Blame view

kqemu.c 28.3 KB
bellard authored
1
2
/*
 *  KQEMU support
3
 *
4
 *  Copyright (c) 2005-2008 Fabrice Bellard
bellard authored
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include "config.h"
#ifdef _WIN32
22
#define WIN32_LEAN_AND_MEAN
bellard authored
23
#include <windows.h>
24
#include <winioctl.h>
bellard authored
25
26
27
#else
#include <sys/types.h>
#include <sys/mman.h>
28
#include <sys/ioctl.h>
bellard authored
29
#endif
30
#ifdef HOST_SOLARIS
31
#include <sys/ioccom.h>
32
#endif
bellard authored
33
34
35
36
37
38
39
40
41
42
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <inttypes.h>

#include "cpu.h"
#include "exec-all.h"
43
#include "qemu-common.h"
bellard authored
44
45
46
47

#ifdef USE_KQEMU

#define DEBUG
48
//#define PROFILE
bellard authored
49
50
51

#include <unistd.h>
#include <fcntl.h>
bellard authored
52
#include "kqemu.h"
bellard authored
53
54
55
56
#ifdef _WIN32
#define KQEMU_DEVICE "\\\\.\\kqemu"
#else
bellard authored
57
#define KQEMU_DEVICE "/dev/kqemu"
58
59
#endif
60
61
static void qpi_init(void);
62
63
64
65
66
67
68
69
70
#ifdef _WIN32
#define KQEMU_INVALID_FD INVALID_HANDLE_VALUE
HANDLE kqemu_fd = KQEMU_INVALID_FD;
#define kqemu_closefd(x) CloseHandle(x)
#else
#define KQEMU_INVALID_FD -1
int kqemu_fd = KQEMU_INVALID_FD;
#define kqemu_closefd(x) close(x)
#endif
bellard authored
71
72
73
74
75
/* 0 = not allowed
   1 = user kqemu
   2 = kernel kqemu
*/
bellard authored
76
int kqemu_allowed = 1;
77
uint64_t *pages_to_flush;
bellard authored
78
unsigned int nb_pages_to_flush;
79
uint64_t *ram_pages_to_update;
80
unsigned int nb_ram_pages_to_update;
81
uint64_t *modified_ram_pages;
82
83
unsigned int nb_modified_ram_pages;
uint8_t *modified_ram_pages_table;
84
85
int qpi_io_memory;
uint32_t kqemu_comm_base; /* physical address of the QPI communication page */
bellard authored
86
87
88
89
90
91

#define cpuid(index, eax, ebx, ecx, edx) \
  asm volatile ("cpuid" \
                : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) \
                : "0" (index))
bellard authored
92
93
94
95
96
97
#ifdef __x86_64__
static int is_cpuid_supported(void)
{
    return 1;
}
#else
bellard authored
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
static int is_cpuid_supported(void)
{
    int v0, v1;
    asm volatile ("pushf\n"
                  "popl %0\n"
                  "movl %0, %1\n"
                  "xorl $0x00200000, %0\n"
                  "pushl %0\n"
                  "popf\n"
                  "pushf\n"
                  "popl %0\n"
                  : "=a" (v0), "=d" (v1)
                  :
                  : "cc");
    return (v0 != v1);
}
bellard authored
114
#endif
bellard authored
115
116
117

static void kqemu_update_cpuid(CPUState *env)
{
bellard authored
118
    int critical_features_mask, features, ext_features, ext_features_mask;
bellard authored
119
120
121
122
123
124
    uint32_t eax, ebx, ecx, edx;

    /* the following features are kept identical on the host and
       target cpus because they are important for user code. Strictly
       speaking, only SSE really matters because the OS must support
       it if the user code uses it. */
125
126
127
    critical_features_mask =
        CPUID_CMOV | CPUID_CX8 |
        CPUID_FXSR | CPUID_MMX | CPUID_SSE |
bellard authored
128
        CPUID_SSE2 | CPUID_SEP;
bellard authored
129
    ext_features_mask = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR;
bellard authored
130
131
    if (!is_cpuid_supported()) {
        features = 0;
bellard authored
132
        ext_features = 0;
bellard authored
133
134
135
    } else {
        cpuid(1, eax, ebx, ecx, edx);
        features = edx;
bellard authored
136
        ext_features = ecx;
bellard authored
137
    }
bellard authored
138
139
140
141
142
143
#ifdef __x86_64__
    /* NOTE: on x86_64 CPUs, SYSENTER is not supported in
       compatibility mode, so in order to have the best performances
       it is better not to use it */
    features &= ~CPUID_SEP;
#endif
bellard authored
144
145
    env->cpuid_features = (env->cpuid_features & ~critical_features_mask) |
        (features & critical_features_mask);
bellard authored
146
147
    env->cpuid_ext_features = (env->cpuid_ext_features & ~ext_features_mask) |
        (ext_features & ext_features_mask);
bellard authored
148
149
150
151
152
153
154
    /* XXX: we could update more of the target CPUID state so that the
       non accelerated code sees exactly the same CPU features as the
       accelerated code */
}

