEMU_EXEC , kenv );
725
726
# endif
# endif
727
728
729
730
if ( env -> cpuid_features & CPUID_FXSR )
save_native_fp_fxsave ( env );
else
save_native_fp_fsave ( env );
731
732
733
734
735
memcpy ( env -> regs , kenv -> regs , sizeof ( env -> regs ));
env -> eip = kenv -> eip ;
env -> eflags = kenv -> eflags ;
memcpy ( env -> segs , kenv -> segs , sizeof ( env -> segs ));
736
737
cpu_x86_set_cpl ( env , kenv -> cpl );
memcpy ( & env -> ldt , & kenv -> ldt , sizeof ( env -> ldt ));
738
739
740
741
742
743
744
# if 0
/* no need to restore that */
memcpy ( env -> tr , kenv -> tr , sizeof ( env -> tr ));
memcpy ( env -> gdt , kenv -> gdt , sizeof ( env -> gdt ));
memcpy ( env -> idt , kenv -> idt , sizeof ( env -> idt ));
env -> a20_mask = kenv -> a20_mask ;
# endif
745
746
747
env -> cr [ 0 ] = kenv -> cr0 ;
env -> cr [ 4 ] = kenv -> cr4 ;
env -> cr [ 3 ] = kenv -> cr3 ;
748
749
env -> cr [ 2 ] = kenv -> cr2 ;
env -> dr [ 6 ] = kenv -> dr6 ;
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
# if KQEMU_VERSION >= 0x010300
# ifdef __x86_64__
env -> kernelgsbase = kenv -> kernelgsbase ;
# endif
# endif
/* flush pages as indicated by kqemu */
if ( kenv -> nb_pages_to_flush >= KQEMU_FLUSH_ALL ) {
tlb_flush ( env , 1 );
} else {
for ( i = 0 ; i < kenv -> nb_pages_to_flush ; i ++ ) {
tlb_flush_page ( env , pages_to_flush [ i ]);
}
}
nb_pages_to_flush = 0 ;
# ifdef CONFIG_PROFILER
kqemu_time += profile_getclock () - ti ;
kqemu_exec_count ++ ;
# endif
770
771
772
773
774
775
776
# if KQEMU_VERSION >= 0x010200
if ( kenv -> nb_ram_pages_to_update > 0 ) {
cpu_tlb_update_dirty ( env );
}
# endif
777
778
779
780
781
782
783
784
785
786
# if KQEMU_VERSION >= 0x010300
if ( kenv -> nb_modified_ram_pages > 0 ) {
for ( i = 0 ; i < kenv -> nb_modified_ram_pages ; i ++ ) {
unsigned long addr ;
addr = modified_ram_pages [ i ];
tb_invalidate_phys_page_range ( addr , addr + TARGET_PAGE_SIZE , 0 );
}
}
# endif
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
/* restore the hidden flags */
{
unsigned int new_hflags ;
# ifdef TARGET_X86_64
if (( env -> hflags & HF_LMA_MASK ) &&
( env -> segs [ R_CS ]. flags & DESC_L_MASK )) {
/* long mode */
new_hflags = HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK ;
} else
# endif
{
/* legacy / compatibility case */
new_hflags = ( env -> segs [ R_CS ]. flags & DESC_B_MASK )
>> ( DESC_B_SHIFT - HF_CS32_SHIFT );
new_hflags |= ( env -> segs [ R_SS ]. flags & DESC_B_MASK )
>> ( DESC_B_SHIFT - HF_SS32_SHIFT );
if ( ! ( env -> cr [ 0 ] & CR0_PE_MASK ) ||
( env -> eflags & VM_MASK ) ||
! ( env -> hflags & HF_CS32_MASK )) {
/* XXX : try to avoid this test . The problem comes from the
fact that is real mode or vm86 mode we only modify the
' base ' and ' selector ' fields of the segment cache to go
faster . A solution may be to force addseg to one in
translate - i386 . c . */
new_hflags |= HF_ADDSEG_MASK ;
} else {
new_hflags |= (( env -> segs [ R_DS ]. base |
