|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
/*
* QEMU CUDA support
*
* Copyright (c) 2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
|
|
26
27
28
|
//#define DEBUG_CUDA
//#define DEBUG_CUDA_PACKET
|
|
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
/* Bits in B data register: all active low */
#define TREQ 0x08 /* Transfer request (input) */
#define TACK 0x10 /* Transfer acknowledge (output) */
#define TIP 0x20 /* Transfer in progress (output) */
/* Bits in ACR */
#define SR_CTRL 0x1c /* Shift register control bits */
#define SR_EXT 0x0c /* Shift on external clock */
#define SR_OUT 0x10 /* Shift out if 1 */
/* Bits in IFR and IER */
#define IER_SET 0x80 /* set bits in IER */
#define IER_CLR 0 /* clear bits in IER */
#define SR_INT 0x04 /* Shift register full/empty */
#define T1_INT 0x40 /* Timer 1 interrupt */
/* Bits in ACR */
#define T1MODE 0xc0 /* Timer 1 mode */
#define T1MODE_CONT 0x40 /* continuous interrupts */
/* commands (1st byte) */
#define ADB_PACKET 0
#define CUDA_PACKET 1
#define ERROR_PACKET 2
#define TIMER_PACKET 3
#define POWER_PACKET 4
#define MACIIC_PACKET 5
#define PMU_PACKET 6
/* CUDA commands (2nd byte) */
#define CUDA_WARM_START 0x0
#define CUDA_AUTOPOLL 0x1
#define CUDA_GET_6805_ADDR 0x2
#define CUDA_GET_TIME 0x3
#define CUDA_GET_PRAM 0x7
#define CUDA_SET_6805_ADDR 0x8
#define CUDA_SET_TIME 0x9
#define CUDA_POWERDOWN 0xa
#define CUDA_POWERUP_TIME 0xb
#define CUDA_SET_PRAM 0xc
#define CUDA_MS_RESET 0xd
#define CUDA_SEND_DFAC 0xe
#define CUDA_BATTERY_SWAP_SENSE 0x10
#define CUDA_RESET_SYSTEM 0x11
#define CUDA_SET_IPL 0x12
#define CUDA_FILE_SERVER_FLAG 0x13
#define CUDA_SET_AUTO_RATE 0x14
#define CUDA_GET_AUTO_RATE 0x16
#define CUDA_SET_DEVICE_LIST 0x19
#define CUDA_GET_DEVICE_LIST 0x1a
#define CUDA_SET_ONE_SECOND_MODE 0x1b
#define CUDA_SET_POWER_MESSAGES 0x21
#define CUDA_GET_SET_IIC 0x22
#define CUDA_WAKEUP 0x23
#define CUDA_TIMER_TICKLE 0x24
#define CUDA_COMBINED_FORMAT_IIC 0x25
#define CUDA_TIMER_FREQ (4700000 / 6)
|
|
88
|
#define CUDA_ADB_POLL_FREQ 50
|
|
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
|
typedef struct CUDATimer {
unsigned int latch;
uint16_t counter_value; /* counter value at load time */
int64_t load_time;
int64_t next_irq_time;
QEMUTimer *timer;
} CUDATimer;
typedef struct CUDAState {
/* cuda registers */
uint8_t b; /* B-side data */
uint8_t a; /* A-side data */
uint8_t dirb; /* B-side direction (1=output) */
uint8_t dira; /* A-side direction (1=output) */
uint8_t sr; /* Shift register */
uint8_t acr; /* Auxiliary control register */
uint8_t pcr; /* Peripheral control register */
uint8_t ifr; /* Interrupt flag register */
uint8_t ier; /* Interrupt enable register */
uint8_t anh; /* A-side data, no handshake */
CUDATimer timers[2];
uint8_t last_b; /* last value of B register */
uint8_t last_acr; /* last value of B register */
int data_in_size;
int data_in_index;
int data_out_index;
int irq;
|
|
121
|
openpic_t *openpic;
|
|
122
123
124
|
uint8_t autopoll;
uint8_t data_in[128];
uint8_t data_out[16];
|
|
125
|
QEMUTimer *adb_poll_timer;
|
|
126
127
128
129
130
131
132
133
|
} CUDAState;
static CUDAState cuda_state;
ADBBusState adb_bus;
static void cuda_update(CUDAState *s);
static void cuda_receive_packet_from_host(CUDAState *s,
const uint8_t *data, int len);
|
|
134
135
|
static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
int64_t current_time);
|
|
136
137
138
|
static void cuda_update_irq(CUDAState *s)
{
|
|
139
140
|
if (s->ifr & s->ier & (SR_INT | T1_INT)) {
openpic_set_irq(s->openpic, s->irq, 1);
|
|
141
|
} else {
|
|
142
|
openpic_set_irq(s->openpic, s->irq, 0);
|
|