int kqemu_init(CPUState *env)
{
155
    struct kqemu_init kinit;
bellard authored
156
    int ret, version;
157
158
159
#ifdef _WIN32
    DWORD temp;
#endif
bellard authored
160
161
162
163

    if (!kqemu_allowed)
        return -1;
164
165
166
167
168
#ifdef _WIN32
    kqemu_fd = CreateFile(KQEMU_DEVICE, GENERIC_WRITE | GENERIC_READ,
                          FILE_SHARE_READ | FILE_SHARE_WRITE,
                          NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,
                          NULL);
169
170
171
172
173
    if (kqemu_fd == KQEMU_INVALID_FD) {
        fprintf(stderr, "Could not open '%s' - QEMU acceleration layer not activated: %lu\n",
                KQEMU_DEVICE, GetLastError());
        return -1;
    }
174
#else
bellard authored
175
    kqemu_fd = open(KQEMU_DEVICE, O_RDWR);
176
    if (kqemu_fd == KQEMU_INVALID_FD) {
177
178
        fprintf(stderr, "Could not open '%s' - QEMU acceleration layer not activated: %s\n",
                KQEMU_DEVICE, strerror(errno));
bellard authored
179
180
        return -1;
    }
181
#endif
bellard authored
182
    version = 0;
183
184
185
186
#ifdef _WIN32
    DeviceIoControl(kqemu_fd, KQEMU_GET_VERSION, NULL, 0,
                    &version, sizeof(version), &temp, NULL);
#else
bellard authored
187
    ioctl(kqemu_fd, KQEMU_GET_VERSION, &version);
188
#endif
bellard authored
189
190
191
192
193
194
    if (version != KQEMU_VERSION) {
        fprintf(stderr, "Version mismatch between kqemu module and qemu (%08x %08x) - disabling kqemu use\n",
                version, KQEMU_VERSION);
        goto fail;
    }
195
    pages_to_flush = qemu_vmalloc(KQEMU_MAX_PAGES_TO_FLUSH *
196
                                  sizeof(uint64_t));
bellard authored
197
198
199
    if (!pages_to_flush)
        goto fail;
200
    ram_pages_to_update = qemu_vmalloc(KQEMU_MAX_RAM_PAGES_TO_UPDATE *
201
                                       sizeof(uint64_t));
202
203
204
    if (!ram_pages_to_update)
        goto fail;
205
    modified_ram_pages = qemu_vmalloc(KQEMU_MAX_MODIFIED_RAM_PAGES *
206
                                      sizeof(uint64_t));
207
208
209
210
211
212
    if (!modified_ram_pages)
        goto fail;
    modified_ram_pages_table = qemu_mallocz(phys_ram_size >> TARGET_PAGE_BITS);
    if (!modified_ram_pages_table)
        goto fail;
213
214
215
216
217
218
219
    memset(&kinit, 0, sizeof(kinit)); /* set the paddings to zero */
    kinit.ram_base = phys_ram_base;
    kinit.ram_size = phys_ram_size;
    kinit.ram_dirty = phys_ram_dirty;
    kinit.pages_to_flush = pages_to_flush;
    kinit.ram_pages_to_update = ram_pages_to_update;
    kinit.modified_ram_pages = modified_ram_pages;
220
#ifdef _WIN32
221
    ret = DeviceIoControl(kqemu_fd, KQEMU_INIT, &kinit, sizeof(kinit),
222
223
                          NULL, 0, &temp, NULL) == TRUE ? 0 : -1;
#else
224
    ret = ioctl(kqemu_fd, KQEMU_INIT, &kinit);
225
#endif
bellard authored
226
227
228
    if (ret < 0) {
        fprintf(stderr, "Error %d while initializing QEMU acceleration layer - disabling it for now\n", ret);
    fail:
229
230
        kqemu_closefd(kqemu_fd);
        kqemu_fd = KQEMU_INVALID_FD;
bellard authored
231
232
233
        return -1;
    }
    kqemu_update_cpuid(env);
234
    env->kqemu_enabled = kqemu_allowed;
bellard authored
235
    nb_pages_to_flush = 0;
236
    nb_ram_pages_to_update = 0;
237
238