env -> segs [ R_ES ]. base |
env -> segs [ R_SS ]. base ) != 0 ) <<
HF_ADDSEG_SHIFT ;
}
}
env -> hflags = ( env -> hflags &
~ ( HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK )) |
new_hflags ;
}
823
824
825
826
827
828
829
830
/* update FPU flags */
env -> hflags = ( env -> hflags & ~ ( HF_MP_MASK | HF_EM_MASK | HF_TS_MASK )) |
(( env -> cr [ 0 ] << ( HF_MP_SHIFT - 1 )) & ( HF_MP_MASK | HF_EM_MASK | HF_TS_MASK ));
if ( env -> cr [ 4 ] & CR4_OSFXSR_MASK )
env -> hflags |= HF_OSFXSR_MASK ;
else
env -> hflags &= ~ HF_OSFXSR_MASK ;
831
832
833
834
835
# ifdef DEBUG
if ( loglevel & CPU_LOG_INT ) {
fprintf ( logfile , "kqemu: kqemu_cpu_exec: ret=0x%x \n " , ret );
}
# endif
836
837
838
839
if ( ret == KQEMU_RET_SYSCALL ) {
/* syscall instruction */
return do_syscall ( env , kenv );
} else
840
841
842
843
844
if (( ret & 0xff00 ) == KQEMU_RET_INT ) {
env -> exception_index = ret & 0xff ;
env -> error_code = 0 ;
env -> exception_is_int = 1 ;
env -> exception_next_eip = kenv -> next_eip ;
845
846
847
# ifdef CONFIG_PROFILER
kqemu_ret_int_count ++ ;
# endif
848
# ifdef DEBUG
849
850
851
852
853
if ( loglevel & CPU_LOG_INT ) {
fprintf ( logfile , "kqemu: interrupt v=%02x: \n " ,
env -> exception_index );
cpu_dump_state ( env , logfile , fprintf , 0 );
}
854
855
856
857
858
859
860
# endif
return 1 ;
} else if (( ret & 0xff00 ) == KQEMU_RET_EXCEPTION ) {
env -> exception_index = ret & 0xff ;
env -> error_code = kenv -> error_code ;
env -> exception_is_int = 0 ;
env -> exception_next_eip = 0 ;
861
862
863
# ifdef CONFIG_PROFILER
kqemu_ret_excp_count ++ ;
# endif
864
865
866
867
868
869
870
871
872
# ifdef DEBUG
if ( loglevel & CPU_LOG_INT ) {
fprintf ( logfile , "kqemu: exception v=%02x e=%04x: \n " ,
env -> exception_index , env -> error_code );
cpu_dump_state ( env , logfile , fprintf , 0 );
}
# endif
return 1 ;
} else if ( ret == KQEMU_RET_INTR ) {
873
874
875
# ifdef CONFIG_PROFILER
kqemu_ret_intr_count ++ ;
# endif
876
877
878
879
880
# ifdef DEBUG
if ( loglevel & CPU_LOG_INT ) {
cpu_dump_state ( env , logfile , fprintf , 0 );
}
# endif
881
882
return 0 ;
} else if ( ret == KQEMU_RET_SOFTMMU ) {
883
884
885
886
887
# ifdef CONFIG_PROFILER
{
unsigned long pc = env -> eip + env -> segs [ R_CS ]. base ;
kqemu_record_pc ( pc );
}
888
889
890
891
892
893
# endif
# ifdef DEBUG
if ( loglevel & CPU_LOG_INT ) {
cpu_dump_state ( env , logfile , fprintf , 0 );
}
# endif
894
895
896
897
898
899
900
901
902
return 2 ;
} else {
cpu_dump_state ( env , stderr , fprintf , 0 );
fprintf ( stderr , "Unsupported return value: 0x%x \n " , ret );
exit ( 1 );
}
return 0 ;
}
903
904
905
906
907
908
909
910
911
void kqemu_cpu_interrupt ( CPUState * env )
{
# if defined ( _WIN32 ) && KQEMU_VERSION >= 0x010101
/* cancelling the I / O request causes KQEMU to finish executing the
current block and successfully returning . */
CancelIo ( kqemu_fd );
# endif
}
912
# endif