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
|
}
}
static unsigned int get_counter(CUDATimer *s)
{
int64_t d;
unsigned int counter;
d = muldiv64(qemu_get_clock(vm_clock) - s->load_time,
CUDA_TIMER_FREQ, ticks_per_sec);
if (d <= s->counter_value) {
counter = d;
} else {
counter = s->latch - 1 - ((d - s->counter_value) % s->latch);
}
return counter;
}
|
|
161
|
static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val)
|
|
162
|
{
|
|
163
164
165
166
167
168
169
|
#ifdef DEBUG_CUDA
printf("cuda: T%d.counter=%d\n",
1 + (ti->timer == NULL), val);
#endif
ti->load_time = qemu_get_clock(vm_clock);
ti->counter_value = val;
cuda_timer_update(s, ti, ti->load_time);
|
|
170
171
172
173
174
175
176
177
178
179
180
|
}
static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time)
{
int64_t d, next_time, base;
/* current counter value */
d = muldiv64(current_time - s->load_time,
CUDA_TIMER_FREQ, ticks_per_sec);
if (d <= s->counter_value) {
next_time = s->counter_value + 1;
} else {
|
|
181
|
base = ((d - s->counter_value) / s->latch);
|
|
182
183
184
|
base = (base * s->latch) + s->counter_value;
next_time = base + s->latch;
}
|
|
185
186
187
188
|
#ifdef DEBUG_CUDA
printf("latch=%d counter=%lld delta_next=%lld\n",
s->latch, d, next_time - d);
#endif
|
|
189
190
191
192
193
194
195
|
next_time = muldiv64(next_time, ticks_per_sec, CUDA_TIMER_FREQ) +
s->load_time;
if (next_time <= current_time)
next_time = current_time + 1;
return next_time;
}
|
|
196
197
198
199
200
201
202
203
204
205
206
207
208
|
static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
int64_t current_time)
{
if (!ti->timer)
return;
if ((s->acr & T1MODE) != T1MODE_CONT) {
qemu_del_timer(ti->timer);
} else {
ti->next_irq_time = get_next_irq_time(ti, current_time);
qemu_mod_timer(ti->timer, ti->next_irq_time);
}
}
|
|
209
210
211
212
213
|
static void cuda_timer1(void *opaque)
{
CUDAState *s = opaque;
CUDATimer *ti = &s->timers[0];
|
|
214
|
cuda_timer_update(s, ti, ti->next_irq_time);
|
|
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
s->ifr |= T1_INT;
cuda_update_irq(s);
}
static uint32_t cuda_readb(void *opaque, target_phys_addr_t addr)
{
CUDAState *s = opaque;
uint32_t val;
addr = (addr >> 9) & 0xf;
switch(addr) {
case 0:
val = s->b;
break;
case 1:
val = s->a;
break;
case 2:
val = s->dirb;
break;
case 3:
val = s->dira;
break;
case 4:
val = get_counter(&s->timers[0]) & 0xff;
s->ifr &= ~T1_INT;
cuda_update_irq(s);
break;
case 5:
val = get_counter(&s->timers[0]) >> 8;
s->ifr &= ~T1_INT;
cuda_update_irq(s);
break;
case 6:
val = s->timers[0].latch & 0xff;
break;
case 7:
val = (s->timers[0].latch >> 8) & 0xff;
break;
case 8:
val = get_counter(&s->timers[1]) & 0xff;
break;
case 9:
val = get_counter(&s->timers[1]) >> 8;
break;
case 10:
|
|
261
262
263
|
val = s->sr;
s->ifr &= ~SR_INT;
cuda_update_irq(s);
|
|
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
break;
case 11:
val = s->acr;
break;
case 12:
val = s->pcr;
break;
case 13:
val = s->ifr;
break;
case 14:
val = s->ier;
break;
default:
case 15:
val = s->anh;
break;
}
#ifdef DEBUG_CUDA
|
|
283
284
|
if (addr != 13 || val != 0)
printf("cuda: read: reg=0x%x val=%02x\n", addr, val);
|
|
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
|
#endif
return val;
}
static void cuda_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
CUDAState *s = opaque;
addr = (addr >> 9) & 0xf;
#ifdef DEBUG_CUDA
printf("cuda: write: reg=0x%x val=%02x\n", addr, val);
#endif
switch(addr) {
case 0:
s->b = val;
cuda_update(s);
break;
case 1:
s->a = val;
break;
case 2:
s->dirb = val;
break;
case 3:
s->dira = val;
break;
case 4:
val = val | (get_counter(&s->timers[0]) & 0xff00);