    qpi_init();
bellard authored
239
240
241
242
243
    return 0;
}

void kqemu_flush_page(CPUState *env, target_ulong addr)
{
244
#if defined(DEBUG)
bellard authored
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    if (loglevel & CPU_LOG_INT) {
        fprintf(logfile, "kqemu_flush_page: addr=" TARGET_FMT_lx "\n", addr);
    }
#endif
    if (nb_pages_to_flush >= KQEMU_MAX_PAGES_TO_FLUSH)
        nb_pages_to_flush = KQEMU_FLUSH_ALL;
    else
        pages_to_flush[nb_pages_to_flush++] = addr;
}

void kqemu_flush(CPUState *env, int global)
{
#ifdef DEBUG
    if (loglevel & CPU_LOG_INT) {
        fprintf(logfile, "kqemu_flush:\n");
    }
#endif
    nb_pages_to_flush = KQEMU_FLUSH_ALL;
}
265
266
267
268
void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr)
{
#ifdef DEBUG
    if (loglevel & CPU_LOG_INT) {
269
270
        fprintf(logfile, "kqemu_set_notdirty: addr=%08lx\n", 
                (unsigned long)ram_addr);
271
272
    }
#endif
bellard authored
273
274
275
    /* we only track transitions to dirty state */
    if (phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] != 0xff)
        return;
276
277
278
279
280
281
    if (nb_ram_pages_to_update >= KQEMU_MAX_RAM_PAGES_TO_UPDATE)
        nb_ram_pages_to_update = KQEMU_RAM_PAGES_UPDATE_ALL;
    else
        ram_pages_to_update[nb_ram_pages_to_update++] = ram_addr;
}
282
283
284
285
static void kqemu_reset_modified_ram_pages(void)
{
    int i;
    unsigned long page_index;
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
    for(i = 0; i < nb_modified_ram_pages; i++) {
        page_index = modified_ram_pages[i] >> TARGET_PAGE_BITS;
        modified_ram_pages_table[page_index] = 0;
    }
    nb_modified_ram_pages = 0;
}

void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr)
{
    unsigned long page_index;
    int ret;
#ifdef _WIN32
    DWORD temp;
#endif

    page_index = ram_addr >> TARGET_PAGE_BITS;
    if (!modified_ram_pages_table[page_index]) {
#if 0
        printf("%d: modify_page=%08lx\n", nb_modified_ram_pages, ram_addr);
#endif
        modified_ram_pages_table[page_index] = 1;
        modified_ram_pages[nb_modified_ram_pages++] = ram_addr;
        if (nb_modified_ram_pages >= KQEMU_MAX_MODIFIED_RAM_PAGES) {
            /* flush */
#ifdef _WIN32
312
313
            ret = DeviceIoControl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES,
                                  &nb_modified_ram_pages,
314
315
316
                                  sizeof(nb_modified_ram_pages),
                                  NULL, 0, &temp, NULL);
#else
317
            ret = ioctl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES,
318
319
320
321
322
323
324
                        &nb_modified_ram_pages);
#endif
            kqemu_reset_modified_ram_pages();
        }
    }
}
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
void kqemu_set_phys_mem(uint64_t start_addr, ram_addr_t size, 
                        ram_addr_t phys_offset)
{
    struct kqemu_phys_mem kphys_mem1, *kphys_mem = &kphys_mem1;
    uint64_t end;
    int ret, io_index;

    end = (start_addr + size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
    start_addr &= TARGET_PAGE_MASK;
    kphys_mem->phys_addr = start_addr;
    kphys_mem->size = end - start_addr;
    kphys_mem->ram_addr = phys_offset & TARGET_PAGE_MASK;
    io_index = phys_offset & ~TARGET_PAGE_MASK;
    switch(io_index) {
    case IO_MEM_RAM:
        kphys_mem->io_index = KQEMU_IO_MEM_RAM;
        break;
    case IO_MEM_ROM:
        kphys_mem->io_index = KQEMU_IO_MEM_ROM;
        break;
    default:
        if (qpi_io_memory == io_index) {
            kphys_mem->io_index = KQEMU_IO_MEM_COMM;
        } else {
            kphys_mem->io_index = KQEMU_IO_MEM_UNASSIGNED;
        }
        break;
    }
#ifdef _WIN32
    {
        DWORD temp;
        ret = DeviceIoControl(kqemu_fd, KQEMU_SET_PHYS_MEM, 
                              kphys_mem, sizeof(*kphys_mem),
                              NULL, 0, &temp, NULL) == TRUE ? 0 : -1;
    }
#else
    ret = ioctl(kqemu_fd, KQEMU_SET_PHYS_MEM, kphys_mem);
#endif
    if (ret < 0) {
        fprintf(stderr, "kqemu: KQEMU_SET_PHYS_PAGE error=%d: start_addr=0x%016" PRIx64 " size=0x%08lx phys_offset=0x%08lx\n",
                ret, start_addr, 
                (unsigned long)size, (unsigned long)phys_offset);
    }
}
bellard authored
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
struct fpstate {
    uint16_t fpuc;
    uint16_t dummy1;
    uint16_t fpus;
    uint16_t dummy2;
    uint16_t fptag;
    uint16_t dummy3;

    uint32_t fpip;
    uint32_t fpcs;
    uint32_t fpoo;
    uint32_t fpos;
    uint8_t fpregs1[8 * 10];
};

struct fpxstate {
    uint16_t fpuc;
    uint16_t fpus;
    uint16_t fptag;
    uint16_t fop;
    uint32_t fpuip;
    uint16_t cs_sel;
    uint16_t dummy0;
    uint32_t fpudp;
    uint16_t ds_sel;
    uint16_t dummy1;
    uint32_t mxcsr;
    uint32_t mxcsr_mask;
    uint8_t fpregs1[8 * 16];
bellard authored
399
400
    uint8_t xmm_regs[16 * 16];
    uint8_t dummy2[96];
bellard authored
401
402
403
404
405
406
407
408
};

static struct fpxstate fpx1 __attribute__((aligned(16)));

static void restore_native_fp_frstor(CPUState *env)
{
    int fptag, i, j;
    struct fpstate fp1, *fp = &fp1;
409
bellard authored
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
    fp->fpuc = env->fpuc;
    fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
    fptag = 0;
    for (i=7; i>=0; i--) {
	fptag <<= 2;
	if (env->fptags[i]) {
            fptag |= 3;
        } else {
            /* the FPU automatically computes it */
        }
    }
    fp->fptag = fptag;
    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&fp->fpregs1[i * 10], &env->fpregs[j].d, 10);
        j = (j + 1) & 7;
    }
    asm volatile ("frstor %0" : "=m" (*fp));
}
429
bellard authored
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
static void save_native_fp_fsave(CPUState *env)
{
    int fptag, i, j;
    uint16_t fpuc;
    struct fpstate fp1, *fp = &fp1;

    asm volatile ("fsave %0" : : "m" (*fp));
    env->fpuc = fp->fpuc;
    env->fpstt = (fp->fpus >> 11) & 7;
    env->fpus = fp->fpus & ~0x3800;
    fptag = fp->fptag;
    for(i = 0;i < 8; i++) {
        env->fptags[i] = ((fptag & 3) == 3);
        fptag >>= 2;
    }
    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 10], 10);
        j = (j + 1) & 7;
    }
    /* we must restore the default rounding state */
    fpuc = 0x037f | (env->fpuc & (3 << 10));
    asm volatile("fldcw %0" : : "m" (fpuc));
}

static void restore_native_fp_fxrstor(CPUState *env)
{
    struct fpxstate *fp = &fpx1;
    int i, j, fptag;

    fp->fpuc = env->fpuc;
    fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
    fptag = 0;
    for(i = 0; i < 8; i++)
        fptag |= (env->fptags[i] << i);
    fp->fptag = fptag ^ 0xff;

    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&fp->fpregs1[i * 16], &env->fpregs[j].d, 10);
        j = (j + 1) & 7;
    }
    if (env->cpuid_features & CPUID_SSE) {
        fp->mxcsr = env->mxcsr;
        /* XXX: check if DAZ is not available */
        fp->mxcsr_mask = 0xffff;
bellard authored
476
        memcpy(fp->xmm_regs, env->xmm_regs, CPU_NB_REGS * 16);
bellard authored
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
    }
    asm volatile ("fxrstor %0" : "=m" (*fp));
}

static void save_native_fp_fxsave(CPUState *env)
{
    struct fpxstate *fp = &fpx1;
    int fptag, i, j;
    uint16_t fpuc;

    asm volatile ("fxsave %0" : : "m" (*fp));
    env->fpuc = fp->fpuc;
    env->fpstt = (fp->fpus >> 11) & 7;
    env->fpus = fp->fpus & ~0x3800;
    fptag = fp->fptag ^ 0xff;
    for(i = 0;i < 8; i++) {
        env->fptags[i] = (fptag >> i) & 1;
    }
    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 16], 10);
        j = (j + 1) & 7;
    }
    if (env->cpuid_features & CPUID_SSE) {
        env->mxcsr = fp->mxcsr;
bellard authored
502
        memcpy(env->xmm_regs, fp->xmm_regs, CPU_NB_REGS * 16);
bellard authored
503
504
505
506
507
508
509
510
    }