|
|
314
|
set_counter(s, &s->timers[0], val);
|
|
315
316
317
|
break;
case 5:
val = (val << 8) | (get_counter(&s->timers[0]) & 0xff);
|
|
318
|
set_counter(s, &s->timers[0], val);
|
|
319
320
321
|
break;
case 6:
s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
|
|
322
|
cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
|
|
323
324
325
|
break;
case 7:
s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
|
|
326
|
cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
|
|
327
328
329
|
break;
case 8:
val = val | (get_counter(&s->timers[1]) & 0xff00);
|
|
330
|
set_counter(s, &s->timers[1], val);
|
|
331
332
333
|
break;
case 9:
val = (val << 8) | (get_counter(&s->timers[1]) & 0xff);
|
|
334
|
set_counter(s, &s->timers[1], val);
|
|
335
336
337
338
339
340
|
break;
case 10:
s->sr = val;
break;
case 11:
s->acr = val;
|
|
341
|
cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
|
|
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
|
cuda_update(s);
break;
case 12:
s->pcr = val;
break;
case 13:
/* reset bits */
s->ifr &= ~val;
cuda_update_irq(s);
break;
case 14:
if (val & IER_SET) {
/* set bits */
s->ier |= val & 0x7f;
} else {
/* reset bits */
s->ier &= ~val;
}
cuda_update_irq(s);
break;
default:
case 15:
s->anh = val;
break;
}
}
/* NOTE: TIP and TREQ are negated */
static void cuda_update(CUDAState *s)
{
|
|
372
373
374
375
376
|
int packet_received, len;
packet_received = 0;
if (!(s->b & TIP)) {
/* transfer requested from host */
|
|
377
|
|
|
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
|
if (s->acr & SR_OUT) {
/* data output */
if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
if (s->data_out_index < sizeof(s->data_out)) {
#ifdef DEBUG_CUDA
printf("cuda: send: %02x\n", s->sr);
#endif
s->data_out[s->data_out_index++] = s->sr;
s->ifr |= SR_INT;
cuda_update_irq(s);
}
}
} else {
if (s->data_in_index < s->data_in_size) {
/* data input */
if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
s->sr = s->data_in[s->data_in_index++];
#ifdef DEBUG_CUDA
printf("cuda: recv: %02x\n", s->sr);
#endif
/* indicate end of transfer */
if (s->data_in_index >= s->data_in_size) {
s->b = (s->b | TREQ);
}
s->ifr |= SR_INT;
cuda_update_irq(s);
}
|
|
405
|
}
|
|
406
407
408
409
410
411
412
413
414
|
}
} else {
/* no transfer requested: handle sync case */
if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) {
/* update TREQ state each time TACK change state */
if (s->b & TACK)
s->b = (s->b | TREQ);
else
s->b = (s->b & ~TREQ);
|
|
415
416
|
s->ifr |= SR_INT;
cuda_update_irq(s);
|
|
417
418
419
420
421
422
423
424
425
426
427
428
|
} else {
if (!(s->last_b & TIP)) {
/* handle end of host to cuda transfert */
packet_received = (s->data_out_index > 0);
/* always an IRQ at the end of transfert */
s->ifr |= SR_INT;
cuda_update_irq(s);
}
/* signal if there is data to read */
if (s->data_in_index < s->data_in_size) {
s->b = (s->b & ~TREQ);
}
|
|
429
430
431
432
433
|
}
}
s->last_acr = s->acr;
s->last_b = s->b;
|
|
434
435
436
437
438
439
440
441
|
/* NOTE: cuda_receive_packet_from_host() can call cuda_update()
recursively */
if (packet_received) {
len = s->data_out_index;
s->data_out_index = 0;
cuda_receive_packet_from_host(s, s->data_out, len);
}
|
|
442
443
444
445
446
|
}
static void cuda_send_packet_to_host(CUDAState *s,
const uint8_t *data, int len)
{
|
|
447
448
449
450
451
452
453
454
455
|
#ifdef DEBUG_CUDA_PACKET
{
int i;
printf("cuda_send_packet_to_host:\n");
for(i = 0; i < len; i++)
printf(" %02x", data[i]);
printf("\n");
}
#endif
|
|
456
457
458
459
460
461
462
463
|
memcpy(s->data_in, data, len);
s->data_in_size = len;
s->data_in_index = 0;
cuda_update(s);
s->ifr |= SR_INT;
cuda_update_irq(s);
}
|
|
464
|
static void cuda_adb_poll(void *opaque)
|
|
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
|
{
CUDAState *s = opaque;
uint8_t obuf[ADB_MAX_OUT_LEN + 2];
int olen;
olen = adb_poll(&adb_bus, obuf + 2);
if (olen > 0) {
obuf[0] = ADB_PACKET;
obuf[1] = 0x40; /* polled data */
cuda_send_packet_to_host(s, obuf, olen + 2);
}
qemu_mod_timer(s->adb_poll_timer,
qemu_get_clock(vm_clock) +
(ticks_per_sec / CUDA_ADB_POLL_FREQ));
}
|
|
481
482
483
484
|
static void cuda_receive_packet(CUDAState *s,
const uint8_t *data, int len)
{
uint8_t obuf[16];
|
|
485
|
int ti, autopoll;
|
|
486
487
488
|
switch(data[0]) {
case CUDA_AUTOPOLL:
|
|
489
490
491
492
493
494
495
496
497
498
499
|
autopoll = (data[1] != 0);
if (autopoll != s->autopoll) {
s->autopoll = autopoll;
if (autopoll) {
qemu_mod_timer(s->adb_poll_timer,
qemu_get_clock(vm_clock) +
(ticks_per_sec / CUDA_ADB_POLL_FREQ));
} else {
qemu_del_timer(s->adb_poll_timer);
}
}
|
|
500
501
502
503
504
505
|
obuf[0] = CUDA_PACKET;
obuf[1] = data[1];
cuda_send_packet_to_host(s, obuf, 2);
break;
case CUDA_GET_TIME:
/* XXX: add time support ? */
|
|
506
|
ti = time(NULL);
|
|
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
|
obuf[0] = CUDA_PACKET;
obuf[1] = 0;
obuf[2] = 0;
obuf[3] = ti >> 24;
obuf[4] = ti >> 16;
obuf[5] = ti >> 8;
obuf[6] = ti;
cuda_send_packet_to_host(s, obuf, 7);
break;
case CUDA_SET_TIME:
case CUDA_FILE_SERVER_FLAG:
case CUDA_SET_DEVICE_LIST:
case CUDA_SET_AUTO_RATE:
case CUDA_SET_POWER_MESSAGES:
obuf[0] = CUDA_PACKET;
obuf[1] = 0;
cuda_send_packet_to_host(s, obuf, 2);
break;
default:
break;
}
}
static void cuda_receive_packet_from_host(CUDAState *s,
const uint8_t *data, int len)
{
|
|
533
534
535
536
537
538
539
540
541
|
#ifdef DEBUG_CUDA_PACKET
{
int i;
printf("cuda_receive_packet_to_host:\n");
for(i = 0; i < len; i++)
printf(" %02x", data[i]);
printf("\n");
}
#endif
|
|
542
543
|
switch(data[0]) {
case ADB_PACKET:
|
|
544
545
546
547
|
{
uint8_t obuf[ADB_MAX_OUT_LEN + 2];
int olen;
olen = adb_request(&adb_bus, obuf + 2, data + 1, len - 1);
|
|
548
|
if (olen > 0) {
|
|
549
550
551
|
obuf[0] = ADB_PACKET;
obuf[1] = 0x00;
} else {
|
|
552
|
/* error */
|
|
553
|
obuf[0] = ADB_PACKET;
|
|
554
555
|
obuf[1] = -olen;
olen = 0;
|
|
556
557
558
|
}
cuda_send_packet_to_host(s, obuf, olen + 2);
}
|
|
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
|
break;
case CUDA_PACKET:
cuda_receive_packet(s, data + 1, len - 1);
break;
}
}
static void cuda_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
{
}
static void cuda_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
}
static uint32_t cuda_readw (void *opaque, target_phys_addr_t addr)
{
return 0;
}
static uint32_t cuda_readl (void *opaque, target_phys_addr_t addr)
{
return 0;
}
static CPUWriteMemoryFunc *cuda_write[] = {
&cuda_writeb,
&cuda_writew,
&cuda_writel,
};
static CPUReadMemoryFunc *cuda_read[] = {
&cuda_readb,
&cuda_readw,
&cuda_readl,
};
|
|
596
|
int cuda_init(openpic_t *openpic, int irq)
|
|
597
598
599
600
|
{
CUDAState *s = &cuda_state;
int cuda_mem_index;
|
|
601
602
603
|
s->openpic = openpic;
s->irq = irq;
|
|
604
|
s->timers[0].timer = qemu_new_timer(vm_clock, cuda_timer1, s);
|
|
605
606
|
s->timers[0].latch = 0x10000;
set_counter(s, &s->timers[0], 0xffff);
|
|
607
|
s->timers[1].latch = 0x10000;
|
|
608
609
|
s->ier = T1_INT | SR_INT;
set_counter(s, &s->timers[1], 0xffff);
|
|
610
611
|
s->adb_poll_timer = qemu_new_timer(vm_clock, cuda_adb_poll, s);
|
|
612
613
614
|
cuda_mem_index = cpu_register_io_memory(0, cuda_read, cuda_write, s);
return cuda_mem_index;
}
|