    /* we must restore the default rounding state */
    asm volatile ("fninit");
    fpuc = 0x037f | (env->fpuc & (3 << 10));
    asm volatile("fldcw %0" : : "m" (fpuc));
}
bellard authored
511
512
513
514
static int do_syscall(CPUState *env,
                      struct kqemu_cpu_state *kenv)
{
    int selector;
515
bellard authored
516
    selector = (env->star >> 32) & 0xffff;
517
#ifdef TARGET_X86_64
bellard authored
518
    if (env->hflags & HF_LMA_MASK) {
519
520
        int code64;
bellard authored
521
522
523
        env->regs[R_ECX] = kenv->next_eip;
        env->regs[11] = env->eflags;
524
525
        code64 = env->hflags & HF_CS64_MASK;
bellard authored
526
        cpu_x86_set_cpl(env, 0);
527
528
        cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
                               0, 0xffffffff,
bellard authored
529
                               DESC_G_MASK | DESC_P_MASK |
bellard authored
530
531
                               DESC_S_MASK |
                               DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK);
532
        cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
bellard authored
533
534
535
536
537
                               0, 0xffffffff,
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_W_MASK | DESC_A_MASK);
        env->eflags &= ~env->fmask;
538
        if (code64)
bellard authored
539
540
541
            env->eip = env->lstar;
        else
            env->eip = env->cstar;
542
    } else
bellard authored
543
544
545
#endif
    {
        env->regs[R_ECX] = (uint32_t)kenv->next_eip;
546
bellard authored
547
        cpu_x86_set_cpl(env, 0);
548
549
        cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
                           0, 0xffffffff,
bellard authored
550
551
552
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
553
        cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
bellard authored
554
555
556
557
558
559
560
561
562
563
                               0, 0xffffffff,
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_W_MASK | DESC_A_MASK);
        env->eflags &= ~(IF_MASK | RF_MASK | VM_MASK);
        env->eip = (uint32_t)env->star;
    }
    return 2;
}
564
#ifdef CONFIG_PROFILER
565
566
567
568
569
570
571
572
573
574
575

#define PC_REC_SIZE 1
#define PC_REC_HASH_BITS 16
#define PC_REC_HASH_SIZE (1 << PC_REC_HASH_BITS)

typedef struct PCRecord {
    unsigned long pc;
    int64_t count;
    struct PCRecord *next;
} PCRecord;
576
577
static PCRecord *pc_rec_hash[PC_REC_HASH_SIZE];
static int nb_pc_records;
578
579
static void kqemu_record_pc(unsigned long pc)
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
{
    unsigned long h;
    PCRecord **pr, *r;

    h = pc / PC_REC_SIZE;
    h = h ^ (h >> PC_REC_HASH_BITS);
    h &= (PC_REC_HASH_SIZE - 1);
    pr = &pc_rec_hash[h];
    for(;;) {
        r = *pr;
        if (r == NULL)
            break;
        if (r->pc == pc) {
            r->count++;
            return;
        }
        pr = &r->next;
    }
    r = malloc(sizeof(PCRecord));
    r->count = 1;
    r->pc = pc;
    r->next = NULL;
    *pr = r;
    nb_pc_records++;
}
606
static int pc_rec_cmp(const void *p1, const void *p2)
607
608
609
610
611
612
613
614
615
616
617
{
    PCRecord *r1 = *(PCRecord **)p1;
    PCRecord *r2 = *(PCRecord **)p2;
    if (r1->count < r2->count)
        return 1;
    else if (r1->count == r2->count)
        return 0;
    else
        return -1;
}
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
static void kqemu_record_flush(void)
{
    PCRecord *r, *r_next;
    int h;

    for(h = 0; h < PC_REC_HASH_SIZE; h++) {
        for(r = pc_rec_hash[h]; r != NULL; r = r_next) {
            r_next = r->next;
            free(r);
        }
        pc_rec_hash[h] = NULL;
    }
    nb_pc_records = 0;
}
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
void kqemu_record_dump(void)
{
    PCRecord **pr, *r;
    int i, h;
    FILE *f;
    int64_t total, sum;

    pr = malloc(sizeof(PCRecord *) * nb_pc_records);
    i = 0;
    total = 0;
    for(h = 0; h < PC_REC_HASH_SIZE; h++) {
        for(r = pc_rec_hash[h]; r != NULL; r = r->next) {
            pr[i++] = r;
            total += r->count;
        }
    }
    qsort(pr, nb_pc_records, sizeof(PCRecord *), pc_rec_cmp);
650
651
652
653
654
655
    f = fopen("/tmp/kqemu.stats", "w");
    if (!f) {
        perror("/tmp/kqemu.stats");
        exit(1);
    }
bellard authored
656
    fprintf(f, "total: %" PRId64 "\n", total);
657
658
659
660
    sum = 0;
    for(i = 0; i < nb_pc_records; i++) {
        r = pr[i];
        sum += r->count;
661
662
663
        fprintf(f, "%08lx: %" PRId64 " %0.2f%% %0.2f%%\n",
                r->pc,
                r->count,
664
665
666
667
668
                (double)r->count / (double)total * 100.0,
                (double)sum / (double)total * 100.0);
    }
    fclose(f);
    free(pr);
669
670

    kqemu_record_flush();
671
672
673
}
#endif
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
static inline void kqemu_load_seg(struct kqemu_segment_cache *ksc,
                                  const SegmentCache *sc)
{
    ksc->selector = sc->selector;
    ksc->flags = sc->flags;
    ksc->limit = sc->limit;
    ksc->base = sc->base;
}

static inline void kqemu_save_seg(SegmentCache *sc,
                                  const struct kqemu_segment_cache *ksc)
{
    sc->selector = ksc->selector;
    sc->flags = ksc->flags;
    sc->limit = ksc->limit;
    sc->base = ksc->base;
}
bellard authored
692
693
694
int kqemu_cpu_exec(CPUState *env)
{
    struct kqemu_cpu_state kcpu_state, *kenv = &kcpu_state;
695
696
697
698
    int ret, cpl, i;
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif
699
700
701
#ifdef _WIN32
    DWORD temp;
#endif
bellard authored
702
703
704
705
#ifdef CONFIG_PROFILER
    ti = profile_getclock();
#endif
bellard authored
706
707
708
709
710
711
#ifdef DEBUG
    if (loglevel & CPU_LOG_INT) {
        fprintf(logfile, "kqemu: cpu_exec: enter\n");
        cpu_dump_state(env, logfile, fprintf, 0);
    }
#endif
712
713
    for(i = 0; i < CPU_NB_REGS; i++)
        kenv->regs[i] = env->regs[i];
bellard authored
714
715
    kenv->eip = env->eip;
    kenv->eflags = env->eflags;
716
717
718
719
720
721
    for(i = 0; i < 6; i++)
        kqemu_load_seg(&kenv->segs[i], &env->segs[i]);
    kqemu_load_seg(&kenv->ldt, &env->ldt);
    kqemu_load_seg(&kenv->tr, &env->tr);
    kqemu_load_seg(&kenv->gdt, &env->gdt);
    kqemu_load_seg(&kenv->idt, &env->idt);
bellard authored
722
723
724
725
726
    kenv->cr0 = env->cr[0];
    kenv->cr2 = env->cr[2];
    kenv->cr3 = env->cr[3];
    kenv->cr4 = env->cr[4];
    kenv->a20_mask = env->a20_mask;
bellard authored
727
    kenv->efer = env->efer;
728
729
730
731
732
    kenv->tsc_offset = 0;
    kenv->star = env->star;
    kenv->sysenter_cs = env->sysenter_cs;
    kenv->sysenter_esp = env->sysenter_esp;
    kenv->sysenter_eip = env->sysenter_eip;
733
#ifdef TARGET_X86_64
734
735
736
737
738
    kenv->lstar = env->lstar;
    kenv->cstar = env->cstar;
    kenv->fmask = env->fmask;
    kenv->kernelgsbase = env->kernelgsbase;
#endif
bellard authored
739
740
741
742
743
744
745
746
747
748
    if (env->dr[7] & 0xff) {
        kenv->dr7 = env->dr[7];
        kenv->dr0 = env->dr[0];
        kenv->dr1 = env->dr[1];
        kenv->dr2 = env->dr[2];
        kenv->dr3 = env->dr[3];
    } else {
        kenv->dr7 = 0;
    }
    kenv->dr6 = env->dr[6];
749
750
    cpl = (env->hflags & HF_CPL_MASK);
    kenv->cpl = cpl;
bellard authored
751
    kenv->nb_pages_to_flush = nb_pages_to_flush;
752
    kenv->user_only = (env->kqemu_enabled == 1);
753
754
    kenv->nb_ram_pages_to_update = nb_ram_pages_to_update;
    nb_ram_pages_to_update = 0;
755
    kenv->nb_modified_ram_pages = nb_modified_ram_pages;
756
757
758
759
760
761
762
    kqemu_reset_modified_ram_pages();

    if (env->cpuid_features & CPUID_FXSR)
        restore_native_fp_fxrstor(env);
    else
        restore_native_fp_frstor(env);
bellard authored
763
764
#ifdef _WIN32
765
766
767
768
769
770
771
772
    if (DeviceIoControl(kqemu_fd, KQEMU_EXEC,
                        kenv, sizeof(struct kqemu_cpu_state),
                        kenv, sizeof(struct kqemu_cpu_state),
                        &temp, NULL)) {
        ret = kenv->retval;
    } else {
        ret = -1;
    }
773
774
775
776
#else
    ioctl(kqemu_fd, KQEMU_EXEC, kenv);
    ret = kenv->retval;
#endif
777
778
779
780
    if (env->cpuid_features & CPUID_FXSR)
        save_native_fp_fxsave(env);
    else
        save_native_fp_fsave(env);
bellard authored
781
782
783
    for(i = 0; i < CPU_NB_REGS; i++)
        env->regs[i] = kenv->regs[i];
bellard authored
784
785
    env->eip = kenv->eip;
    env->eflags = kenv->eflags;
786
787
    for(i = 0; i < 6; i++)
        kqemu_save_seg(&env->segs[i], &kenv->segs[i]);
788
    cpu_x86_set_cpl(env, kenv->cpl);
789
    kqemu_save_seg(&env->ldt, &kenv->ldt);
790
791
792
    env->cr[0] = kenv->cr0;
    env->cr[4] = kenv->cr4;
    env->cr[3] = kenv->cr3;
bellard authored
793
794
    env->cr[2] = kenv->cr2;
    env->dr[6] = kenv->dr6;
795
#ifdef TARGET_X86_64
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
    env->kernelgsbase = kenv->kernelgsbase;
#endif

    /* flush pages as indicated by kqemu */
    if (kenv->nb_pages_to_flush >= KQEMU_FLUSH_ALL) {
        tlb_flush(env, 1);
    } else {
        for(i = 0; i < kenv->nb_pages_to_flush; i++) {
            tlb_flush_page(env, pages_to_flush[i]);
        }
    }
    nb_pages_to_flush = 0;

#ifdef CONFIG_PROFILER
    kqemu_time += profile_getclock() - ti;
    kqemu_exec_count++;
#endif
bellard authored
813
814
815
816
817
    if (kenv->nb_ram_pages_to_update > 0) {
        cpu_tlb_update_dirty(env);
    }
818
819
820
821
822
823
824
825
    if (kenv->nb_modified_ram_pages > 0) {
        for(i = 0; i < kenv->nb_modified_ram_pages; i++) {
            unsigned long addr;
            addr = modified_ram_pages[i];
            tb_invalidate_phys_page_range(addr, addr + TARGET_PAGE_SIZE, 0);
        }
    }
826
827
828
829
    /* restore the hidden flags */
    {
        unsigned int new_hflags;
#ifdef TARGET_X86_64
830
        if ((env->hflags & HF_LMA_MASK) &&
831
832
833
834
835
836
837
838
839
840
841
            (env->segs[R_CS].flags & DESC_L_MASK)) {
            /* long mode */
            new_hflags = HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
        } else
#endif
        {
            /* legacy / compatibility case */
            new_hflags = (env->segs[R_CS].flags & DESC_B_MASK)
                >> (DESC_B_SHIFT - HF_CS32_SHIFT);
            new_hflags |= (env->segs[R_SS].flags & DESC_B_MASK)
                >> (DESC_B_SHIFT - HF_SS32_SHIFT);
842
            if (!(env->cr[0] & CR0_PE_MASK) ||
843
844
845
846
847
848
849
850
851
                   (env->eflags & VM_MASK) ||
                   !(env->hflags & HF_CS32_MASK)) {
                /* XXX: try to avoid this test. The problem comes from the
                   fact that is real mode or vm86 mode we only modify the
                   'base' and 'selector' fields of the segment cache to go
                   faster. A solution may be to force addseg to one in
                   translate-i386.c. */
                new_hflags |= HF_ADDSEG_MASK;
            } else {
852
                new_hflags |= ((env->segs[R_DS].base |
853
                                env->segs[R_ES].base |
854
                                env->segs[R_SS].base) != 0) <<
855
856
857
                    HF_ADDSEG_SHIFT;
            }
        }
858
        env->hflags = (env->hflags &
859
860
861
           ~(HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)) |
            new_hflags;
    }
862
863
864
865
866
867
868
    /* update FPU flags */
    env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
        ((env->cr[0] << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
    if (env->cr[4] & CR4_OSFXSR_MASK)
        env->hflags |= HF_OSFXSR_MASK;
    else
        env->hflags &= ~HF_OSFXSR_MASK;
869
bellard authored
870
871
872
873
874
#ifdef DEBUG
    if (loglevel & CPU_LOG_INT) {
        fprintf(logfile, "kqemu: kqemu_cpu_exec: ret=0x%x\n", ret);
    }
#endif
bellard authored
875
876
877
    if (ret == KQEMU_RET_SYSCALL) {
        /* syscall instruction */
        return do_syscall(env, kenv);
878
    } else
bellard authored
879
880
881
882
883
    if ((ret & 0xff00) == KQEMU_RET_INT) {
        env->exception_index = ret & 0xff;
        env->error_code = 0;
        env->exception_is_int = 1;
        env->exception_next_eip = kenv->next_eip;
884
885
886
#ifdef CONFIG_PROFILER
        kqemu_ret_int_count++;
#endif
bellard authored
887
#ifdef DEBUG
bellard authored
888
        if (loglevel & CPU_LOG_INT) {
889
            fprintf(logfile, "kqemu: interrupt v=%02x:\n",
bellard authored
890
891
892
                    env->exception_index);
            cpu_dump_state(env, logfile, fprintf, 0);
        }
bellard authored
893
894
895
896
897
898
899
#endif
        return 1;
    } else if ((ret & 0xff00) == KQEMU_RET_EXCEPTION) {
        env->exception_index = ret & 0xff;
        env->error_code = kenv->error_code;
        env->exception_is_int = 0;
        env->exception_next_eip = 0;
900
901
902
#ifdef CONFIG_PROFILER
        kqemu_ret_excp_count++;
#endif
bellard authored
903
904
905
906
907
908
909
910
911
#ifdef DEBUG
        if (loglevel & CPU_LOG_INT) {
            fprintf(logfile, "kqemu: exception v=%02x e=%04x:\n",
                    env->exception_index, env->error_code);
            cpu_dump_state(env, logfile, fprintf, 0);
        }
#endif
        return 1;
    } else if (ret == KQEMU_RET_INTR) {
912
913
914
#ifdef CONFIG_PROFILER
        kqemu_ret_intr_count++;
#endif
915
916
917
918
919
#ifdef DEBUG
        if (loglevel & CPU_LOG_INT) {
            cpu_dump_state(env, logfile, fprintf, 0);
        }
#endif
bellard authored
920
        return 0;
921
    } else if (ret == KQEMU_RET_SOFTMMU) {
922
923
924
925
926
#ifdef CONFIG_PROFILER
        {
            unsigned long pc = env->eip + env->segs[R_CS].base;
            kqemu_record_pc(pc);
        }
927
928
929
930
931
932
#endif
#ifdef DEBUG
        if (loglevel & CPU_LOG_INT) {
            cpu_dump_state(env, logfile, fprintf, 0);
        }
#endif
bellard authored
933
934
935
936
937
938
939
940
941
        return 2;
    } else {
        cpu_dump_state(env, stderr, fprintf, 0);
        fprintf(stderr, "Unsupported return value: 0x%x\n", ret);
        exit(1);
    }
    return 0;
}
942
943
void kqemu_cpu_interrupt(CPUState *env)
{
944
#if defined(_WIN32)
945
    /* cancelling the I/O request causes KQEMU to finish executing the
946
947
948
949
950
       current block and successfully returning. */
    CancelIo(kqemu_fd);
#endif
}
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
/* 
   QEMU paravirtualization interface. The current interface only
   allows to modify the IF and IOPL flags when running in
   kqemu.

   At this point it is not very satisfactory. I leave it for reference
   as it adds little complexity.
*/

#define QPI_COMM_PAGE_PHYS_ADDR 0xff000000

static uint32_t qpi_mem_readb(void *opaque, target_phys_addr_t addr)
{
    return 0;
}

static uint32_t qpi_mem_readw(void *opaque, target_phys_addr_t addr)
{
    return 0;
}

static void qpi_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
}

static void qpi_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
}

static uint32_t qpi_mem_readl(void *opaque, target_phys_addr_t addr)
{
    CPUState *env;

    env = cpu_single_env;
    if (!env)
        return 0;
    return env->eflags & (IF_MASK | IOPL_MASK);
}

/* Note: after writing to this address, the guest code must make sure
   it is exiting the current TB. pushf/popf can be used for that
   purpose. */
static void qpi_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
    CPUState *env;

    env = cpu_single_env;
    if (!env)
        return;
    env->eflags = (env->eflags & ~(IF_MASK | IOPL_MASK)) | 
        (val & (IF_MASK | IOPL_MASK));
}

static CPUReadMemoryFunc *qpi_mem_read[3] = {
    qpi_mem_readb,
    qpi_mem_readw,
    qpi_mem_readl,
};

static CPUWriteMemoryFunc *qpi_mem_write[3] = {
    qpi_mem_writeb,
    qpi_mem_writew,
    qpi_mem_writel,
};

static void qpi_init(void)
{
    kqemu_comm_base = 0xff000000 | 1;
    qpi_io_memory = cpu_register_io_memory(0, 
                                           qpi_mem_read, 
                                           qpi_mem_write, NULL);
    cpu_register_physical_memory(kqemu_comm_base & ~0xfff, 
                                 0x1000, qpi_io_memory);
}
bellard authored
1025
#endif